Conference paper Open Access

Monitoring Vehicular User Mobility to Predict Traffic Status and Manage Radio Resources

Kuruvatti, Nandish. P; Saavedra Molano, Julian. F; Schotten, Hans. D


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120165835.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">2017 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other users, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works for resale or
redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.</subfield>
  </datafield>
  <controlfield tag="001">856578</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Kaiserslautern</subfield>
    <subfield code="a">Saavedra Molano, Julian. F</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Kaiserslautern</subfield>
    <subfield code="a">Schotten, Hans. D</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1162308</subfield>
    <subfield code="z">md5:a3018d2925fdb639bbb806f6dbd3ccd7</subfield>
    <subfield code="u">https://zenodo.org/record/856578/files/Traffic_Jam_prediction.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-08-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:856578</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Kaiserslautern</subfield>
    <subfield code="a">Kuruvatti, Nandish. P</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Monitoring Vehicular User Mobility to Predict Traffic Status and Manage Radio Resources</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">671680</subfield>
    <subfield code="a">Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society-II</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Mobile communication is one of the most ubiquitously used technologies in contemporary world, evolving towards&lt;br&gt;
its fifth generation (5G). In day-to-day scenarios, many vehicular users avail broadband cellular services while traveling. The density of such vehicular users change dynamically in a cell and at certain sites (e.g. signal lights), traffic jams would arise frequently. Such conditions would pose high load situation to respective serving base station. As a consequence, the cell site would experience high dropping and blocking rates and subject its users to poor Quality of Experience (QoE). In this work, mobility behavior of vehicular users are analyzed and an algorithm is designed to predict traffic status of a cell. The proposed traffic prediction algorithm is a coalition strategy consisting of schemes to predict user cell transition, vehicular cluster/moving network detection, user velocity monitoring etc. The traffic status indication provided by the algorithm could be used to design efficient radio resource management (RRM) techniques. In the presented paper, this context information about traffic severity is used to pro-actively initiate load balancing at corresponding site and release resources. Further, appropriate small cells are activated/deactivated based on formation/dispersion of traffic jams respectively. The simulation results exhibit substantial reductions in dropping and blocking of users, demonstrating&lt;br&gt;
improved QoE of users.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.856577</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.856578</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
27
14
views
downloads
All versions This version
Views 2727
Downloads 1414
Data volume 16.3 MB16.3 MB
Unique views 2727
Unique downloads 1313

Share

Cite as