Thesis Open Access

On the Origins of Cosmic Dust and the Evolution of Nearby Galaxies with the Herschel Space Observatory

Clark, Christopher Jonathan Redfern


JSON-LD (schema.org) Export

{
  "description": "<p>Using multiwavelength observations, centred around the unique far-infrared and submillimetre window provided by the Herschel Space Observatory, this thesis investigates the origins and evolution of cosmic dust in the local Universe \u2013 by examining individual sources of dust in our own galaxy, and by studying dust in nearby galaxies. I search Herschel observations of the remnants of Kepler\u2019s (SN1604) and Tycho\u2019s (SN1572) supernov\u00e6, both Type-Ia explosions, for evidence of dust creation by these events. Being the only Type-Ia supernov\u00e6 known to have occurred in our Galaxy within the past 1,000 years, these remnants are the only ones both close enough to resolve, and young enough that they are dominated by their ejecta dynamics. There is no indication of any recently manufactured dust associated with either supernova remnant. It therefore appears that Type-Ia supernov\u00e6 do not contribute significantly to the dust budgets of galaxies. The Crab Nebula, the result of a Type-II supernova (SN1054), is also investigated using Herschel and multiwavelength data. After accounting for other sources of emission, a temperature of T<sub>d</sub> = 63.1 K and mass of M<sub>d</sub> = 0.21 M<sub>\u2299</sub> is derived for the Crab Nebula\u2019s dust component. I create a map of the distribution of dust in the Crab Nebula, the first of its kind, by means of a resolved component separation, revealing that the dust is located in the dense filamentary ejecta. We can be confident that this dust will survive in the long term, and be injected into the galactic dust budget. This is the first detection of manufactured supernova dust for which this can be said. Next I use the Herschel-ATLAS to assemble HAPLESS: the Herschel- ATLAS Phase-1 Limited Extent Spatial Sample \u2013 a blind, volume-limited, dust- selected sample of nearby galaxies. The majority of this sample is made up of curious very blue galaxies. Often irregular and/or flocculent in morphology, with extremely blue UV-NIR colours, these galaxies appear to be prominent in the local dusty universe. In the absence of reliable photometry for the HAPLESS galaxies, I describe the function and testing of a purpose-built photometric pipeline \u2013 CAAPR: Chris\u2019 Adequate Aperture Photometry Routine. The photometry conducted with CAAPR exhibits flux greater by factors of, on average, 1.6 in the FUV and 1.4 in r-band, relative to the previously-available photometry. In comparison to other surveys of dust in local galaxies, the HAPLESS systems show a strong propensity towards very late morphological types and extremely blue FUV-Ks colours. The dust in the HAPLESS galaxies appears to be very cold, with a median temperature of 14.6 K. They are also exceptionally dust rich, with a median dust mass of 5.3 \u00d7 10<sup>6</sup> M<sub><span class=\"math-tex\">\\(_{\\odot}\\)</span></sub> , and a median M<sub>d</sub>/M<span class=\"math-tex\">\\(_{\\star}\\)</span> of 4.4\u00d710<sup>-3</sup> \u2013 greater by a factor of 1.8\u20133.7 than that seen in other local surveys. The curious very blue HAPLESS galaxies, whilst accounting for only 6% of the stellar mass in our sample, contain over 35% of the dust mass. I show that the more dust-rich a galaxy (as defined by M<sub>d</sub>/M<sub><span class=\"math-tex\">\\(_{\\star}\\)</span></sub>), the smaller the fraction of its UV luminosity that suffers dust absorption \u2013 this effect is observed to be particularly dramatic in the case of the curious very blue objects. Either the emissivity or geometry of the dust in these systems must be highly unusual. HAPLESS suggests a dust mass volume density of the local universe of (3.7 \u00b1 0.7) \u00d7 10<sup>5</sup> M<sub><span class=\"math-tex\">\\(_{\\odot}\\)</span></sub> Mpc<sup>-3</sup>; the largest value reported to date. The HAPLESS 250 \u03bcm luminosity function is in good agreement with surveys of far larger volumes, suggesting that we do not sample an over-dense region of space. The HAPLESS galaxies are extraordinarily gas rich; the median HAPLESS gas fraction is 0.52, and 19% of the sample have gas fractions &gt;0.8. The median HAPLESS gas-to-dust ratio is \u2248260, 2\u20133 times larger than in other local surveys. The very blue galaxies of the sample are found to be particularly gas rich; a chemical and dust evolution model indicates that they are at an early stage of converting their gas into stars. A dust-selected survey such as H-ATLAS is a particularly efficient way of identifying young systems of this kind, which should therefore provide valuable insights into the chemical evolution of young galaxies.</p>", 
  "license": "http://creativecommons.org/licenses/by-nc/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Cardiff University", 
      "@type": "Person", 
      "name": "Clark, Christopher Jonathan Redfern"
    }
  ], 
  "headline": "On the Origins of Cosmic Dust and the Evolution of Nearby Galaxies with the Herschel Space Observatory", 
  "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", 
  "datePublished": "2015-04-22", 
  "url": "https://zenodo.org/record/854717", 
  "keywords": [
    "Galaxies", 
    "Supernova", 
    "Hershcel", 
    "Cosmic Dust", 
    "Photometry", 
    "Astronomy"
  ], 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.854717", 
  "@id": "https://doi.org/10.5281/zenodo.854717", 
  "@type": "ScholarlyArticle", 
  "name": "On the Origins of Cosmic Dust and the Evolution of Nearby Galaxies with the Herschel Space Observatory"
}
58
46
views
downloads
All versions This version
Views 5858
Downloads 4646
Data volume 3.8 GB3.8 GB
Unique views 5858
Unique downloads 4242

Share

Cite as