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Abstract Toeplitz matrices have applications to different problems of statis-
tical mechanics. Recently it was used for calculation of entanglement entropy
in exactly solvable models including spin chains. We use Fisher-Hartwig for-
mula to calculate entanglement entropy [as well as Rényi entropy] of large
block of spins in the ground state of XY spin chain. In the end of the paper
we announce our recent results [with F. Franchini and L. A. Takhtajan] on
spectrum of density matrix of the block of spins.
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1 Introduction

We study von Neumann entropy and Rényi entropy of spin chains by means
of the Fisher-Hartwig formula. The concept of entanglement was introduced
Schrödinger in 1935 in the course of developing the famous ‘cat paradox’ ,
see [68]. Recently it became important as a resource for quantum control,
which is central for quantum device building, including quantum computers
(it is a primary resource for information processing). Entropy of a subsystem
as a measure of entanglement was introduced in [13]. We study spin chains
with unique ground state. Von Neumann entropy (and Rényi entropy) of the
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whole ground state is zero, but it is positive for a subsystem [block of spins].
In order to define entanglement entropy one has to introduce reduced density
matrix. The reduced density matrix was first introduced by P. A. M. Dirac
in 1930, see [27].

We calculate the entropy of a block of L continuous spins in the ground
state of a Hamiltonian. We can think that the ground state is a bipartite
system |GS〉 = |A&B〉, where we call the block by subsystem A and the rest
of the ground state by subsystem B. The density matrix of the ground state
is ρAB = |GS〉〈GS|, and the density matrix of the block of L neighboring
spins [subsystem A] is ρA = TrB (ρAB), where we trace out all degrees of
freedom outside the block. The von Neumann entropy of the block is

S(ρA) = −TrA (ρA ln ρA) , (1)

which measures how much the block is entangled with the rest of the ground
state. On the other hand, the Rényi entropy S(ρA, α) is defined as

S(ρA, α) =
1

1 − α
ln TrA (ρα

A) , and α > 0, (2)

here α is a parameter . Rényi entropy [67] is important in information theory.
The Rényi entropy turns into von Neumann entropy at α → 1. Knowledge
of the Rényi entropy at arbitrary α permits evaluation of spectrum of the
density matrix . Our main example is XY spin chain.

Toeplitz matrix TL[Φ] is said to be expressed in terms of generating func-
tion Φ(θ) (which is called symbol in mathematical literature):

TL[Φ] = (Φi−j), i, j = 1, · · · ,L − 1 (3)

where

Φk =
1

2π

∫ 2π

0

Φ(θ)e−ikθdθ (4)

is the k-th Fourier coefficient of generating function Φ(θ). The generating
function Φ(θ) can be type of N ×N matrix and TL[Φ] is a N L×N L matrix
for such case. One of the central objects in the study of Toeplitz matrix TL[Φ]
is its determinant, which we will denote as DL[Φ],

DL[Φ] := detTL[Φ]. (5)

Starting with Onsager’s celebrated solution of the two-dimensional Ising
model in the 1940’s, Toeplitz determinants play an increasingly central role
in modern mathematical physics. We refer the reader to the book [60], and
to survey [59] as for comprehensive sources of the classical results and the
history concerning the use of Toeplitz determinants in statistical mechanics.

Another important areas of applications of Toeplitz determinants are ran-
dom matrices and combinatorics. We refer the readers to the works [71,4,35]
for the basic results and for the historic reviews.

Given a generating function Φ(θ), a principal question is the evaluation
of the large L behavior of the Toeplitz determinant DL[Φ]. The pioneering
works on the asymptotic analysis of Toelpitz determinants were done by



3

Szegö (regular symbol) and by Fisher and Hartwig (singular symbol). These
results have been used in the study of spin correlation in two-dimensional
Ising model in the classical works of Wu and McCoy, see for example [60] and
since then by many other researchers and for a various generating functions.

The main focus of the majority of works in the area has been, so far,
the study of spin correlations. The key objects of the analysis have been
the relevant correlation functions of the local operators. In this paper, we
discuss yet another, more recent application of the asymptotic analysis of
Toeplitz determinants in the theory of quantum spin models. Instead of the
local operators, these applications are concerned with the important nonlo-
cal objects appearing in spin chains in connection to their suggested use in
quantum informatics [52]. Indeed, we shall survey some of the recent results
concerning the quantum entanglement. We will consider the two applications
- the entanglement in the XX model and in the XY model. The first one is
related to a singular scalar generating function, while the second one deals
with a regular but ( 2 × 2) matrix generating function.

We begin with the brief review of the history and some of the most recent
results concerning the asymptotic analysis of Toeplitz determinants.

The plan of the paper is:
In the second section we discuss the asymptotical expression of the de-

terminant of a large Toeplitz matrix. The section is divided into subsections.
Subsection 2.2 is devoted to block Toeplitz determinants.

Third section is devoted to XY spin chain. In subsection 3.1 we remind
derivation of determinant representation of entropy of a block of spins in the
ground state. Isotropic case, i.e. the XX model, is considered in 3.2. For
anisotropic case we have to use block Toeplitz matrices.

In section 4 we derive asymptotic expression of entropy of large block of
spins in isotropic case: the leading logarithmic term and sub-leading correc-
tions.

In section 5 we derive asymptotic expression of von Neuman entropy of
large block of spins in anisotropic case. In the case of XY spin chain the
entropy has a limit. We calculate the limit.

In section 6 we calculate limiting expression for Renyi entropy of large
block of spins in XY spin chain.

In section 7 we derive the spectrum of the limiting density matrix from
Renyi entropy. We prove that the spectrum is exact geometric sequence,
see Eq. 117 and Eq. 124. We also calculate the degeneracy of individual
eigenvalues, see f Eq. 126.

The content of sections 4 - 7 is based on the works [45,39,40,33,34].
In section 8 we formulate open problems.

2 Szegö and Fisher-Hartwig Asymptotics

Throughout the paper we will follow the usual, in the theory and applications
of Toeplitz determinants, convention to denote the argument of the functions
on the unite circle either as θ or as z, z = eiθ, i.e. we will always assume the
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notational identity,

f(z) ≡ f(θ), z = eiθ, θ ∈ [0, 2π).

We first consider the case of scalar generating function, i.e. N = 1. We shall
also use for this case the low case symbol φ instead of Φ.

2.1 Szegö and Fisher-Hartwig asymptotics in the case of scalar symbols

In this subsection we review the basic mathematical facts concerning the
asymptotics of Toeplitz determinants DL[φ] with scalar generation functions
φ(z).

The large L asymptotic behavior of DL[φ] depends significantly on the an-
alytical properties of the generating function φ(θ). In the case of the smooth
enough functions φ(θ), the behavior is exponential and its leading and the
pre-exponential terms are given by the following classical result of Szegö,
known as the strong Szegö limit theorem.
Theorem 1.Suppose that the generation function φ(θ) satisfies the condi-
tions,

1. φ(θ) 6= 0 , for all θ ∈ [0, 2π).
2. index φ(θ) ≡ argφ(2π) − argφ(0) = 0
3.
∑∞

k=−∞ |Vk|+
∑∞

k=−∞ |k||Vk|2 <∞, where Vk are the Fourier coefficients
of the function,

V (θ) := lnφ(θ), (6)

that is,

V (z) =

∞∑

k=−∞

Vkz
k, Vk =

1

2π

∫ 2π

0

V (θ)e−kiθdθ. (7)

Then,

DL[φ] ∼ ESz[φ] exp
(
LV0

)
, L→ ∞, (8)

where the pre-exponential factor, ESz[φ], is given by the equation1,

ESz[φ] = exp
( ∞∑

k=1

kVkV−k

)
. (9)

Conditions (1) and (2) on the symbol φ(θ) ensure that the function V (z)
is a well defined function on the unit circle. Condition (3) is a smoothness

1 It is this equation which is responsible for the term “strong Szegö theorem”.
Szegö’s first result, i.e. Szegö limit theorem produced the asymptotics of the deter-
minant DL[φ] up to an undetermined multiplicative constant.
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condition2. It is certainly satisfied by the differentiable functions and is not
satisfied by the functions having root and jump singularities. In the context
of Toeplitz matrices, this type of singularities is usually called the Fisher-
Hartwig singularities. The general form of the symbol φ(z) which has m,
m = 0, 1, 2, . . . fixed Fisher-Hartwig singularities is given by the equation 3,

φ(z) = eV (z)z
Pm

j=0
βj

m∏

j=0

|z−zj|2αjgzj,βj
(z)z

−βj

j , z = eiθ, θ ∈ [0, 2π),

(10)
where

zj = eiθj , j = 0, . . . ,m, 0 = θ0 < θ1 < · · · < θm < 2π; (11)

gzj,βj
(z) ≡ gβj

(z) =

{
eiπβj 0 ≤ arg z < θj ,
e−iπβj θj ≤ arg z < 2π

, (12)

ℜαj > −1/2, βj ∈ C, j = 0, . . . ,m, (13)

and V (z) is a sufficiently smooth function on the unit circle so that the first
factor of the right hand side of equation (10) represents the “ Szegö part”
of the symbol. The condition on αj insures integrability. As it has already
been mentioned before, a single Fisher-Hartwig singularity at zj consists of
a root-type singularity

|z − zj |2αj =

∣∣∣∣2 sin
θ − θj

2

∣∣∣∣
2αj

(14)

and a jump gβj
(z). A point zj , j = 1, . . . ,m is included in (11) if and only if

either αj 6= 0 or βj 6= 0 (or both); in contrast, we always fix z0 = 1 even if
α0 = β0 = 0 (note that gβ0

(z) = e−iπβ0). Observe that for each j = 1, . . . ,m,
zβjgβj

(z) is continuous at z = 1, and so for each j each “beta” singularity
produces a jump only at the point zj .

In 1968, M. Fisher and R. Hartwig [31] suggested a formula for the lead-
ing term of the asymptotic behavior for the Toeplitz determinant generated
by the symbol (10)4. The principal insight of Fisher and Hartwig was the
observation that the singularities of the symbol yield the appearance of the

2 In [70], Szegö proved this theorem under a somewhat stronger smoothness as-
sumption on the symbol; namely, he assumed that the symbol is positive, and that
the symbol and its derivative are Lipshitz functions. It took a substantial period
of time and the efforts of several very skillful analysts to reduce the smoothness
conditions to the conditions (1) - (2) above. It also worth noticing that these con-
ditions are already precise, i.e., if they do not satisfy, the asymptotics (8) might
not take place.

3 In writing the Fisher-Hartwig symbol in form (10) we follow the recent paper
[22]. Equation (10) is slightly different from the one accepted in most of the liter-
ature devoted to the Fisher-Hartwig generating functions. The “translation” back
to the standard form is easy. The main deviation from the standard form is that

in (10) the product z
Pm

j=0 βj is factored out which allow to better appreciate the
non-trivialty of the shifting some of the parameters βj by integers.

4 Some important partial results concerning the asymptotics of the Toeplitz de-
terminants with singular symbols were also obtained by A. Lenard [53] and used
by Fisher and Hartwig as a strong evidence in favor of their formula.



6

power-like factors in the asymptotics. Indeed, in the case of all βj = 0, the
Fisher-Hartig formula reads as follows.

DL[φ] ∼ E0
FH[φ]L

P

m
j=0

α2
j exp

(
LV0

)
, L→ ∞. (15)

The pre-exponential constant factor, E0
FH[φ], is more elaborated than its

Szegö counterpart ESz[φ] from the Szegö equation (8). The description of
E0

FH[φ] involves a rather “exotic” special function - the Barnes’ G - function
G(x) which is defined by the equations (see e.g. [75]),

G(1 + x) = (2π)x/2e−(x+1)x/2−γEx2/2
∞∏

n=1

{(1 + x/n)ne−x+x2/(2n)}, (16)

where γE is Euler constant and its numerical value is 0.5772156649 · · ·. The G
- function can be thought of as a “discrete antiderivative” of the Γ - function.
The exact expression for E0

FH[φ] is given by the equation (cf. Eq. 9),

E0
FH[φ] = exp

(
∞∑

k=1

kVkV−k

)
m∏

j=0

e
αj

(
V0−V (zj)

)

×
∏

0≤j<k≤m

|zj − zk|−2αjαk

m∏

j=0

G2(1 + αj)

G(1 + 2αj)
. (17)

The double product over j < k is set to 1 if m = 0, so that in the absence of
singularities, we are back to the strong Szegö limit theorem.

Fisher-Hartwig formula (15) was proven in 1973 by H. Widom [77].
The presence of jumps, under the assumption |ℜβj −ℜβk| < 1, does not

change much the structure of the large L behavior of the Toeplitz determinant
DL[φ]. Indeed, it is still the combination of the exponential and the power
terms with the exponential term being determined, as before, by only the
Szegö part of the symbol while the power factor is determined by both the α
and the β parameters of the Fisher-Hartwig part of the symbol. The Fisher-
Hartwig formula for the general case of symbol (10) reads (cf. Eq. 15),

DL[φ] ∼ EFH[φ]L
Pm

j=0
(α2

j−β2
j ) exp

(
LV0

)
, L→ ∞. (18)

The pre-exponential constant factor, EFH[φ], is now even more complex than
in the case of all βj = 0. In addition to the Barnes’ G - function, it now

involves the canonical Wiener-Hopf factorization of the Szegö part, eV (z), of
the symbol φ(z),

eV (z) = b+(z)eV0b−(z), b+(z) = e
P

∞

k=1
Vkzk

, b−(z) = e
P

−1

k=−∞
Vkzk

.
(19)

Note that b+(z) and b−(z) are analytic inside and outside of the unit circle
|z| = 1, respectively, and they satisfy the normalization conditions b+(0) =
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b−(∞) = 1. The exact expression for EFH[φ] is given by the equation (cf. Eq.
9 and Eq. 17),

EFH[φ] = exp

(
∞∑

k=1

kVkV−k

)
m∏

j=0

b+(zj)−αj+βjb−(zj)−αj−βj

×
∏

0≤j<k≤m

|zj − zk|2(βjβk−αjαk)

(
zk

zjeiπ

)αjβk−αkβj

×
m∏

j=0

G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
(1 + o(1)) . (20)

The proof of the general Fisher-Hartwig formula (18) is due to E. Basor
[7] for ℜβj = 0, E. Basor [8] for αj = 0, |ℜβj | < 1/2, A. Böttcher and B.
Silbermann [17] for |ℜαj | < 1/2, |ℜβj | < 1/2, T. Ehrhardt [28] for |ℜβj −
ℜβk| < 1. The precise statement concerning the large L behavior of the
Toeplitz determinant DL[φ] with the Fisher-Hartwig generating function (10)
is given by the following theorem.
Theorem 2. (T. Ehrhardt [28]) Let φ(z) be defined in (10), V (z) be C∞ on
the unit circle, ℜαj > −1/2, |ℜβj −ℜβk| < 1, and αj ± βj 6= −1,−2, . . . for
j, k = 0, 1, . . . ,m. Then, as L → ∞, the asymptotic behavior of the Toeplitz
determinant DL[φ] is given by the formulae (18) - (20).

A. Böttcher and B. Silbermann [17] in 1985 and E. Basor and C. Tracy
[10] in 1991 constructed examples with ℜβj not lying in a single interval of
length less than 1 and such that the large L asymptotics is very different from
the one given by (18). These examples have showed that for the asymptotics
(18) to take place, the condition

|ℜβj −ℜβk| < 1, ∀j, k = 0, 1, ...,m, (21)

is precise. In the case of arbitrary complex βj , E. Basor and C. Tracy con-
jectured in [10] a very elegant structure of the large L asymptotics of the
determinant DL[φ]. They based their arguments on the formal analysis of
the behavior of the both sides of estimate (18) with respect to the shifts
of the β - parameters by integers. A detail description of the Basor-Tracy
conjecture can be found in the original paper [10] as well as in the recent
work [22] were this conjecture was actually proven with the help of the new
technique - the Riemann-Hilbert method.

We refer the reader to monograph [18] and survey [28] for more on the
mathematics of Toeplitz determinants with the Fisher-Hartwig symbols.

For the Riemann-Hilbert approach in the theory of Toepitz determinants,
we refer the reader to the papers [22] and [21] where the method was intro-
duced (following the similar approach for the Hankel determinants [32] and
the theory of integrable Fredholm determinants [41]) and to the works [49,
50,58,57], where the method was further developed. The crucial role in the
implementation of the Riemann-Hilbert approach to the Toeplitz determi-
nants is played by the Deift-Zhou nonlinear steepest descent method of the
asymptotic analysis of the oscillatory matrix Riemann-Hilbert problems [25]
and by its orthogonal polynomial version [24].
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2.2 Block Toeplitz determinants

A general asymptotic representation of the determinant of a block Toeplitz
matrix, which generalizes the classical strong Szegö theorem to the block
matrix case, was obtained by Widom in [78,79] (see also more recent work
[16] and references therein).
Theorem 4. (H. Widom [79]) Let Φ(z) be a N ×N matrix function defined
on the unit circle and satisfying the conditions,

1. detΦ(θ) 6= 0 , for all θ ∈ [0, 2π).
2. index detΦ(θ) ≡ arg detΦ(2π) − arg detΦ(0) = 0
3.
∑∞

k=−∞ |Φk| +
∑∞

k=−∞ |k||Φk|2 <∞,

where Φk are the Fourier coefficients of Φ(θ), and |F | denote a matrix norm of
the matrix F. Then, the asymptotic behavior of the block Topelitz determinant
generated by the symbol Φ(z) is given by the formulae,

DL[Φ] ∼ EW[Φ] exp

(
L

2π

∫ 2π

0

ln detΦ(θ)dθ

)
, L→ ∞, (22)

EW[Φ] = det
(
T∞[Φ]T∞[Φ−1]

)
. (23)

where T∞[Φ] is a semi-infinite Toeplitz matrix,

T∞[Φ] = (Φi−j), i, j = 1, 2, · · · . (24)

From the application point of view, there is an important difference between
this result and the Szegö formula (8) for the case of scalar symbols. Indeed,
the determinant in the right hand side of Eq. 23 is the Fredholm determinant
of an infinite matrix, and already for 2 × 2 matrix symbols the question of
effective evaluation of Widom’s pre-factor EW[Φ] is a highly nontrivial one,
even for a relatively simple matrix functions Φ. Indeed, up until very recently
the only general class of matrix functions Φ for which such effective evaluation
is possible has been the class of functions with at least one-side truncated
Fourier series. This class was singled out by Widom himself in [78], and this
Widom’s result has been used in the recent paper [9] of E. Basor and T.
Ehrhardt devoted to the dimer model.

Another class of matrix generating functions which admits an explicit
evaluation of Widom’s constant are the algebraic symbols. This fact was
demonstrated in the works [39,40,43] for important cases of the block Toeplitz
determinants appearing in the analysis of the entanglement entropy in quan-
tum spin chains. For this class of symbols, Widom’s pre-factor admits an
explicit evaluation in terms of Jacobi and Riemann theta functions. To give
a flavor of these results, we will now present a detail description of the asymp-
totics of the block Toeplitz determinant related to the XY spin model ob-
tained in [39,40]. We shall also use these formulae later in Section 4.

The Toeplitz determinant in question is generated by the 2 × 2 matrix
symbol,

Φ(z) =

(
iλ φ(z)

−φ−1(z) iλ

)
(25)
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and φ(z) =

√
(z − z1)(z − z2)

(1 − z1z)(1 − z2z)
, (26)

where z1 6= z2 are complex nonzero numbers not lying on the unit circle.
Following the needs of the XY model, we shall assume that the both points
are from the right half plane though the result we present below can be easily
generalized to the arbitrary position of the points z1 and z2 outside of the
unit circle. We will also distinguish three possible locations of the points z1
and z2 on complex plane.
Case 1a : Both z1 and z2 are real, they lie outside of the unit circle, and we
assume that z1 > z2 > 1.
Case 1b : Both z1 and z2 are complex, z1 = z∗2 , and we assume that ℜz1 > 1
and ℑz1 > 0.
Case 2 : Both z1 and z2 are real, they lie at the different sides of the unit
circle, and we assume that z1 > z−1

2 > 1.
The reason why the Cases 1a and 1b are considered as sub-cases of a single
case is that in the both these cases all the root singularities of the function
φ(z) defined in (26) are inside of the unite circle while all its zeros are outside.
In Case 2, the zeros and the singularities are evenly distributed between the
inside and the outside of the unit circle. This difference in the position of
the roots and singularities of φ(z) has an impact to the derivations of the
asymptotics and, as we see below, is reflected in the form of the final answer.
We shall also see that in the context of the XY model, Case 1 and Case 2
correspond to the small (h < 2) and large (h > 2) magnetic field, respectively.

The complex parameter λ plays role of a spectral parameter for the
Toeplitz matrix generated by the symbol,

Φ0(z) ≡ −Φ(z)|λ=0 =

(
0 −φ(z)

φ−1(z) 0

)
. (27)

Hence the Toeplitz determinantDL[Φ] we are dealing with is in fact a Toeplitz
characteristic determinant,

DL[Φ] ≡ DL(λ) = det
(
iλI2L − T L[Φ0]

)
. (28)

Given the branch points zj of the symbol Φ(z), we introduce now the
elliptic curve,

w2(z) = (z − z1)(z − z2)(z − z−1
2 )(z − z−1

1 ). (29)

Let us also re-label the branch points of this curve by the letters λA, λB,
λC , and λD, according to the following rule. Case 1a : λA = z−1

1 , λB = z−1
2 ,

λC = z2, λD = z1; Case 1b : λA = z−1
1 , λB = z−1

2 , λC = z1, λD = z2, Case

2 : λA = z−1
1 , λB = z2, λC = z−1

2 , λD = z1. Observe that λA and λB are
always inside the unite circle while λC and λD are always outside. This new
relabeling of the branch points allows to introduce the module parameter of
elliptic curve (29) in the universal way,

τ =
2

c

∫ λC

λB

dz

w(z)
, c = 2

∫ λB

λA

dz

w(z)
. (30)
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Theorem 5. ([39,40]) Let

θ3(s) =

∞∑

n=−∞

eπiτn2+2πisn, (31)

where τ is taken from (30), be the third Jacobi theta-function associated with
the curve (29). Then, the large L asymptotic behavior of the determinant
DL(λ) is given by the equations,

DL(λ) ∼ θ3
(
β(λ) + στ

2

)
θ3
(
β(λ) − στ

2

)

θ23
(

στ
2

) (1 − λ2)L, L→ ∞ (32)

where

β(λ) =
1

2πi
ln
λ+ 1

λ− 1
, (33)

and σ = 1 in Case 1 and σ = 0 in Case 2.
Remark. The theta-functions involved in the asymptotic formula Eq. (32)
has zeros at the points

±λm, λm = tanh

(
m+

1 − σ

2

)
πτ0, m ≥ 0, (34)

where,

τ0 = −iτ = −i
∫ λC

λB

dz
w(z)∫ λB

λA

dz
w(z)

> 0.

The asymptotics (32) is uniform outside of the arbitrary fixed neighborhoods
of the points λ = ±1 and λ = ±λm.

Observe that in the case under consideration, detΦ(z) ≡ 1−λ2. Therefore,
the last factor in (32) is exactly the exponential term of the general Widom-
Szegö formula (22) written for symbol (25). The rest of (32) gives then the
corresponding Widom’s constant, i.e.

EW [Φ] =
θ3
(
β(λ) + στ

2

)
θ3
(
β(λ) − στ

2

)

θ23
(

στ
2

) . (35)

Similar formulae for the case of the more general quantum spin chains
were obtained in [43]. The relevant generating function has the same matrix
structure (25) with the scalar function φ(z) defined by the equation,

φ(z) :=

√
p(z)

z2np(1/z)
(36)

and p(z) is a polynomial of degree 2n. The analog of the formulae (32) -
(35) in the case n > 1 involves, instead of elliptic, the hyperelliptic integrals
and, instead of the Jocobi theta-function, the 2n − 1 dimensional Riemann
theta-function.

The methods that lead to these results, involves the theory of integrable
Fredholm operators [41,38,21] and the use of the algebrageometric techniques
of the soliton theory (see e.g. [12]).
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3 XY Model and Block Entropy

The Hamiltonian of XY model can be written as

H = −
∞∑

n=−∞

(1 + γ)σx
nσ

x
n+1 + (1 − γ)σy

nσ
y
n+1 + hσz

n (37)

Here σx
n, σy

n σz
n are Pauli matrices and h is a magnetic field; Without loss

generality, the anisotropy parameter γ can be taken as 0 ≤ γ; Case with γ = 0
is usually called XX model. The model was solved in [54,1,5,6] and it owns
a unique ground state |GS〉. Toeplitz determinants were used for evaluation
of some correlation functions[6,69]; Integrable Fredholm operators were used
for calculation of other correlations[42,26,46]. When the system is in the
ground state, the entropy for this whole system is zero but the entropy of
a sub-system can be positive. We calculate the entropy of a sub-system (a
block of L neighboring spins) which can measure the entanglement between
this sub-system and the rest part[45]. We treat the whole chain as a binary
system |GS〉 = |A&B〉, where we denote the block of L neighboring spins by
sub-system A and the rest part by sub-system B. The density matrix of the
ground state can be denoted by ρAB = |GS〉〈GS|. The density matrix of sub-
system A is ρA = TrB(ρAB). Von Neumann entropy S(ρA) of the sub-system
A can be represented as following:

S(ρA) = −TrA(ρA ln ρA). (38)

This entropy also defines the dimension of the Hilbert space of states of the
block of L spins.

3.1 Derivation

Following Ref. [54], [55], we introduce two Majorana operators

c2l−1 = (
l−1∏

n=1

σz
n)σx

l and c2l = (
l−1∏

n=1

σz
n)σy

l , (39)

on each site of the spin chain. Operators cn are hermitian and obey the anti-
commutation relations {cm, cn} = 2δmn. In terms of operators cn, Hamilto-
nian HXX can be rewritten as

HXX(h) = i

N∑

n=1

(c2nc2n+1 − c2n−1c2n+2 + hc2n−1c2n). (40)

Here different boundary effects can be ignored because we are only interested
in cases with N → ∞. This Hamiltonian can be subsequently diagonalized
by linearly transforming the operators cn. It has been obtained [54,5] (also
see [73,52]) that

〈GS|cm|GS〉 = 0, 〈GS|cmcn|GS〉 = δmn + i(BN)mn. (41)
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Here matrix BN can be written in a block form as

BN =




Π0 Π−1 . . . Π1−N

Π1 Π0

...
...

. . .
...

ΠN−1 . . . . . . Π0




and Πl =
1

2π

∫ 2π

0

dθ e−ilθΦ0(θ), (42)

where both Πl and Φ0(θ) (for N → ∞) are 2 × 2 matrix,

Φ0(θ) =

(
0 φ(θ)

−φ−1(θ) 0

)
and φ(θ) =

cos θ − iγ sin θ − h/2

| cos θ − iγ sin θ − h/2| . (43)

Other correlations such as 〈GS|cm · · · cn|GS〉 are obtainable by Wick theo-

rem. The Hilbert space of sub-system A can be spanned by
∏L

i=1{σ−
i }pi |0〉F ,

where σ±
i is Pauli matrix, pi takes value 0 or 1, and vector |0〉F denotes

the ferromagnetic state with all spins up. It’s possible to construct a set of
fermionic operators bi and b+i by defining

dm =

2L∑

n=1

vmncn, m = 1, · · · , 2L; bl = (d2l + id2l+1)/2, l = 1, · · · ,L (44)

with vmn ≡ (V)mn. Here matrix V is an orthogonal matrix. It’s easy to verify
that dm is hermitian operator and

b+l = (d2l − id2l+1)/2, {bi, bj} = 0, {b+i , b+j } = 0, {b+i , bj} = δi,j . (45)

In terms of fermionic operators bi and b+i , the Hilbert space can also be

spanned by
∏L

i=1{b+i }pi |0〉vac. Here pi takes value 0 or 1, 2L fermionic oper-

ators bi, b
+
i and vacuum state |0〉vac can be constructed by requiring

bl|0〉vac = 0, l = 1, · · · ,L. (46)

We shall choose a specific orthogonal matrix V later.
Let {ψI} be a set of orthogonal basis for Hilbert space of any physical

system. Then the most general form for density matrix of this physical system
can be written as

ρ =
∑

I,J

c(I, J)|ψI〉〈ψJ |. (47)

Here c(I, J) are complex coefficients. We can introduce a set of operators

P (I, J) by P (I, J) ∝ |ψI〉〈ψJ | and P̃ (I, J) satisfying

P̃ (I, J)P (J,K) = δI,K |ψI〉〈ψI |, P (I, J)P̃ (J,K) = δI,K |ψI〉〈ψI |. (48)

There is no summation over repeated index in these formula. We shall use
an explicit summation symbol through the whole paper. Then we can write
the density matrix as

ρ =
∑

I,J

c̃(I, J)P (I, J), c̃(I, J) = Tr(ρP̃ (J, I)). (49)
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Now let us consider quantum spin chain defined in Eq. 37. For the sub-system

A, the complete set of operators P (I, J) can be generated by
∏L

i=1Oi. Here

we take operator Oi to be any one of the four operators {b+i , bi, b+i bi, bi b+i }
(Remember that bi and b+i are fermionic operators defined in Eq. 44). It’s

easy to find that P̃ (J, I) = (
∏L

i=1Oi)
† if P (I, J) =

∏L
i=1Oi. Here † means

hermitian conjugation. Therefore, the reduced density matrix for sub-system
A can be represented as

ρA =
∑

TrAB

(
ρAB(

L∏

i=1

Oi)
†

)
L∏

i=1

Oi. (50)

Here the summation is over all possible different terms
∏L

i=1Oi. For the
whole system to be in pure state |GS〉, the density matrix ρAB is represented
by |GS〉〈GS|. Then we have the expression for ρA as following

ρA =
∑

〈GS|(
L∏

i=1

Oi)
†|GS〉

L∏

i=1

Oi . (51)

This is the expression of density matrix with the coefficients related to multi-
point correlation functions. These correlation functions are well studied in
the physics literature [15]. Now let us choose matrix V in Eq. 44 so that the
set of fermionic basis {b+i } and {bi} satisfy an equation

〈GS|bibj|GS〉 = 0, 〈GS|b+i bj |GS〉 = δi,j〈GS|b+i bi|GS〉. (52)

Then the reduced density matrix ρA represented as sum of products in Eq. 51
can be represented as a product of sums

ρA =

L∏

i=1

(
〈GS|b+i bi|GS〉b+i bi + 〈GS|bib+i |GS〉bib+i

)
. (53)

Here we used the equations 〈GS|bi|GS〉 = 0 = 〈GS|b+i |GS〉 and Wick theo-
rem. This fermionic basis was suggested in Ref. [73,52].

Now let us find a matrix V in Eq. 44, which will block-diagonalize cor-
relation functions of Majorana operators cn. From Eqs. 44 and 42, we have
the following expression for correlation function of dn operators:

〈GS|dmdn|GS〉 =

2L∑

i=1

2L∑

j=1

vmi〈GS|cicj |GS〉vjn ,

〈GS|cmcn|GS〉 = δmn + i(BL)mn,

〈GS|dmdn|GS〉 = δmn + i(B̃L)mn. (54)

The last equation is the definition of a matrix B̃L. Matrix BL is the sub-

matrix of BN defined in Eq. 42 with m,n = 1, 2, . . . ,L. We also require B̃L

to be the form [73,52]

B̃L = VBLV
T = ⊕L

m=1νm

(
0 1
−1 0

)
= Ω ⊗

(
0 1
−1 0

)
. (55)
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Here matrix Ω is a diagonal matrix with elements νm (all νm are real num-
bers). Therefore, choosing matrix V satisfying Eq. 55 in Eq. 44, we obtain
2L operators {bl} and {b+l } with following expectation values

〈GS|bm|GS〉 = 0 , 〈GS|bmbn|GS〉 = 0 , 〈GS|b+mbn|GS〉 = δmn
1 + νm

2
. (56)

Using the simple expression for reduced density matrix ρA in Eq. 53, we
obtain

ρA =

L∏

i=1

(
1 + νi

2
b+i bi +

1 − νi

2
bib

+
i

)
. (57)

This form immediately gives us all the eigenvalues λx1x2···xL
of reduced den-

sity matrix ρA,

λx1x2···xL
=

L∏

i=1

1 + (−1)xiνi

2
, xi = 0, 1 ∀i. (58)

Note that in total we have 2L eigenvalues. Hence, the entropy of ρA from
Eq. 38 becomes

S(ρA) =
L∑

m=1

e(1, νm) (59)

with

e(x, ν) = −x+ ν

2
ln(

x+ ν

2
) − x− ν

2
ln(

x− ν

2
). (60)

3.2 XX model

Notice further that for XX model, i.e. γ = 0 case, matrix BL can have a
direct product form

BL = GL ⊗
(

0 1
−1 0

)
with GL =




φ0 φ−1 . . . φ1−L

φ1 φ0

...
...

. . .
...

φL−1 . . . . . . φ0




, (61)

where φl is defined as

φl =
1

2π

∫ 2π

0

dθ e−ilθφ(θ), φ(θ) =

{
1, −kF < θ < kF ,

−1, kF < θ < (2π − kF )
(62)

and kF = arccos(|h|/2). From Eqs. 55 and 61, we conclude that all νm are
just the eigenvalues of real symmetric matrix GL.

However, to obtain all eigenvalues νm directly from matrix GL is a non-
trivial task. Let us introduce

DL(λ) = det(G̃L(λ) ≡ λIL − GL) . (63)
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Here G̃L is a Toeplitz matrix and IL is the identity matrix of dimension L.
Obviously we also have

DL(λ) =

L∏

m=1

(λ− νm). (64)

From the Cauchy residue theorem and analytical property of e(x, ν), then
S(ρA) can be rewritten as

S(ρA) = lim
ǫ→0+

1

2πi

∮

Γ ′

dλ e(1 + ǫ, λ)
d

dλ
lnDL(λ) . (65)

Here the contour Γ ′ in Fig 1 encircles all zeros of DL(λ) and function
e(1 + ǫ, λ) is analytic within the contour. Just like Toeplitz matrix GL is

Fig. 1 Contours Γ ′ (smaller one) and Γ (larger one). Bold lines (−∞,−1 − ǫ)
and (1 + ǫ,∞) are the cuts of integrand e(1 + ǫ, λ). Zeros of DL(λ) (Eq. 64) are
located on bold line (−1, 1). The arrow is the direction of the route of integral we
take and r and R are the radius of circles. ¶

generated by function φ(θ) in Eqs. 61 and 62, Toeplitz matrix G̃L(λ) is gen-

erated by function φ̃(θ) defined by

φ̃(θ) =

{
λ− 1, −kF < θ < kF ,
λ+ 1, kF < θ < (2π − kF ).

(66)

Notice that φ̃(θ) is a piecewise constant function of θ on the unit circle,
with jumps at θ = ±kF . Hence, if one can obtain the determinant of this
Toeplitz matrix analytically, one will be able to get a closed analytical result
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for S(ρA) which is our new result. Now, the calculation of S(ρA) reduces to

the calculation of the determinant of Toeplitz matrix G̃L(λ).

3.3 XY model

Similarly let us introduce:

B̃L(λ) = iλIL − BL, DL(λ) = det B̃L(λ). (67)

Here IL is the identity matrix of dimension 2L. By definition, we have

DL(λ) = (−1)L
L∏

m=1

(λ2 − ν2
m). (68)

Using again the Cauchy residue theorem we obtain that, similar to (65),

S(ρA) = lim
ǫ→0+

1

4πi

∮

Γ ′

dλ e(1 + ǫ, λ)
d

dλ
lnDL(λ) . (69)

Here the contour Γ ′ in Fig 1 encircles all zeros of DL(λ).

We also realized that B̃L(λ) is a block Toeplitz matrix with the generator
Φ(z), i.e.

B̃L(λ) =




Π̃0 Π̃−1 . . . Π̃1−L

Π̃1 Π̃0

...
...

. . .
...

Π̃L−1 . . . . . . Π̃0




with (70)

Π̃l =
1

2πi

∮

Ξ

dz z−l−1Φ(z), Φ(z) =

(
iλ φ(z)

−φ−1(z) iλ

)
(71)

and φ(z) =

(
λ∗1
λ1

(1 − λ1 z)(1 − λ2 z
−1)

(1 − λ∗1 z
−1)(1 − λ∗2 z)

)1/2

(72)

We fix the branch by requiring that φ(∞) > 0. We use ∗ to denote
complex conjugation and Ξ the unit circle shown in Fig. 2. λ1 and λ2 are
defined differently for different values of γ and h. There are following three
different cases:
In Case 1a (2

√
1 − γ2 < h < 2) and Case 2 (h > 2), both λ1 and λ2 are

real

λ1 =
h−

√
h2 − 4(1 − γ2)

2(1 + γ)
, λ2 =

1 + γ

1 − γ
λ1. (73)

In Case 1b (h2 < 4(1 − γ2)), both λ1 and λ2 are complex

λ1 =
h− i

√
4(1 − γ2) − h2

2(1 + γ)
, λ2 = 1/λ∗1. (74)

Note that in the Case 1 the poles of function φ(z) (Eq. 72) coincide with the
points λA and λB, while in the Case 2 they coincide with the points λA and
λC .
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Fig. 2 Polygonal line Σ (direction as labeled) separates the complex z plane into
the two parts: the part Ω+ which lies to the left of Σ, and the part Ω− which lies
to the right of Σ. Curve Ξ is the unit circle in anti-clockwise direction. Cuts J1, J2

for functions φ(z), w(z) are labeled by bold on line Σ. Definition of the end points
of the cuts λ... depends on the case: Case 1a: λA = λ1 and λB = λ−1

2 , λC = λ2

and λD = λ−1

1 . Case 1b: λA = λ1 and λB = λ−1

2 , λC = λ−1

1 and λD = λ2. Case

2: λA = λ1 and λB = λ2, λC = λ−1

2 and λD = λ−1

1 . ¶

4 Block entropy of XX model and Fisher-Hartwig Formula

From Eq. 65, one needs the calculation of Toeplitz determinantDL(λ) with
a singular generating function

φ̃(θ) =

{
λ− 1, −kF < θ < kF ,
λ+ 1, kF < θ < (2π − kF ).

(75)

It is easy to check that this function admits the canonical Fisher-Hartwig
factorization given by Eq. 10 with

m = 2, αj = 0 ∀j, β0 = 0, β2 = −β1 ≡ β(λ) =
1

2πi
ln
λ+ 1

λ− 1
, (76)

and

eV (z) ≡ eV0 = (λ+ 1)

(
λ+ 1

λ− 1

)−kF /π

. (77)

The branch of the logarithm is fixed by the condition,

−π ≤ arg

(
λ+ 1

λ− 1

)
< π., (78)

For λ /∈ [−1, 1], the left inequality is also strict, and hence |ℜ(β1(λ))| < 1
2 and

|ℜ(β2(λ))| < 1
2 . Therefore, Theorem 2 is applicable (indeed, even its earlier
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weaker version proven by E. Basor [8] would be suffice) and we see that the
determinant DL(λ) of λIL − GL can be asymptotically represented as

DL(λ) =
(

2 − 2 cos(2kF )
)−β2(λ) {

G
(

1 + β(λ)
)
G
(

1 − β(λ)
)}2

{
(λ+ 1)

(
(λ + 1)/(λ− 1)

)−kF /π
}L

L−2β2(λ). (79)

Here G is, as before, the Barnes G-function and

G(1 + β(λ))G(1 − β(λ)) = e−(1+γE)β2(λ)
∞∏

n=1

{(
1 − β2(λ)

n2

)n

eβ2(λ)/n2

}
.

(80)
Let us substitute the asymptotic form Eq. 79 into Eq. 65 and after some

simplification[45], we have that

S(ρA) =
1

3
ln L +

1

6
ln

(
1 −

(
h

2

)2
)

+
ln 2

3
+ Υ1, L → ∞ (81)

with

Υ1 = −
∫ ∞

0

dt

{
e−t

3t
+

1

t sinh2(t/2)
− cosh(t/2)

2 sinh3(t/2)

}
. (82)

for XX model. The leading term of asymptotic of the entropy 1
3 ln L in Eq. 81

was first obtained based on numerical calculation and a simple conformal
argument in Ref. [73,52] in the context of entanglement. We also want to
mention that a complete conformal derivation for this entropy was found
in Ref. [48]. One can numerically evaluate Υ1 to very high accuracy to be
0.4950179 · · ·. For zero magnetic field (h = 0) case, the costant term Υ1 +
ln 2/3 for S(ρA) is close to but different from (π/3) ln 2, which can be found
by taking numerical accuracy to be more than five digits.

5 Block entropy of XY model and block Toeplitz determiniant

For the block entropy of XY model, by virtue of Eq. 69, our objective be-
comes the asymptotic calculation of the determinant of block Toeplitz matrix
DL(λ) or, rather, its λ -derivative d

dλ lnDL(λ).
Let us denote,

z1 := λ−1
1 , and z2 := λ2. (83)

It is easy to check than that the generating function introduced in Eq. 71) -
Eq. 72 coincides with the one introduced in Eq. 25) - Eq. 26 together with the
case-separations and the λA - λD labeling of the branch points. Hence one
can use Theorem 5 and substitute the asymptotic form Eq. 32 into Eq. 69.
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Deforming the original contour of integration to the contour Γ as indicated
in Fig. 1 we arrive at the following expression for the entropy [39,40]:

S(ρA) =
1

2

∫ ∞

1

ln

(
θ3
(
β(λ) + στ

2

)
θ3
(
β(λ) − στ

2

)

θ23
(

στ
2

)
)
dλ, (84)

wich can also be written in the form,

S(ρA) =
π

2

∫ ∞

0

ln

(
θ3
(
ix+ στ

2

)
θ3
(
ix− στ

2

)

θ23
(

στ
2

)
)

dx

sinh2(πx)
(85)

This is a limiting expression as L → ∞. In [40] it is also proven that the

corrections in Eq. 84 are of order of O
(
λ−L

C /
√
L
)
.

The entropy has singularities at phase transitions. When τ → 0 we can
use Landen transform (see [75]) to get the following estimate of the theta-
function for small τ and pure imaginary s:

ln
θ3
(
s± στ

2

)

θ3
(

στ
2

) =
π

iτ
s2 ∓ πiσs+O

(
e−iπ/τ

τ2
s2
)
, as τ → 0.

Now the leading term in the expression for the entropy (84) can be replaced
by

S(ρA) =
iπ

6τ
+O

(
e−iπ/τ

τ2

)
for τ → 0. (86)

Let us consider two physical situations corresponding to small τ depending
on the case defined on the page 2:

1. Critical magnetic field: γ 6= 0 and h→ 2.

This is included in our Case 1a and Case 2, when h > 2
√

1 − γ2. As h→ 2
the end points of the cuts λB → λC , so τ given by Eq. (30) simplifies and
we obtain from Eq. (86) that the entropy is:

S(ρA) = −1

6
ln |2 − h| +

1

3
ln 4γ, for h→ 2 and γ 6= 0 (87)

correction is O(|2 − h| ln2 |2 − h|). This limit agrees with predictions of
conformal approach [48,19]. The first term in the right hand side of (87)
can be represented as (1/6) ln ξ, this confirms a conjecture of [19]. The
correlation length ξ was evaluated in [5].

2. An approach to XX model: γ → 0 and h < 2: It is included in Case 1b,

when 0 < h < 2
√

1 − γ2. Now λB → λC and λA → λD, we can calculate
τ explicitly. The entropy becomes:

S0(ρA) = −1

3
ln γ +

1

6
ln(4 − h2) +

1

3
ln 2, for γ → 0 and h < 2 (88)

correction is O(γ ln2 γ). This agrees with [45] (see also Eq. 81).
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As it has already been indicated, the theta-functions involved in the
asymptotic formula Eq. (32) has zeros at the points ±λm which are defined
in Eq. (34). Theorem 5 shows, in particular, that in the large L limit, the
points ±λm are double zeros of the DL(λ). More precisely, we see that in the
large L limit the eigenvalues ν2m and ν2m+1 from (59) merge to λm:

ν2m, ν2m+1 → λm, (89)

which in turn implies (cf. Eq. 59) the following equivalent description of the
limiting entropy S(ρA) [39]:

The limiting entropy, S(ρA), of the subsystem can be identified with the
infinite convergent series,

♦ S(ρA) =

∞∑

m=−∞

e(1, λm) =

∞∑

m=−∞

(1 + λm) ln
2

1 + λm
♦ (90)

Indeed, equation (90) follows from the substitution of Eq. (32) into Eq. (69)
and integrating over the original contour Γ ′ of Fig. 1

It is also worth mentioning that relation (89) also indicates the degeneracy
of the spectrum of the matrix BL and an appearance of an extra symmetry
in the large L limit.
Remark. These numbers λm satisfy an estimate:

|λm+1 − λm| ≤ 4πτ0 with τ0 = −iτ.
This means that (λm+1 − λm) → 0 as τ → 0 for every m. This is useful for
understanding of large L limit of the XX case corresponding to γ → 0, as
considered in [45]. The estimate explains why in the XX case the singularities
of the logarithmic derivative of the Toeplitz determinant d lnDL(λ)/dλ form
a cut along the interval [−1, 1], while in the XY case it has a discrete set of
poles at points ±λm of Eq. (34).

The higher genus analog of formula Eq. (84) for the class of quantum spin
chains introduced by J. Keating and F. Mezzadri in [47] has been obtained
in [43].
Remark. It was shown by Peschel in [65] (who also suggested an alternative
heuristic derivation of equation (90) based on the work [19]), the series (90)
can be summed up to an elementary function of the complete elliptic integrals
corresponding to the modular parameter τ - see Eqs 109 and 110 below. It is
an open problem whether an analogous representation of the integral Eq. (84)
exists for higher genus. The key issue here is the extreme complexity of the
identification of the zero divisor of the theta- functions in the dimension
grater than 1.

6 Renyi entropy and the spectrum of reduced density matrix of

XY model

The Renyi entropy of Sα(ρA) of the block of spins is defined by the expression

Sα(ρA) =
1

1 − α
lnTr(ρα

A), α 6= 1 and α > 0. (91)
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Here the power α is a parameter. The Renyi entropy is intimately related to
the spectrum of the reduced density matrix ρA. Indeed, let λn, (0 < λn < 1)
and an denote the eigenvalues and their multiplicities of the operator ρA.
The spectrum is completely determined by its momentum function, i.e. by
the ζ-function of ρA ,

ζρA
(α) =

∞∑

n=0

anλ
α
n . (92)

The obvious equation takes place,

ζρA
(α) = e(1−α)SR(ρA,α). (93)

The key point is that we can evaluate Sα(ρA), and hence ζρA
(α), explicitly.

As it is shown in [45], the Renyi entropy Sα(ρA) of a block of L neighbor-
ing spins, before the large L limit is taken, can be represented by the finite
sum,

SR(ρA, α) =
1

1 − α

L∑

k=1

ln

[(
1 + νk

2

)α

+

(
1 − νk

2

)α]
, (94)

where the numbers
±iνk, k = 1, ..., L

are the eigenvalues of the same block Toeplitz matrix Eq. 68 as we worked
with in Section 3.4. In virtue of Eq. (89), the Renyi entropy in the large L
limit can be identified with the convergent series,

SR(ρA, α) =
1

1 − α

∞∑

m=−∞

ln

[(
1 + λm

2

)α

+

(
1 − λm

2

)α]
, (95)

with

λm = tanh

(
m+

1 − σ

2

)
πτ0. (96)

The summation of the series can be done following the same approach as in
[65] in the case of the von Neuman entropy. The result is (for details see [33])
the following,

SR(ρA, α) =
α

1 − α

(
πτ0
12

+
1

6
ln
k k′

4

)
+

1

1 − α
ln

∞∏

n=0

(
1 + q2n+1

α

)2
, (97)

qα = e−απτ0 , (98)

for the case h > 2, and

SR(ρA, α) =
α

1 − α

(
−πτ0

6
+

1

6
ln

k′

4k2

)
+

1

1 − α
ln

∞∏

n=1

(
1 + q2n

α

)2

+
1

1 − α
ln 2, (99)

qα = e−απτ0 ,
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for the case h < 2. In these equations, τ0 ≡ −iτ is the module parameter
defined in Eq. (30,) and k ≡ k(q1), k′ ≡ k′(q1) are the standard elliptic
modular functions, see e.g. [75]. The quantities k and k′ are simply related
to the basic physical parameters γ and h. Indeed, one has that

k ≡





√
(h/2)2 + γ2 − 1 / γ , Case 1a: 4(1 − γ2) < h2 < 4;√
(1 − h2/4 − γ2)/(1 − h2/4) , Case 1b: h2 < 4(1 − γ2);

γ /
√

(h/2)2 + γ2 − 1 , Case 2 : h > 2.

,(100)

k′ =
√

1 − k2.

By standard techniques of the theory of elliptic functions, equation Eq. (30)
can be transformed into the following representation for the module τ0 as a
function of k.

τ0 ≡ I(k′)

I(k)
, k′ =

√
1 − k2, (101)

I(k) is the complete elliptic integral of the first kind,

I(k) =

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

. (102)

The q-products in Eq. 97 and Eq. 99 can be expressed in terms of the
elliptic lambda function or λ - modular function. The λ - function plays a
central role in the theory of modular functions and modular forms, and it is
defined by the equation (see e.g. [75]),

λ(τ) =
θ42(0|τ)

θ43(0|τ)
≡ k2(eiπτ ), ℑτ > 0, (103)

where θj(s|τ), j = 3, 4 are Jacobi theta-fucntions; the function θ3(s|τ) has
already been defined in Eq. 31, while the function θ4(s|τ) is defined by the
equation,

θ(s|τ) =

∞∑

n=−∞

(−1)neπiτn2+2πisn. (104)

The λ - function is analytic function of τ , ℑτ > 0, and it satisfies the follow-
ing symmetry relations with respect to the actions of the generators of the
modular group,

λ(τ + 1) =
λ(τ)

λ(τ) − 1
, (105)

λ

(
−1

τ

)
= 1 − λ(τ). (106)

In terms of the λ - modular function, the formulae for Renyi read as
follows [33].

SR(ρA, α) (107)

=
1

6

α

1 − α
ln (k k′) − 1

12

1

1 − α
ln
(
λ(αiτ0)(1 − λ(αiτ0))

)
+

1

3
ln 2,
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for h > 2 and

SR(ρA, α) (108)

=
1

6

α

1 − α
ln

(
k′

k2

)
+

1

12

1

1 − α
ln

λ2(αiτ0)

1 − λ(αiτ0)
+

1

3
ln 2,

for h < 2.
Eqs. 107 and 108 allow to apply to the study of the Renyi entropy the

apparatus of the theory of modular functions.
Remark. Using Eq. 107 and Eq. 108 one can evaluate the asymptotics of
the Renyi entropy as α → 1. This would lead to the following formulae for
the Neumann entropy,

S(ρA) =
1

6

[
ln (

k2

16k′
) + (1 − k2

2
)
4I(k)I(k′)

π

]
+ ln 2, (109)

in Case 1, and

S(ρA) =
1

12

[
ln (

16

(k2k′2)
+ (k2 − k′2)

4I(k)I(k′)

π

]
, (110)

in Case 2. For the Cases 1a and 2 these formulae were first obtained by
Peschel in [65] by a direct summation of series (90)

7 Spectrum of the limiting density matrix

We will show now, following [34], how to extract from Eq. (97) and (99) the
information about the spectrum of the density matrix ρA.

Consider first the case h > 2. Combining equations (97) and (93), we
arrive at the following representation for the ζ-function ζρA

(α),

ζρA
(α) = e

α
“

πτ0
12

+ 1
6

ln k k′

4

” ∞∏

n=0

(
1 + q2n+1

α

)2
. (111)

At the same time, using the classical arguments of the theory of partitions
(see e.g. [2], Chapter 11, equation (11.1.4)) we have that

∞∏

n=0

(
1 + q2n+1

)
=

∞∑

n=1

p
(1)
O (n)qn, (112)

where p
(1)
O (0) = 1 and p

(1)
O (n), for n > 1, denote the number of partitions of

n into distinct positive odd integers, i.e.

# {(m1, ...,mk) : mj = 2rj + 1, m1 > m2 > ... > mk,

n = m1 +m2 + ...+mk} .
Hence (111) becomes,

ζρA
(α) = e

α
“

πτ0
12

+ 1
6

ln k k′

4

” ∞∑

n=0

anq
n
α, (113)
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where,

a0 = 1, an =

n∑

l=0

p
(1)
O (l)p

(1)
O (n− l). (114)

Finally, observing that

qn
α =

(
e−πτ0n

)α
, (115)

we conclude that

ζρA
(α) =

∞∑

n=0

anλ
α
n , λn = e−πτ0n+

πτ0
12

+ 1
6

ln k k′

4 . (116)

Comparing the last equation with equation (92) we arrive at the following
theorem.
Theorem 6. ([34]) Let the magnetic field h > 2. Then, the eigenvalues of
the reduced density matrix ρA are given by the equation,

λn = e−πτ0n+
πτ0
12

+ 1
6

ln k k′

4 , n = 0, 1, 2, ...., (117)

and the corresponding multiplicities an are determined by the relation (114).
The case h < 2 is treated in a very similar way. Instead of (111) we have

now the formula,

ζρA
(α) = 2e

α
“

−
πτ0
6

+ 1
6

ln k′

4k2

” ∞∏

n=0

(
1 + q2n

α

)2
, (118)

where qα as in (98). The analog of the Taylor expansion (112) is the equation,

∞∏

n=0

(
1 + q2n

)
=

∞∑

n=1

p
(1)
N (n)q2n, (119)

where p
(1)
N (0) = 1 and p

(1)
N (n), for n > 1, denote the number of partitions of

n into distinct positive integers, i.e.

# {(m1, ...,mk) : m1 > m2 > ... > mk ≥ 0, n = m1 +m2 + ...+mk} .

Hence (118) becomes,

ζρA
(α) = 2e

α
“

−
πτ0
6

+ 1
6

ln k′

4k2

” ∞∑

n=0

bnq
2n
α , (120)

where,

b0 = 1, bn =

n∑

l=0

p
(1)
N (l)p

(1)
N (n− l). (121)

Finally, observing that

q2n
α =

(
e−2πτ0n

)α
, (122)
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we conclude that

ζρA
(α) = 2

∞∑

n=0

bnλ
α
n , λn = e−2πτ0n−

πτ0
6

+ 1
6

ln k′

4k2 . (123)

Comparing the last equation again with Eq. 92 we arrive at the analog of
Theorem 6 for the case h < 2 .
Theorem 7. ([34]) Let the magnetic field h < 2. Then, the eigenvalues of
the reduced density matrix ρA are given by the equation,

λn = e−2πτ0n−
πτ0
6

+ 1
6

ln k′

4k2 , n = 0, 1, 2, ...., (124)

and the corresponding multiplicities equal 2bn where the integers bn are de-
termined by the relation (121).

Let

f(x) :=

∞∑

n=0

anx
n, (125)

be the generating function for the coefficients an. Then, Eq. 107 and Eq.
93 in conjunction with the symmetry property (106) allow to analyze the
asymptotic behavior of the functio f(x) generating function as x → 1. In
its turn, this fact yields the evaluation of the large n asymptotics of the
multiplicities an (details are in [34]).
Theorem 8. Let an be the multiplicities of the eigenvalues of the reduced
density matrix for h > 2. Then their large n behavior is given by the relation,

an ∼ 2−3/23−1/4n−3/4eπ
√

n
3 , n→ ∞. (126)

8 Summary and Open Problems

We want to emphasise that the method described here also works for eval-
uation of correlation functions. For example space, time and temperature
dependent correlation function of quantum spins was evaluated in [42]. The
book [15] explains how to apply this method for calculation of correlation
functions in Bose gas with delta interaction.

On the other hand there are still open problems. For example let us
consider the XXZ model. The Hamiltonian can be written in terms of Pauli
matrices σn:

HXXZ = −
∞∑

n=−∞

σx
nσ

x
n+1 + σy

nσ
y
n+1 +∆σz

nσ
z
n+1. (127)

At ∆ < −1 the model has a gap and the ground state is anti-ferromagnetic.
Challenging problem is to calculate the von Neumann entropy and Rényi
entropy of large block of spins on the infinite lattice. It will be interesting to
find the dependence of limiting entropy on ∆.
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of a Magnetic Impurity in the Isotropic XY Model. Phys. Rev. Lett. 25, 1449-
1450 (1970); Studies in Appl. Math. 50, 121 (1971); ibid. 51, 211 (1972).

2. Andrews, G. E., Askey, R., Roy, R.: Special Functions. Cambridge Univ. Press,
Cambridge (1999).

3. Arnesen, M. C., Bose, S., Vedral, V.: Natural Thermal and Magnetic Entan-
glement in the 1D Heisenberg Model. Phys. Rev. Lett. 87, 017901 (2001).
arXiv:quant-ph/0009060v2.

4. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the
longest increasing subsequence of random permutations. J. Amer. Math. Soc.
12, 1119-1178 (1999).

5. Barouch, E., McCoy, B. M.: Statistical Mechanics of the XY Model. II. Spin-
Correlation Functions. Phys. Rev. A3, 786-804 (1971).

6. Barouch, E., McCoy, B. M., Dresden, M.: Statistical Mechanics of the XY
Model. I. Phys. Rev. A2, 1075-1092 (1970).

7. Basor, E.: Asymptotic formulas for Toeplitz determinants. Trans. Amer. Math.
Soc. 239, 33-65 (1978).

8. Basor. E.: A localization theorem for Toeplitz determinants. Indiana Univ.
Math. J. 28 no. 6, 975-983 (1979).

9. Basor, E. L., Ehrhardt, T.: Asymptotics of block Toeplitz determinants and the
classical dimer model. Commun. Math. Phys. 274, 427-455 (2007). arXiv:math-
ph/0607065v1.

10. Basor, E. L., Tracy, C. A.: The Fisher-Hartwig conjecture and generalizations.
Phys. A177, 167-173 (1991).

11. Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New
York (1953-1955).

12. Belokolos, E. D., Bobenko, A. I., Enol’skii, V. Z., Its, A. R., Matveev, V. B.:
Algebro-Geometric Approach to Nonlinear Evolution Equations. In: Springer
Series in Nonlinear Dynamics. Springer-Verlag, Berlin, Heidelberg, New York
(1994).

13. Bennett, C. H., Bernstein, H. J., Popescu, S., Schumacher, B.: Concentrating
Partial Entanglement by Local Operations. Phys. Rev. A53 2046-2052 (1996).
arXiv:quant-ph/9511030v1.

14. Bennett, C. H., DiVincenzo, D. P.: Quantum Information and Computation.
Nature 404: 6775, 247-255 (2000).

15. Bogoliubov, N. M., Izergin, A. G., Korepin, V. E.: Quantum Inverse Scattering
Method and Correlation Functions. Cambridge Univ. Press, Cambridge (1993).
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