
Addressing Tempo Estimation Octave Errors in Electronic Music by
Incorporating Style Information Extracted from Wikipedia

Florian Hörschläger, Richard Vogl, Sebastian Böck, Peter Knees
Dept. of Computational Perception, Johannes Kepler University Linz, Austria
florian.hoerschlaeger@jku.at, richard.vogl@jku.at,

sebastian.boeck@jku.at, peter.knees@jku.at

ABSTRACT

A frequently occurring problem of state-of-the-art tempo
estimation algorithms is that the predicted tempo for a piece
of music is a whole-number multiple or fraction of the
tempo as perceived by humans (tempo octave errors). While
often this is simply caused by shortcomings of the used al-
gorithms, in certain cases, this problem can be attributed to
the fact that the actual number of beats per minute (BPM)
within a piece is not a listener’s only criterion to consider
it being “fast” or “slow”. Indeed, it can be argued that the
perceived style of music sets an expectation of tempo and
therefore influences its perception.

In this paper, we address the issue of tempo octave errors
in the context of electronic music styles. We propose to
incorporate stylistic information by means of probability
density functions that represent tempo expectations for the
individual music styles. In combination with a style classi-
fier those probability density functions are used to choose
the most probable BPM estimate for a sample. Our evalu-
ation shows a considerable improvement of tempo estima-
tion accuracy on the test dataset.

1. INTRODUCTION

A well-known problem of tempo estimation algorithms is
the so called tempo octave error, i.e., the tempo as pre-
dicted by the algorithm is a whole-number multiple or frac-
tion of the actual tempo as perceived by humans. Since
these errors on the metrical level are not always clearly
agreed on by humans, evaluations performed in the lit-
erature discount octave tempo errors by introducing sec-
ondary accuracy values (i.e. accuracy2) which also con-
sider double, triple, half, and third of the ground truth tempo
as a correct prediction. In average, these values exceed the
primary accuracy values based only on exact matches by
about 20 percentage points, cf. [1, 2].

While for tasks such as automatic tempo alignment for DJ
mixes this can be a tolerable mistake, for making accurate
predictions of the semantic category of musical “speed,”
i.e., whether a piece of music is considered “fast” or “slow,”

Copyright: c©2015 Florian Hörschläger, Richard Vogl, Sebastian Böck, Peter

Knees et al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

this discrepancy shows that there is still a need for im-
provement. To this end, several approaches have directly
addressed the octave error problem, either by incorporat-
ing a-priori knowledge of tempo distributions [3], spectral
and rhythmic similarity [1, 2], source separation [4, 5], or
classification into speed categories based on audio [6, 7]
and user-generated meta-data [8, 9].

The importance of stylistic context for the task of beat
tracking has been stated before [10]. Similarly, in this
work, we argue that there is a connection between the style
of the music and its perceived tempo (which is strongly
related to the perception of the beat). More precisely, we
assume that human listeners take not only rhythmic infor-
mation (onsets, percussive elements) but also stylistic cues
(such as instrumentation or loudness) into account when
estimating tempo. 1 Therefore, when including knowledge
on the style of the music, tempo estimation accuracy should
improve. Consider this simple example: If we knew that an
audio sample is a drum and bass track, it would be unrea-
sonable to estimate a tempo below 160 BPM. Yet our find-
ings show that uninformed estimators can produce such an
output. Therefore we propose to incorporate stylistic in-
formation into the tempo estimation process by means of
a music style classifier trained on audio data. In addition
to predicting multiple hypotheses on the tempo of a piece
of music using a state-of-the-art tempo estimation algo-
rithm, we determine its style using the classifier and choose
the tempo hypothesis being most likely in the context of
the determined style. For this, we utilize probability den-
sity functions (PDF) constructed from data extracted from
Wikipedia articles (i.e., BPM ranges or values as well as
tempo relationships).

The remainder of this paper is organized as follows. Sec-
tion 2 covers a representative selection of related work. In
section 3 the proposed system is presented. This includes
our strategy to extract style information from Wikipedia,
in particular information on style-specific tempo ranges.
In section 4 we evaluate our approach using a new data set
for tempo estimation in electronic music. The paper con-
cludes with a short discussion and ideas for future work in
section 5.

1 This assumption is supported by psychological evidence that identi-
fication of pieces as well as recognition of styles and emotions can be per-
formed by humans within 400 msecs [11]. This information can therefore
prime the assessment of rhythm and tempo which requires more context.

mailto:florian.hoerschlaeger@jku.at
mailto:richard.vogl@jku.at
mailto:sebastian.boeck@jku.at
mailto:peter.knees@jku.at
http://creativecommons.org/licenses/by/3.0/

2. RELATED WORK

Gouyon et al. compare and discuss 11 tempo estimation al-
gorithms submitted to the ISMIR’04 tempo induction con-
test [12]. Their paper shows that all submitted algorithms
perform much better if tempo octave errors are considered
as correctly estimated tempos. By ignoring this kind of
error it was already possible to reach accuracies beyond
80%. A more recent comparison of state-of-the art tempo
estimation algorithms is given by Zapata and Gómez [13].
Again the 11 algorithms compared in [12] are discussed
along with 12 new approaches. In this comparison, again,
the algorithm presented by Klapuri et al. [3] performs best,
if tempo octave errors are ignored.

The tempo estimation algorithm described in [3] uses a
bank of comb filters similarly to the approach by Scheirer
[14]. One important difference is that while Scheirer uses
only five frequency subbands to calculate the input signal
for the comb filters, Klapuri et al. use 36 frequency sub-
bands which are combined into 4 so-called “accent bands”.
This was done with the goal that changes in narrower fre-
quency bands are also detected while maintaining the abil-
ity to detect more global changes which was already the
case in [14].

The two approaches presented by Seyerlehner et al. [1]
are based on two periodicity sensitive features (the auto-
correlation function and fluctuation patterns) which are each
used to train a k-Nearest-Neighbour classifier. The results
obtained with this algorithm is at least comparable to the
best results found in [12].

Peeters [2] uses a frequency domain analysis of an onset-
energy function to extract so called spectral templates. Dur-
ing training, reference spectral patterns are created used
in two different approaches. First in an unsupervised ap-
proach where clustering of similar spectral templates is
done via a fuzzy k-means algorithm and second in an su-
pervised variant where the 8 genres of the training dataset
(ballroom) are used. Viterbi decoding is then used to de-
termine the two hidden variables (tempo and rhythmical
pattern) of the spectra templates to estimate the tempo of
an audio track.

Gkiokas et al. [7] and Eronen and Klapuri [6] use ma-
chine learning approaches to further improve tempo esti-
mation results. While [7] uses support vector machines to
classify additional tempo cues in combination with the pe-
riodicity vectors, [6] uses k-nearest-neighbour regression
in combination with the autocorrelation function of the ac-
cent signal. In [5], Elowsson et al. try to improve the
tempo estimation results by separating percussive and har-
monic sound sources and extracting different features on
the resulting signals. Gärtner [15] proposes tempo detec-
tion based on non-negative matrix factorization and reports
good results on a dataset comprised of urban club music.

Other approaches that aim at classifying music speed use
external meta-data. Hockman and Fujinaga learn to clas-
sify music pieces into the categories “fast” and “slow” based
on user tags found on YouTube [8]. Using simple frame-
level features, they could reach a classification accuracy
of 96%. Following a similar argumentation, Levy claims
that the tempo octave error rate can be reduced by utiliz-

ing user tags of “fast” and “slow” [9]. Independent of a
specific method for tempo estimation, Moelants and McK-
inney investigate the factors of a piece being perceived as
fast, slow, or temporally ambiguous [16]. In this work, we
focus on predicting the correct beats per minute (bpm) for
a music piece rather than directly classifying music into
speed categories.

3. METHOD

Our approach consists of a two stage tempo estimation pro-
cess (visualized in figure 1). First, the Tempo Estimator
generates n = 10 tempo estimates using a state-of-the-art
tempo estimation approach. Second, the Style Estimator
classifies the audio file into a style. Finally, the Tempo
Ranker chooses the most probable tempo in the context
of the classified style. In the following, we describe the
used tempo induction approach (that also serves as a refer-
ence baseline for our evaluations), the construction of the
style classifier and the strategy for picking the most prob-
able tempo estimate. In the context of this work we also
present an approach for extraction of music style specific
tempo information from Wikipedia articles and how it is
used within the described scheme.

3.1 Baseline Tempo Estimator

In the tempo estimation stage, any state-of-the-art tempo
induction algorithm that can provide more than one tempo
hypothesis can be used. In this work, we make use of the
beat detection method introduced by Böck in [17]. The al-
gorithm is based on bidirectional long short-term memory
(BLSTM) recurrent neural networks. As network input, six
variations of short time fourier transform (STFT) spectro-
grams transformed to the Mel-scale (20 bands) are used.
The six variations consist of three spectrograms which are
calculated using window sizes of 1024, 2048, and 4096
samples. For this process, audio data with a sampling rate
of 44.1kHz is used which results in windows lengths of
23.2ms, 46.4ms and 92.8ms, respectively. In addition to
these three spectrograms, the positive first order difference
to the median of the last 0.41s of every spectrogram is
used as input. The neural networks are randomly initial-
ized and trained using manually annotated ground truth
for beats from the ballroom dataset. 2 The trained neu-
ral network produces beat activation functions which are
then used to calculate an autocorrelation function. The
peaks in the smoothed autocorrelation function represent
the tempo candidates expressed in beats per minute (BPM).
The height of the peaks corresponds to the probability of
being the dominant tempo of the track.

3.2 Style Classification

The construction of the style classifier is based on the ap-
proach proposed by Seyerlehner et al. [18] that consistently
yielded top-ranked results in the recent MIREX tasks on
similarity estimation and genre and tag classification. As
described in [19], this genre classification algorithm uses

2 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html

Figure 1. Schematic overview of the proposed system. The audio signal is used to derive multiple tempo estimations as
well as a style estimation. The Tempo Ranker utilizes the style estimate, the tempo estimations and a set of predefined
probability density functions (PDFs) to chose the most probable tempo in the context of the estimated style.

six block-level feature types, namely spectral pattern, delta
spectral pattern, variance delta spectral pattern, logarith-
mic fluctuation pattern, correlation pattern, and spectral
contrast pattern. Furthermore we add another vector, con-
taining ten preferred BPM estimates produced by the tempo
induction algorithm described in subsection 3.1. Directly
concatenating the six block-level feature vectors would re-
sult in a combined feature vector with a length of 9,448
dimensions. To speed up training and reduce redundancy
we first normalize those individual feature vectors and per-
form a separate principal component analysis (PCA) on
each of the six feature types over the whole training set.
For each feature type, we then take the first l dimensions of
the PCA-transformed feature vectors which have a cumu-
lative sum of their latent values (eigenvalues of covariance
matrix) of more than 80%. The final feature vector is then
obtained by concatenation of the reduced feature vectors
as well as the vector containing the BPM estimates. Note
that we do not transform the vector containing the tempo
estimates. On the used dataset, this results in vectors with
a length of 113 dimensions. Using this feature vectors we
train a random forest classifier with 500 trees on a dataset
containing 23,000 random samples downloaded from the
Beatport R© website. Those samples are almost equally dis-
tributed among the 23 different styles.

Samples are classified by first computing the block-level
features and tempo estimates individually for each file. The
six block-level feature vectors are individually (i) normal-
ized by reusing the averages obtained from normalizing the
training data (ii) transformed by reusing the coefficient ma-
trices obtained by the PCA of the training data (iii) reduced
by only taking the first l dimensions, where l are the same
numbers as for the training vectors. The final vector is then
composed of the six resulting vectors as well as the vector
containing the BPM estimates and classified by the random
forest.

Although not our primary interest in this work, we test
the quality of the music style classification component by
conducting 8-fold cross-validation on the training dataset.
The average accuracy on the individual folds is 52.3 per-
cent while the standard deviation is 1.0 percent. The over-
all accuracy on the GiantSteps tempo data set, that is used
for the tempo estimation experiments, is 56.3 percent.

Style from to slower than

chill-out 80 160 house
funk-r-and-b 80 160

house 115 130 trance*
minimal 125 130

electro-house 128 130
glitch-hop 128 130

hip-hop 124 135
breaks 110 150

indie-dance-nu-disco 120 140
progressive-house 110 150

pop-rock 130 140
techno 120 150 psy-trance*

dubstep 130 142
reggae-dub 130 142
deep-house 110 170

trance 120 160
hard-dance 140 150
psy-trance 140 150
electronica 119 180

drum-and-bass 130 180
hardcore-hard-techno 160 200

tech-house 180 220

Table 1. Tempo ranges and tempo relationships for the
GiantSteps dataset styles extracted from Wikipedia arti-
cles. Relationships marked with an asterisk where con-
verted from faster than to slower than relationships.

3.3 Incorporating Style Information

To make use of the classified style in terms of tempo esti-
mation, we need a suitable way to add tempo restrictions
to each style. We do this by linking the different styles in
our dataset to probability density functions, which are used
to rank the different estimates. This section describes how
the ranking works, the tempo information was extracted
from Wikipedia and the probability density functions were
modeled given the tempo information.

3.3.1 Deriving tempo information from Wikipedia articles

In this work we focused on deriving two different kinds of
tempo information from Wikipedia articles:

• tempo annotations, which can either be BPM ranges
or BPM values

• tempo relationships, which model whether one style
is faster than another one (or vice verca)

This is achieved by a combination of heuristics and regu-
lar expression patterns, which were hand-crafted after re-
viewing a considerable amount of examples. Experience
has shown that this task offers some major challenges: (i)
multiple tempo annotations for styles, (ii) tempo annota-
tions that need to be associated with other styles and (iii)
the usage of synonyms and the complexity of the natural
language.

For the purpose of this experiment we crawled a Wikipedia
dump using JWPL [20] and Sweble [21] and used a hybrid
strategy to decide if an article is about a music genre/style
or not. If an article contains an instance of the infobox mu-
sic genre 3 we assume it is indeed about a genre (infobox
data is due to it’s high quality utilized in many projects
e.g. [22]). If this is not the case a WEKA [23] classifier
is used. This classifier was trained using tf-idf weights, as
well as some features based on infobox availability and the
Wikipedia category and article graph [24] (e.g. number of
referenced artists or the minimal category-graph distance
to the root category of music genres). The training dataset
was constructed by utilizing instances of the infobox music
genre: articles containing the infobox as well as those re-
ferred as subgenres were added as positive training exam-
ples, articles referred as instruments and cultural origins
were added as negative training examples. Given the re-
sulting genres sub- and supergenre relationships were ex-
tracted by using data available in music genre infoboxes.
Using this approach we were able to extract 775 genres
(with a precision of 96.6 %) as well as 2.217 sub- and su-
pergenre relationships from the Wikipedia snapshot cre-
ated on 2nd May 2014.

In order to extract tempo information the derived genre-
graph is traversed and all article texts are processed. The
article texts are scanned for relevant sentences (e.g., con-
taining a notation for BPM). Those sentences are matched
with the hand-crafted patterns. Due to the fact that there
are some genre articles that contain tempo annotations rel-
evant to other genres it was necessary to perform a sanity
check: For each match, the current section’s title is cross-
checked with a blacklist made up of the names and syn-
onyms associated with the related genres (either sub- or su-
pergenres of the current genre) as well as some words indi-
cating that the content is about another genre (e.g. subgen-
res, related, influences). Whenever the section title matches
an entry of the blacklist the system tries to associate the
tempo annotation with the correct genre. This is done by
matching names or synonyms of related genres within the
current sentence or section title. All annotations that can-
not be associated with a unique genre are dropped. To give
an impression of what a sentence and a pattern might look
like we provide the following example 4 (containing booth

3 http://en.wikipedia.org/wiki/Template:
Infobox_music_genre

4 The syntax of regular expressions is conform to the Java Pattern class,
for details see https://docs.oracle.com/javase/7/docs/

a range and a single value):

• “The average tempo of a minimal techno track is be-
tween 125 and 130 beats per minute. Richie Hawtin
suggests 128 BPM as the perfect tempo.”

– between([ˆ\d]{0,5}|)(\d{2,4})([ˆ\d]{0,5}|)
(and)([ˆ\d]{0,5}|)(\d{2,4})

– (\d{2,4})[ˆ\d]{0,5}BPM

Depending on the case, the bold face printed regions are
then used as upper or lower boundary of a BPM range or
a single BPM value. Tempo relationships are derived in a
similar manner. Again all irrelevant sentences are dropped.
Identified genre’s names (and synonyms) are masked in
order to make matching easier. Whenever a regular ex-
pression matches, a relationship is instantiated between the
identified genres. This approach works reasonably well
for extracting tempo annotations (precision = 90.2%) while
the tempo relationship extraction (precision = 81.7%) would
probably benefit from more sophisticated natural language
processing techniques. Using this simple technique we
were able to extract 94 tempo annotations - most of them
associated with electronic music genres. Furthermore we
were able to extract 38 tempo relationships.

3.3.2 Ranking of BPM estimates

In our approach the baseline estimator computes ten BPM
estimates, those estimates are ranked by the Tempo Ranker.
The Tempo Ranker uses predefined probability density func-
tions (PDFs) to choose the most likely BPM estimate given
by tempo estimation algorithm. To further formalize the
behavior of the ranker, let S be the set of music styles,
PDFs be the probability density function (a function as-
signing a probability to BPM value) for the individual style
estimate s and E = {e0, e1, .., e9} be the set of computed
tempo estimates. Then the ranker chooses the tempo esti-
mate emax ∈ E that maximizes the result of PDFs (see
equation 1).

emax = argmax
e∈E

PDFs(e) (1)

In the concrete test setup a PDFs was derived for each
style of the GiantSteps tempo dataset s ∈ S except dj-
tools. 5 In order to provide PDFs for the different styles of
the GiantSteps dataset the first step was to create a map-
ping from Wikipedia genres to GiantSteps dataset styles.
Since this step strongly depends on the dataset, it needs
to be carried out manually. Given these mappings a BPM
range rs = (mins,maxs) is extracted for each style (the
corresponding ranges are given in table 1). Also tempo
relationships between the styles are considered. For the
cases where the style s is not perceived to be slower than
one of the other styles, PDFs is defined analogous to the
PDF of a normal distribution (see equation 2). With µs =

api/java/util/regex/Pattern.html
5 No corresponding Wikipedia article could be found. Since there is no

PDF for the style dj-tools, the Tempo Ranker skips ranking and chooses
the first estimate in such cases.

http://en.wikipedia.org/wiki/Template:Infobox_music_genre
http://en.wikipedia.org/wiki/Template:Infobox_music_genre
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

mins+maxs
2 , σs = µs−mins

3 and σs ≥ 3 the PDF is ba-
sically a normal distribution with its center and standard
deviation defined by the values of the range.

PDFs(x) =
1

σs
√
2π
· e−

1
2 (
x−µs
σs

)2 (2)

For styles k that are (according to the Wikipedia tempo
relationships) slower than another style s ∈ S, the PDF
is modeled analogous to the PDF of a gamma distribu-
tion (see equation 3). With γ = 3 (the shape param-
eter), betak = 0.4 − b (maxk−mink)−1515 c0.05 (the decay
parameter - this parameterization of βk defines the PDF’s
decay wrt. the difference of mink and maxk, i.e., the
larger the difference, the lower the decay and therefore
the PDF is smoother fading towards maxk) and µk =
mink− γ

βk
− maxk−mink

4 (the position parameter trying to
position the PDF in a way that the PDF reflects the slower
relationship). The resulting PDFs are visualized in figure
2.

PDFk(x) =
(x−µkβk

)γ−1exp(−x−µkβk
)

βk
∫∞
0
tγ−1e−tdt

(3)

4. EVALUATION

In this section we describe the conducted experiments, in-
troduce the used dataset and discuss the results. All experi-
ments were conducted using the GiantSteps tempo dataset.
For every algorithm we provide accuracy1 and accuracy2
within a ±4% tolerance window. Accuracy1 considers an
estimate to be correct if it is within±4% of the true tempo.
Accuracy2 also considers an estimate to be correct if it is
within ±4% of either a third, half, double or triple of the
true tempo.

4.1 Experiments

For the evaluation of our approach we conducted two ex-
periments. In the first experiment we test the composition
of style classification and tempo ranking, as visualized in
figure 1 (for details see section 3). First the style estima-
tion is carried out and ten tempo estimates are computed.
Given those tempo and style estimates the Tempo Ranker
chooses the most probable tempo based on the probabil-
ity density function of the estimated style. This experi-
ment therefore tests the impact of the overall composition
of style estimation and ranking based on the data obtained
from Wikipedia on tempo estimation accuracy. For sim-
plicity this experiment is referred to as wikidata-1.
In the second experiment we test tempo ranking with re-
spect to a known style, hence this shows how well the rank-
ing itself performs given correct style assumptions. The
style estimation step is skipped and the ranking algorithm
is provided with the correct style. The experiment there-
fore tests the actual impact of the ranking procedure on the
tempo estimates. For simplicity this experiment is referred
to as wikidata-2.

We compare our results with tempo estimators, that are
shipped with popular DJ tools. Namely Cross DJ Free 6 ,

6 http://www.mixvibes.com/products/cross

Deckadance v2 (trail) 7 and Traktor 2 PRO. 8 We argue
that those estimators are tailored for electronic music and
therefore should be able to perform well on the dataset.
Each of the products enables the user to choose some pa-
rameters for BPM prediction. Deckadance offers to choose
among a predefined set of lower bounds, based on the ranges
extracted from Wikipedia we decided to use 80 BPM. In
the Traktor option pane the user can choose between a pre-
defined set of tempo ranges, we decided to evaluate two
ranges: 88-175 BPM (TraktorA) and 60-200 BPM (Trak-
torB). CrossDJ also provides a predefined set of tempo
ranges, we chose 75-150 BPM for evaluation. In order to
perform the evaluation we imported the audio files in the
individual tools and analyzed them, the predicted values
were later obtained from XML files (Deckadance, CrossDJ)
or via ID3 tags that were instantiated during the analysis
(Traktor).

4.2 The GiantSteps tempo dataset

The GiantSteps tempo dataset created in the course of the
GiantSteps project 9 was obtained using the Beatport R© web-
site. 10 It contains tempo and stylistic ground truth for 664
samples. Beatport R© is an online music store targeting pro-
ducers and DJs of electronic music. For each track avail-
able on the website a preview sample can be downloaded.
Furthermore, a variety of annotations for the tracks are pro-
vided – among them are music style presumably assigned
by the composer out of the 23 maintained styles and the
tempo in BPM. Since the BPM annotations might be cal-
culated by an undisclosed algorithm they cannot be used as
tempo ground truth data. However customers were encour-
aged to report false BPM annotations within a discussion
forum. Typically users posted a reference to the track plus
the correct BPM annotation. This discussion was crawled
for comments containing a link to a track, the term BPM
and a two or three digits long number. The association
of a BPM annotation and a track was then conducted by
putting this three pieces of information together. In cases
where unambiguous information could be derived, the cor-
responding samples were downloaded. It can therefore
be argued that this approach derives a human annotated
dataset appropriate for evaluating tempo estimations. Un-
fortunately Beatport R© recently abandoned this discussion
forum.

As can be seen in table 3 this dataset has a strong bias
towards the style drum-and-bass, 20% of the samples are
within this style. This bias is most likely triggered by the
fact that tempo estimation of drum-and-bass tracks is fre-
quently affected by the tempo octave error, which implies
many reports of incorrect tempi for this style.

4.3 Results and Discussion

Table 2 gives an overview of the obtained accuracy1 and
accuracy2 values on the GiantSteps tempo dataset. In table

7 http://www.image-line.com/deckadance/
8 http://www.native-instruments.com/en/

products/traktor/dj-software/traktor-pro-2/
9 http://www.giantsteps-project.eu

10 http://www.beatport.com

http://www.mixvibes.com/products/cross
http://www.image-line.com/deckadance/
http://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-2/
http://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-2/
http://www.giantsteps-project.eu
http://www.beatport.com

80 100 120 140 160 180 200
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
(x

)
PDFs for the different Beatport styles

chill-out
funk
house
minimal
elektro-house
glitch-hop
hip-hop
breaks
indie-dance-nu-disco
progressive-house
pop-rock

techno
dubstep
reggae-dub
deep-house
trance
hard-dance
psy-trance
electronica
drum-and-bass
hardcore-hard-techno
tech-house

Figure 2. Probability density functions for the GiantSteps tempo dataset styles based on data extracted from Wikipedia
articles.

baseline wikidata-1 wikidata-2 TraktorA TraktorB Deckadance Cross DJ

accuracy1 45.33% 74.85 % 72.74% 76.81 % 64.46% 57.53% 63.25%
accuracy2 72.89 % 82.68% 80.72 % 88.55% 88.70% 81.48% 90.06%

Table 2. Tempo estimation accuracies for the different algorithms on the GiantSteps tempo dataset within a ±4% toler-
ance window. Apart from TraktorA (tempo range 88-175 BPM) the proposed approach clearly outperforms others and
considerably improves the baseline performance.

D
n
B

b
re
a
ks

ch
ill
-o
u
t

d
e
e
p
-h
o
u
se

d
j-
to
o
ls

d
u
b
st
e
p

e
le
ct
ro
-h
o
u
se

e
le
ct
ro
n
ic
a

fu
n
k-
r-
a
n
d
-b

g
lit
ch
-h
o
p

h
a
rd
-d
a
n
ce

h
a
rd
co
re

h
ip
-h
o
p

h
o
u
se

in
d
ie
-d
a
n
ce

m
in
im
a
l

p
o
p
-r
o
ck

p
r.
-h
o
u
se

p
sy
-t
ra
n
ce

re
g
g
a
e
-d
u
b

te
ch
-h
o
u
se

te
ch
n
o

tr
a
n
ce

Predicted label

breaks
chill-out

deep-house
dj-tools

drum-and-bass
dubstep

electro-house
electronica

funk-r-and-b
glitch-hop

hard-dance
hardcore-hard-techno

hip-hop
house

indie-dance-nu-disco
minimal
pop-rock

progressive-house
psy-trance
reggae-dub
tech-house

techno
trance

Tr
u
e
 l
a
b
e
l

Style Estimates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3. Confusion matrix for the style estimation task
on the GiantSteps tempo dataset.

3 we provide detailed, per-style accuracies for the base-
line, wikidata-1 and wikidata-2. Considering the accu-
racy1 values, which punish octave errors, it is apparent
that the proper boundaries for the different styles help to
increase tempo estimation accuracy. Compared to the per-
formance of the baseline, we were able to increase the ac-
curacy1 by 29 percentage points in scenario wikidata-1 and
27 percentage points in scenario wikidata-2. After having a
detailed look on the per-style accuracy values in table 3 we
noticed that especially for drum-and-bass, which makes up
20% of the dataset, we were able to considerably increase
estimation accuracy (i.e. decrease the influence of the oc-
tave error). The baseline estimator only got 7.19 % right
while the ranking boosts this value to 78.42 %. Overall
we can report an increase of tempo estimation accuracy for
most of the styles. A particularly interesting finding is, that
despite the bad style classification performance wikidata-1
slightly outperforms wikidata-2, the tempo estimation ac-

curacy still improves. Having a look at the confusion ma-
trix in figure 3 reveals that styles which are hard to distin-
guish have similar tempo ranges (see table 1 and figure 2).
This applies for instance to breaks and dubstep or reggae-
dub and dubstep. Therefore is not too surprising that the
ranking approach is able to chose a proper tempo estimate.
For those styles (e.g. chill-out) for which the ranking de-
creases performance we assume that the extracted ranges
do not properly represent the style. Except for the Traktor
algorithm (TraktorA) our approach outperforms others in
terms of accuracy1, we argue that despite reaching a higher
accuracy the Traktor algorithm very much depends on the
selected BMP range in order to reduce octave errors. Apart
from that the algorithm is is highly tailored for tempo esti-
mations of electronic music styles. In contrast to that our
approach can (given proper input ranges for the styles of
interest) be used for a wide range of music styles and does
not enforce estimations within certain, predefined ranges.
Note that we were not able to apply our approach on top
of the audio-based tempo estimations given by Traktor, as
our proposed method builds upon a tempo estimator that
outputs multiple hypotheses. Also, it is not possible to set
arbitrary tempo output ranges in Traktor, which would be
another possibility of using external stylistic information.

In terms of accuracy2 other algorithms outperform our
approach. Nevertheless it is apparent that wikidata-1 and
wikidata-2 do only benefit by a small magnitude from the
simpler task. While the other algorithms are able to in-
crease their accuracy by between 12 and 27 percentage
points our approaches only increase by about 8 percent-
age points. This means that there is only a small fraction
of octave errors produced by the baseline that could not be
corrected by the ranking procedure.

5. CONCLUSION

In this paper we have presented and evaluated a novel ap-
proach to further improve tempo estimation results of state-

style # baseline wikidata-1 wikidata-2

drum-and-bass 139 7.19 78.42 83.45
dubstep 76 42.11 76.32 73.68

trance 74 75.68 97.30 98.65
techno 61 44.26 65.57 60.66

electronica 54 42.59 53.70 53.70
psy-trance 34 76.47 85.29 85.29

breaks 25 72.00 96.00 84.00
deep-house 24 75.00 75.00 83.33

house 23 47.83 65.22 73.91
tech-house 22 54.55 72.73 9.09

electro-house 22 63.64 77.27 68.18
progressive-house 19 57.89 89.47 94.74

glitch-hop 17 47.06 41.18 47.06
chill-out 16 62.50 43.75 37.50

hardcore-hard-techno 14 14.29 85.71 92.86
indie-dance-nu-disco 11 63.64 63.64 45.45

dj-tools 9 44.44 55.56 44.44
minimal 8 75.00 75.00 75.00

hard-dance 8 37.50 62.50 62.50
pop-rock 3 33.33 66.67 33.33

reggae-dub 2 0.00 0.00 0.00
hip-hop 2 50.00 50.00 50.00

funk-r-and-b 1 100.00 100.00 100.00

Weighted Average 664 45.33 74.85 72.74

Table 3. Primary tempo estimation accuracy (within 4%
tolerance) of baseline estimator, wikidata-1 and wikidata-
2 for the individual styles of the GiantSteps dataset.

of-the-art tempo induction algorithms. From the presented
experiments we can see that using additional stylistic infor-
mation of music can be beneficial for the task of tempo es-
timation. We were able to considerably reduce the amount
of octave errors made by our baseline estimator and boost
it’s performance to be comparable with the performance of
tempo estimators shipped with popular DJ tools. The facts
that these (i) heavily depend on the predefined BPM output
ranges / boundaries and (ii) do strictly enforce this param-
eters can be considered as drawbacks. Due to the use of
probability density functions our approach does not come
with this drawbacks. However, finding and assigning the
right information in order to describe the styles is not triv-
ial. To this end we proposed a strategy to extract tempo
information from Wikipedia. The majority of tempo anno-
tations derived from Wikipedia belong to electronic styles
– this implies a limitation to the domain of electronic mu-
sic. In our experiments, using information extracted from
Wikipedia gives advantages over the uninformed baseline
approach. The results we have obtained show the potential
of tapping external and contextual information – unfortu-
nately they are still rather inconsistent. The fact that some
styles do not benefit from the extra knowledge suggests
that we need to invest some more effort in the tempo range
extraction strategy. Apart from that one could utilize more
data sources or different tempo estimators. As mentioned
before, the majority of the tempo annotations extracted
from Wikipedia belong to electronic music styles, hence
we were forced to carry out the experiments on an appro-
priate dataset. It is hard to predict how well the introduced
method would perform on a dataset containing music from
genres with wide tempo ranges like “classical,” “metal,” or
“pop”, cf. [25]. In these examples, tempo estimation would
benefit only little if the chosen styles can not be linked to
specific tempo ranges – which might be the case for e.g.
“classical”. On the other hand, if there are diverse sub-

genres with specific tempo ranges (consider “speed metal”
vs. “rock ballad”) the challenge is finding an appropriate
set of styles and tempo ranges. For electronic music styles,
where tempo can be one of the major factors that deter-
mine the style, we could show that the introduced tempo
estimation approach improves results of state-of-the-art al-
gorithms – mainly by preventing tempo octave errors.

6. ACKNOWLEDGEMENTS

The research leading to these results was performed in the
GiantSteps project, which has received funding from the
European Union Seventh Framework Programme FP7/2007-
2013 under grant agreement no. 610591.

7. REFERENCES

[1] K. Seyerlehner, G. Widmer, and D. Schnitzer, “From
rhythm patterns to perceived tempo,” in Proceedings
of the 8th International Society for Music Information
Retrieval Conference (ISMIR 2007), Vienna, Austria,
Sept 2007.

[2] G. Peeters, “Template-based estimation of tempo: Us-
ing unsupervised or supervised learning to create better
spectral templates,” in Proceedings of the 13th Interna-
tional Conference on Digital Audio Effects (DAFx-10),
Graz, Austria, Sept 2010.

[3] A. Klapuri, A. Eronen, and J. Astola, “Analysis of the
meter of acoustic musical signals,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14,
no. 1, pp. 342–355, Jan 2006.

[4] A. Gkiokas, V. Katsouros, G. Carayannis, and T. Stafy-
lakis, “Music tempo estimation and beat tracking by
applying source separation and metrical relations,”
in Proceedings of the 37th International Conference
on Acoustics, Speech and Signal Processing (ICASSP
2012), Kyoto, Japan, Mar 2012, pp. 421–424.

[5] A. Elowsson, A. Friberg, G. Madison, and J. Paulin,
“Modelling the speed of music using features from har-
monic/percussive separated audio,” in Proceedings of
the 14th International Society for Music Information
Retrieval Conference (ISMIR 2013), Curitiba, Brazil,
Nov 2013.

[6] A. Eronen and A. Klapuri, “Music tempo estimation
with k-nn regression,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 18, no. 1, pp.
50–57, Jan 2010.

[7] A. Gkiokas, V. Katsouros, and G. Carayannis, “Reduc-
ing tempo octave errors by periodicity vector coding
and svm learning,” in Proceedings of the 13th Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR 2012), Porto, Portugal, Oct 2012, pp.
301–306.

[8] J. Hockman and I. Fujinaga, “Fast vs slow: Learning
tempo octaves from user data,” in Proceedings of the

11th International Society for Music Information Re-
trieval Conference (ISMIR 2010), Utrecht, the Nether-
lands, 2010, pp. 231–236.

[9] M. Levy, “Improving perceptual tempo estimation with
crowd-sourced annotations.” in Proceedings of the 12th
International Society for Music Information Retrieval
Conference (ISMIR 2011), Miami, FL, USA, 2011, pp.
317–322.

[10] N. Collins, “Towards a style-specific basis for compu-
tational beat tracking,” in Proceedings of the 9th In-
ternational Conference on Music Perception and Cog-
nition (ICMPC9) and 6th Triennial Conference of the
European Society for the Cognitive Sciences of Music
(ESCOM), Bologna, Italy, 2006.

[11] C. Krumhansl, “Plink: “Thin Slices” of Music,” Mu-
sic Perception: An Interdisciplinary Journal, vol. 27,
no. 5, pp. 337–354, June 2010.

[12] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzane-
takis, C. Uhle, and P. Cano, “An experimental compari-
son of audio tempo induction algorithms,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 14, no. 5, pp. 1832–1844, Sept 2006.

[13] J. Zapata and E. Gómez, “Comparative evaluation and
combination of audio tempo estimation approaches,”
in AES 42nd International Conference, Ilmenau, Ger-
many, July 2011.

[14] E. Scheirer, “Tempo and beat analysis of acoustic mu-
sical signals,” The Journal of the Acoustical Society of
America, vol. 103, no. 1, pp. 588–601, 1998.

[15] D. Gärtner, “Tempo detection of urban music using
tatum grid non negative matrix factorization,” in Pro-
ceedings of the 14th International Society for Music
Information Retrieval Conference (ISMIR 2013), Cu-
ritiba, Brazil, Nov 2013.

[16] D. Moelants and M. F. McKinney, “Tempo perception
and musical content: What makes a piece fast, slow
or temporally ambiguous?” in In Proceedings of the
8th International Conference on Music Perception and
Cognition (ICMPC8), Evanston, USA, August 2004.

[17] S. Böck and M. Schedl, “Enhanced Beat Tracking with
Context-Aware Neural Networks,” in Proceedings of
the 14th International Conference on Digital Audio Ef-
fects (DAFx-11), Paris, France, Sept 2011, pp. 135–
139.

[18] K. Seyerlehner, M. Schedl, T. Pohle, and P. Knees,
“Using block-level features for genre classification,
tag classification and music similarity estimation,” in
online Proceedings of the 6th Annual Music Infor-
mation Retrieval Evaluation eXchange (MIREX-2010),
Utrecht, the Netherlands, Aug 2010.

[19] K. Seyerlehner, G. Widmer, and T. Pohle, “Fusing
block-level features for music similarity estimation,” in

Proceedings of the 13th International Conference on
Digital Audio Effects (DAFx-10), Graz, Austria, Sept
2010.

[20] T. Zesch, C. Müller, and I. Gurevych, “Extracting Lex-
ical Semantic Knowledge from Wikipedia and Wik-
tionary,” in Proceedings of the Conference on Lan-
guage Resources and Evaluation (LREC), electronic
proceedings. Ubiquitious Knowledge Processing,
Universität Darmstadt, Mai 2008.

[21] H. Dohrn and D. Riehle, “Design and implementation
of the Sweble Wikitext parser: unlocking the structured
data of Wikipedia.” in Int. Sym. Wikis, F. Ortega and
A. Forte, Eds. ACM, 2011, pp. 72–81.

[22] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P. N. Mendes, S. Hellmann, M. Morsey,
P. van Kleef, S. Auer, and C. Bizer, “DBpedia - A
Large-scale, Multilingual Knowledge Base Extracted
from Wikipedia,” Semantic Web Journal, 2014.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten, “The WEKA data mining soft-
ware: an update,” SIGKDD Explor. Newsl., vol. 11,
no. 1, pp. 10–18, 2009.

[24] T. Zesch and I. Gurevych, “Analysis of the Wikipedia
Category Graph for NLP Applications,” in Proceed-
ings of the Second Workshop on TextGraphs: Graph-
Based Algorithms for Natural Language Processing.
Rochester, NY, USA: Association for Computational
Linguistics, 2007, pp. 1–8.

[25] F. Pachet and D. Cazaly, “A Taxonomy of Musical
Genre,” in Proceedings of Content-Based Multimedia
Information Access (RIAO) Conference, Paris, France,
Apr 2000.

	 1. Introduction
	 2. Related Work
	 3. Method
	3.1 Baseline Tempo Estimator
	3.2 Style Classification
	3.3 Incorporating Style Information
	3.3.1 Deriving tempo information from Wikipedia articles
	3.3.2 Ranking of BPM estimates

	 4. Evaluation
	4.1 Experiments
	4.2 The GiantSteps tempo dataset
	4.3 Results and Discussion

	 5. Conclusion
	 6. Acknowledgements
	 7. References

