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Abstract—Mobile communication is one of the most ubiqui-
tously used technologies in contemporary world, evolving towards
its fifth generation (5G). The data traffic demand by moving
users (vehicular users) has been constantly increasing. It is a
key challenge in 5G to satiate the requirements of such moving
users and provide good Quality of Experience (QoE), despite
high mobility and traffic demand. In day-to-day life, there are
several practical instances where cellular network is subjected
to high load situation due to vehicular users. Groups of mobile
users travel together (e.g. public transport) forming a moving
network and pose congestion to cells they enter. Further, density
of vehicular users change dynamically in a cell and at certain sites
(e.g. signal lights), traffic jams arise frequently. Such scenarios
would pose high load situation to respective serving base station.
As a consequence, the cell site would experience high dropping
and blocking of users and subject them to poor QoE. This
work emphasizes on building mobility context awareness to
alleviate such situations in traffic dense cellular networks. The
strategies to predict user-cell transition are discussed and an
algorithm to predict severity of vehicular user traffic is designed.
Based on these mobility context information, suitable radio
resource management (RRM), namely mobility load balancing
and small cell activation/deactivation are pro-actively triggered.
The simulation results exhibit substantial reductions in dropping
and blocking of users, demonstrating improved QoE of users,
despite high mobility and data demand.

Index Terms- Context awareness, moving networks, RRM,
vehicular user, traffic jams

I. INTRODUCTION

Mobile communication is one of the key technologies in
today’s world with ever increasing number of mobile subscrip-
tions [1], and on the verge of its fifth generation (5G). Due to
the popularity of mobile multimedia services, there is a drastic
increase in data traffic demand of mobile users [2]. Further, the
number of connected devices has been growing exponentially
and it is anticipated to reach the figure of 50 billion by the
year 2020 [1]. At this pace, by year 2020 number of connected
devices is anticipated to be 10 − 100 times more than the
present and traffic volume would be 1000 times larger. Thus,
5G mobile communications face key challenges of satiating
high data traffic volume and accommodating higher number
of connected devices in the network, with good QoE [2].

In real world scenarios, mobile users traveling in vehicles
avail cellular broadband services (e.g. infotainment in car).
Large number of mobile users would travel in a group (e.g.
public transport) posing a high load situation in cells they
enter. When several such users traveling in group are managed
by a locally present access point, they form a moving network,

which is foreseen to be widespread in near future.
Further, at certain sites (e.g. signal post), traffic jams are

more frequent. In such sites, large number of vehicular users
make momentary halt, giving rise to high load situation at
serving base station. The resulting congestion due to these
practical problems lead to dropping of several already con-
nected users in cell and blocking of access attempts made
by newly entered users to cell. These factors will negatively
impact QoE of users in such cell.

Many schemes are present in literature to combat high
load situation arising from congestion, such as coverage
adaption, channel borrowing [3], mobility load balancing [5],
heterogeneous access management [4] etc. But these schemes
are required to be proactively triggered based on knowledge
of traffic severity, in order to achieve efficient performance.
Moreover, there are certain works in literature to detect hotspot
situation in a cell [6][7]. Majority of these works consider high
user arrival rate, low departure rate, or increased bandwidth
demand of existing users causing hotspot situation in a cell.
Further, blocking/dropping rates and network load figures are
investigated to evaluate congestion status in a cell. However,
these solutions do not rely on context information (e.g. moving
network arrival, traffic jams etc.), to initiate suitable RRM
strategies well in advance. Context awareness and supporting
framework [8][9] are thus required to tackle aforementioned
high load situations.

In addition to this, there are various methods to predict
urban traffic jams based on feedback from large historic
traffic data and a large number of trajectory tracking devices,
traffic sensors [10], based on 2D cellular automata model
[11], based on fuzzy search theory [12] and few based on
video surveillance systems [13][14]. The above schemes are
typically used to predict general traffic congestion, associated
delays and convey these information to transport systems.
However, these schemes are costly in terms of computation
and infrastructure and are not necessarily designed from a
cellular network perspective. This renders the aforementioned
solutions not suitable for usage in cellular networks.

This work emphasizes on building mobility context aware-
ness to enable efficient design of radio resource management,
with a motive to improve QoE of users even in highly
congested situations (e.g. traffic jams) or high mobility (e.g.
moving networks). A procedure to predict user-cell transition
is presented and used pro-actively to initiate load balancing
(LB), in context of data intense moving networks. Further, a



framework is proposed to predict vehicular traffic status from
cellular network perspective. This a-priori context information
about traffic jam formation is utilized to proactively initiate
load balancing at the serving base station or activate/deactivate
small cell at anticipated site of frequent traffic jams.

The remainder of this paper is organized as follows: Sec-
tion II deals with prediction of user-cell transition in context
of moving networks and its evaluation. Section III discusses
traffic status prediction and respective evaluation, and Section
IV provides a conclusion and indicates future work.

II. CONTEXT AWARE RRM FOR MOVING NETWORKS

As discussed in section I, data intense moving networks
pose a practical problem of high load situation, in any cell
it would enter. In order to combat such situation, user-cell
transition prediction could be used. If next cell for transition
of moving network is known, then suitable RRM (e.g. load
balancing) could be initiated at predicted site to release/reserve
resources, in advance. Fig.1 illustrates the aforementioned
scenario. There are several schemes in literature to predict
future cells of a user based on machine learning [15], route
clustering [16] and other history based schemes [17][18].
However, such schemes have high computational complexity
and cost. Hence, cell transition prediction based on simple
real-time geometry measurements is presented in this work,
taking into account directive mobility of moving networks.

Fig. 1. Context aware LB to accommodate moving networks

A. Prediction of user-cell transition

In this section, a scheme to predict user-cell transition
based on user geometry (dB) is proposed, which will assist
in designing proactive LB for data intense moving networks.
Typically, vehicular users in real world follow direction based
mobility [19] [20] as opposed to random waypoint mobility
(RWP) as depicted in Fig. 2.

The proposed scheme considers geometry of the user
with respect to neighboring cells. Geometry is defined as the
average carrier to interference ratio and is given by,

Geometry (dB) = 10log10

(
Pk∑n

i=1,i6=k Pi

)
(1)

where Pk is the power received from considered base station
and Pi are the interference from other base stations.

a) Random waypoint mobility b) Direction based diurnal mobility
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Fig. 2. RWP mobility and Direction based diurnal mobility

Fig. 3. Exemplary geometry patterns

In Fig. 2.a), the trajectory of a user that follows random
waypoint mobility is depicted. If geometry of such a user with
respect to its neighboring cells are recorded, then obtained
geometry pattern is as shown in Fig. 3a). The geometry pattern
for random waypoint mobility is obscure and non trivial for
purpose of cell transition prediction. However, if we consider
a real world user with direction based diurnal mobility (e.g.
commuter in public transport) as depicted in Fig. 2.b) and
record its geometry with respect to neighboring cells, then
geometry pattern is as shown in Fig. 3b). The geometry
pattern exhibits a positive gradient for cells which are being
approached (cell 6, cell 4, cell 2), whereas geometry pattern
has a negative gradient for cells from which the user is moving
away (cell 5, cell 3, cell 1). This behavior can be utilized for
prediction of next cell for user transition.

Fig. 4. EMA to combat fluctuations in geometry pattern

The geometry values are influenced by characteristics of
wireless channel such as shadowing, fast-fading etc. As a



result, there might be fluctuations in geometry pattern. These
fluctuations can potentially impact the prediction of next cell.
Consider an extreme case as in Fig. 4, which shows the
geometry pattern with respect to a cell from which the user
is moving away. The initial recordings of geometry pattern
suffer due to fading which is reflected as large dip in geometry
values. If we consider instantaneous initial value (Geo-Initial)
and instantaneous final value (Geo-Final) to determine the
gradient, then a positive gradient is obtained in extreme cases.
This would wrongly infer that the cell is being approached.

Fig. 5. Recording of samples to calculate EMA

In order to combat such extreme situations, exponential
moving average filtering (EMA) could be used instead of
instantaneous values. EMA applies weighting factors which
decrease exponentially, so that the most recent values get
higher weightage than the older values [21]. To obtain EMA,
a setup as shown in Fig. 5 is used. There are two virtual
circles inscribed in a cell, corresponding to two different signal
strength thresholds. User geometry samples recorded in the
region between these circles is used to calculate EMA. If EMA
is used (EMA-Initial, EMA-Final) instead of instantaneous
values as in Fig. 4, a negative gradient is obtained as desired,
inferring that user is moving away from the cell. Even though
occurrence of such an extreme case is rare, it is preferable to
use EMA as precaution.

The set of potential next cells are determined dynamically
based on the geometry patterns which have positive gradient.
The probability of transition into these next cells based on
geometry values are given by:

p1 =
EMAgeo1

EMAgeo1 + EMAgeo2 + EMAgeo3
(2)

p2 =
EMAgeo2

EMAgeo1 + EMAgeo2 + EMAgeo3
(3)

p3 =
EMAgeo3

EMAgeo1 + EMAgeo2 + EMAgeo3
(4)

where EMAgeo1, EMAgeo2 and EMAgeo3 are the EMA
of geometry values of potential next cells. These are obtained
by performing EMA [21] on geometry values recorded in the
region between two virtual circles, before user leaves present
cell (same as EMA-Final).

B. Evaluation

A LTE system level simulator is used to set up a multi-cell
scenario as shown in Fig. 6. Each cell has base station in its
center and has several static background users in it. Evaluation
methodology follows [22] and simulation parameters are tabu-
lated in table I. A data intense moving network travels through
the cells as depicted in Fig. 6. Table II summarizes prediction
of moving network transition into potential next cells. It could
be seen that, cell transition is predicted with high accuracy.
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Fig. 6. User-cell transition

TABLE I
SIMULATION PARAMETERS

Parameter Assumption
Carrier frequency 2 GHz
System bandwidth 10 MHz (50 PRBs)

Total transmit power 40 W(s2s = 500m)
Control channel overhead 12%

Shadowing
log-normal

Standard deviation: 8 dB
Decorrelation distance: 50 m

Fast fading 2-tap Rayleigh fading channel
Noise power −174 dBm/Hz + 10 · log10(B) + 7

Background users per cell 30
Users in Moving networks 60 at 80 km/h

TABLE II
USER-CELL TRANSITION PREDICTION

Present Cell Next Cell 1 Next Cell 2 Next Cell 3 PNextcell1 PNextcell2 PNextcell3

Cell 3 Cell 0 Cell 5 Cell 1 0.786 0.0156 0.197
Cell 0 Cell 4 Cell 6 N/A 0.716 0.284 N/A
Cell 4 Cell 15 Cell 13 N/A 0.996 0.004 N/A

Fig. 7. Key performance indicators



As soon as the next cell for transition is predicted for data
intense moving network, context aware LB is triggered in
predicted cell. This procedure will free up resources and make
it allocatable for moving networks. Fig. 7 depicts the average
reductions in dropping of connected users (≈ 42%), blocked
access attempts (≈ 23%) and blocked handover attempts
(≈ 47%), thus indicating improved QoE.

III. CONTEXT AWARE RRM IN TRAFFIC JAMS

When several vehicular users availing cellular broadband
services are at halt during traffic jams, high load situation
is posed to serving base station. In order to combat such
problem, a framework is proposed in this section to predict
traffic status in a cell. This context information is then used
to activate/deactivate small cells suitably. An illustration of
aforementioned concept is provided by Fig. 8.

Fig. 8. Context aware RRM in traffic jams

A. System model

Fig. 9. Traffic jam formation model

Fig. 9 depicts the system model considered to monitor
vehicular users traveling towards site of interest and obtain
substantial statistics required to design traffic status prediction
algorithm. Cell 0 is the site of interest where traffic jams occur
frequently (due to presence of signal posts etc.). The mobility
behavior of vehicular users in cells neighboring to this site
are monitored and those that are traveling towards cell 0 are
investigated. Such users are identified when Eq. 5 is satisfied.

√
(xb − xn(i))2 + (yb − yn(i))2√

(xb − xn(i− 1))2 + (yb − yn(i− 1))2
< 1, (5)

where, (xb, yb) denotes position of base station (cell 0),
(xn(i), yn(i)) is the present location of vehicular user n,
and (xn(i − 1), yn(i − 1)) is its past position. Further, in
the considered system model, a transition region is defined at
boundaries of neighboring cells. A user is in transition region
if Eq. 6 is satisfied:

gs < θt, (6)

where gs is the geometry (dB) experienced by user with
respect to serving base station and θt is a threshold value
used to set cell transition region, which is derived from radio
propagation data.

The group of vehicular users satisfying Eq. 5 are monitored
and below statistics are obtained to design algorithm to predict
traffic severity at the site of interest (cell 0):

1) Nt → number of vehicular users in transition region
of neighboring cells, having cell 0 as next cell for
transition.

2) NCt → number of vehicular user clusters in transition
region of neighboring cells, having cell 0 as predicted
next cell.

3) N0 → number of vehicular users already transited to
cell 0 from neighboring cells.

4) Tt → total data traffic demand of vehicular users in
transition region of neighboring cells.

5) N∆vj → number of vehicular users with negative ve-
locity gradient, nearby frequent jam location.

6) NC∆vj → number of vehicular user clusters with neg-
ative velocity gradient, nearby frequent jam location.

7) T∆vj → cumulative data traffic demand of vehicular
users with negative velocity gradient, nearby frequent
jam location.

Note: Prediction of user-cell transition discussed in sec-
tion II-A is used in obtaining Nt, NCt and N0.

B. Vehicular cluster detection

Fig. 10. Vehicular user cluster

During peak time of the day, several vehicular users travel
in a group from various locations and at certain sites such



as signal posts make a brief halt, giving rise to traffic jams.
Thus, detection of such vehicular user clusters in and around
the site of frequent traffic jam is a valuable indicator in
prediction of traffic jams, which would arise in near future.
Presence of vehicular user clusters is identified by following
algorithm:

Data:
1) Positions of vehicular users in each neighboring cell

satisfying Eq. 5.
2) Predefined values for cluster radius (R) and minimum

number of vehicular users required to form a cluster
(θNR).

Step 1:

Obtain distances among all vehicular users in each
cell satisfying Eq. 5

for i = 1 to N
for j = 1 to N

if i 6= j then
obtain dij

end if
end for

end for

where, N is the number of vehicular users approaching,
i, j ∈ (1, 2, ..., N), dij is the distance between users i
and j.

Step 2:

Find the maximum number of users NR present in a
radius R around user k, advancing in same direction.
∀ k ∈ (1, 2, ..., N), determine the k which satisfies

Eq. 7 more number of times.

dkj <= R (7)

Step 3:

If Eq. 8 is satisfied, then a vehicular cluster exists.

NR >= θNR, (8)

Algorithm 1: Vehicular cluster detection

C. Traffic jam prediction

Based on the collected statistics of vehicular user activity
in and around the site of interest (in this case cell 0), traffic
status prediction algorithm is designed. The vehicular users
are assumed to request full buffer data traffic (the buffers of
the users’ data flows always have unlimited amount of data
to transmit [22]), hence constituting a worst case scenario.
The traffic status indicator (TSI) would assume one of the
following states:
a) Green: There are not enough vehicular users, clusters or
moving networks in cell 0 or in transition region of cells
neighboring to it, to form a traffic jam or pose a congestion
situation in near future. The cumulative data traffic demand

and number of access attempts made by vehicular users to cell
0 are minimal and there is no indication of high load situation
occurring soon. The statistics about data traffic demand are
considered, because in certain cases even though there are
not enough users present in traffic jam physically, cumulative
data traffic demanded by them might be high enough to cause
congestion. Eq. 9 defines the condition for TSI to be green:

(Nt < θN ) ∧ (NCt < θCt) ∧ (N0 < θ0)

∧(Tt + T∆vj < θT∆vj),
(9)

where ∧ indicates the logical AND operation.

b) Yellow: This state indicates that high traffic situation is
likely to happen in near future of the cell. Sufficient number of
vehicular users/moving networks will already be in transition
region expected to enter cell 0 or cumulative data traffic
demand of vehicular users in transition zone is large enough
to pose hotspot situation in cell 0 in the time coming. Eq. 10
denotes the condition for TSI to be yellow. Eq. 10 also
investigates if the sum of vehicular users in transition region
and those already moved to cell 0 are large enough to pose
high load situation:

(Nt > θN ) ∨ (NCt > θCt)

∨(Nt +N0 > θN0) ∨ (Tt > θTt),
(10)

where ∨ indicates the logical OR operation.
As soon as TSI is yellow, load balancing can be triggered

proactively to free up resources. This enables cell 0 to ac-
commodate soon to enter vehicular users, already in transition
region. Fig. 11 depicts the process of load balancing (LB)
used in this work, where static background users present in
boundary of cell 0 are deliberately made to be served by
appropriate neighboring base stations. Care should be taken
that LB is not carried out on vehicular users, since their
movement would lead to higher LB failures and ping-pong
handovers.

Fig. 11. Proactive load balancing

c) Red: If Eq. 11 is satisfied, then it indicates that traffic jam
is imminent at the frequent jam site. The vehicles typically
apply brakes and slow down when they are supposed to
halt at signal posts. Eq. 11 makes use of such behavior and
considers statistics of vehicular users/moving networks near
jam site, with negative velocity gradient and their cumulative



data traffic demand. To assist the attainment of these statis-
tics, a predefined radius around anticipated jam site is used
and vehicular users contained in it are investigated. Velocity
estimation by Doppler processing [23] is assumed to be present
in the considered system.

(N∆vj > θ∆vj) ∨ (NC∆vj > θC∆vj)

∨(T∆vj > θT∆vj).
(11)

The threshold values θN , θCt, θ0, θT∆vj , θN0, θTt, θ∆vj

and θC∆vj have to be set by the network operator on the basis
of available resources at site of interest and maximum number
of connections that could be served. The thresholds can be fine
tuned by the operators suitably.

Once the TSI is red with respect to a frequent jam
site (e.g. signal post), the nearest small cell to the site is
activated. The vehicular users in traffic jam, which is bound
to happen at the site, will now be served by the small cell
(SC). Fig. 12 demonstrates the activation of SC at frequent
traffic jam site. Further, as vehicular traffic jam disperses, TSI
changes accordingly to yellow and then to green. Small cell
is deactivated proactively to minimize energy consumption of
small cells.

Fig. 12. Small cell activation

D. Evaluation

Fig. 13. Simulation of traffic jam formation

A multi-cell scenario is simulated as depicted in Fig. 13.
Cell 0 is the site of interest with crossroads where traffic
jams occur frequently. The vehicular users originate from
neighboring cells and travel into cell 0 as per road topology,
and cause traffic jams. Simulation parameters are same as
described in section II-B table I. In addition, 135 vehicular
users at velocities ranging from 30 − 80 km/h are deployed.
Few small cells with s2s of 250 m and transmit power of 10 W
are also present. The thresholds are set as θN = 30, θCt = 3,
θ0 = 45, θN0 = 45, θC∆vj = 3, θ∆vj = 30, θT∆vj = 250
MB, θTt = 250 MB θNR = 5 and R = 30 m. Monitoring
interval is set as 1 s.

Fig. 14. Traffic status indicator

Fig. 15. Improvements in KPIs

Fig. 14 shows the evolution of TSI with simulation time.
When TSI is yellow, load balancing is initiated proactively
at the site of cell 0. (Note: LB initiated only once, when
TSI changes from green to yellow) The static background
users near cell boundary in cell 0 are load balanced. This
context aware procedure frees up some resources for incoming
vehicular users to cell 0 in near future. This procedure reduces
dropping of users by ≈ 18%, blocking of new access attempts
by ≈ 10% and blocked handover attempts by ≈ 18% (shown
in Fig. 15 a)). Further, when TSI turns red, relevant small
cells are activated to serve the vehicular users at respective
traffic jams. In the presented evaluation, traffic jams occur
almost simultaneously at two sites as depicted in Fig. 13. By
the activation of small cells, dropping of users is reduced by
≈ 82%, blocked access attempts is reduced by ≈ 42% and
blocked handovers are reduced by ≈ 81% (shown in Fig. 15
b)). The reduction of these KPIs, indicate that users have
improved QoE even during traffic jams.



Further, when traffic jam disperses (TSI changes from red to

Fig. 16. Comparison of energy consumption

yellow), activated small cell is switched off. With prediction
based scheme, energy consumption is reduced by ≈ 45%
(Fig. 16) for considered simulation set up. Thus, prediction
based small cell activation/deactivation not only improves user
QoE but also is energy efficient compared to small cell being
always ON.

IV. CONCLUSION AND FUTURE WORK

Mobile communication has evolved through various gen-
erations and is now on the verge of its fifth generation (5G).
Higher traffic volume (1000 times more) and larger number of
connected devices (10−100 times more) are anticipated in 5G.
Several practical problems arise in day-to-day situations due
to vehicular users availing cellular broadband services. Large
number of such vehicular users when controlled by a locally
present access point, form a moving network. These entities
are data intense and are envisioned to become widespread in
near future. In addition, when large number of data demanding
vehicular users are stuck in a traffic jam, high load situation
is posed to serving cell. These problems lead to high drop-
ping and blocking of users, thereby hindering QoE of users.
This paper presented solutions to these problems by building
mobility context awareness. A real-time geometry (dB) based
user-cell transition method was used to design context aware
LB to alleviate high load due to moving networks. Further, a
framework to predict traffic jams was proposed from cellular
network perspective. Context aware activation/deactivation of
small cell was enabled to overcome respective high load situ-
ation. Evaluation of these schemes proved to reduce blocking
of access attempts, dropping of connected users and blocking
of handover attempts, thereby improving QoE. Future work is
to tailor these presented solutions with other 5G concepts such
as millimeter wave technology and beamforming, to provide
mix of services in data dense networks.
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