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ABSTRACT

Sonification is the use of sonic materials to represent in-
formation. The use of spatial sonification to represent spa-
tial data, i.e., that which contains positional information, is
inherent due to the nature of sound. However, perceptual
issues such as the Precedence Effect and Minimum Audible
Angle attenuate our ability to perceive directional stimuli.
Furthermore, the mapping of multivariate datasets to syn-
thesis engine parameters is non-trivial as a result of the vast
information space. This paper presents a model for repre-
senting spatial datasets via spatial sonification through the
use of granular synthesis.

1. INTRODUCTION

Sonification is the process of representing data through the
sound domain. It has been proven that sonification is able
to augment the visual display, and provide a platform for
perceiving data for the visually impaired. Furthermore, a
greater number of variables can be presented in one dis-
play, and some types of data are better suited for the sound
domain, such as rapidly changing information.

However, the representation of data via visualization has
been much more developed, as opposed to its auditory coun-
terpart. In the case of spatial datasets (which contain loca-
tion components along with other dependent variables), the
mapping process from data to sound is inherently complex
due to the dimensionality of the dataset.

In order to map the spatial data to spatial sound via the
use of multiple loudspeakers (surround sound), perceptual
attributes that pertain to the auditory system, such as the
limitation of spatial acuity, has to be taken into considera-
tion.

Through our research, we have developed a granular model
for multimodal representation of spatial data via spatial
sonification. Perceptual issues that pertain to spatial at-
tributes (surround sound), and microsound are discussed,
and taken into consideration in developing the system. Map-
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ping strategies for granular synthesis (in the context of soni-
fication) are also explored and described. Finally, we present
how transformation of (micro) sounds, and interactivity
could assist in the discovery of unknown patterns in a dataset.

2. MOTIVATION

One family of sounds is known as microsound [1]- sound
particles in the range of 1 ms to 100 ms, that span the
boundary between what can be perceived as an individual
entity, and what has no distinct perceptual characteristics.

Motivated by the interest of this specific family of sounds,
we started to search for natural occurrences that fall into
the same category. One particular phenomena that inter-
ested us was the sound of thunder, as this is, in fact the
result of a burst of electrical energy lasting for about ap-
proximately 20 us. As the mass of energy is introduced,
part of the energy is transferred into light (lightning) and
sound (thunder).

On April 30th 2014, the High Definition Earth Viewing
experiment was activated aboard the International Space
Station, which presents viewers with images of Earth seen
from outer space. One of the elements that was clearly
shown was lightning occurrences. Guided by the interest
in this particular phenomenon, we started to inquire if there
were any correlations between lightning strikes in different
geographic locations. This curiosity lead us to examine
NASA’s lightning dataset, and develop a research based on
multimodal data representation, which resulted in a per-
ceptual model of sonification— shown in the artwork Point
cloud [2].

Sonification as a means to understand and display datasets,
as well as the use in aesthetic explorations has been ex-
plored by various disciplines [3-8].

3. DATA SOURCE

The data for Point Cloud were gathered from the NASA
Marshall Space Flight Center (MSFC) [9]. The data were
generated by two of their space-borne optical sensors: the
Optical Transient Detector (OTD) and the Lightning Imag-
ing Sensor (LIS). The actual data span more than 16 years
of lightning information, but for the purpose of this project,
only a single year’s worth of data was used.
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Figure 1. Visualization of Point Cloud: A map of the Earth showing lightning occurrences over the course of a single year

(day 333).

The data take the form of an annual cycle of flash rates
with a product dimension of 720 x 360 x 365 (bin size of
0.5 degrees x 0.5 degrees x one day) (Fig. 2). Each data
slice (single day) contains a flash rate (number of occur-
rences per day) for each spatial data point (720 x 360).

The MSFC dataset is distributed in Hierarchical Data For-
mat [10] and was parsed using the Python PyHDF library.
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Figure 2. Lightning occurences for flattened [720 x 360]
data points over series of days

4. SONIFICATION

Data sonification in auditory displays can provide infor-
mation to complete, augment, or replace visual displays.
As with most systems that present data, sonification tech-
niques aim to provide the means for extracting information
from a dataset to be parsed by the perceiver [3]. Addition-
ally, sonification allows us to potentially extract new pat-
terns and relationships, which are not necessarily perceived
by simply analyzing the dataset.

The domain of data visualization faces similar issues, as
it deals not only with the dataset being represented, but has
to also consider the user as part of the process in parsing
information.

4.1 Multimodality and Sonification

We typically take for granted how our senses parse infor-
mation in our daily lives. When we interact with the real-
world, we almost always receive feedback through vari-
ous modalities, allowing us to understand our surrounding,
and successfully navigate through the environment. Our
perceptual system functions by correlating the information
from these various senses to construct a mental image of
our surrounding.

In order to design an effective sonification system, these
well developed mechanisms of perception need to be in-
volved. Auditory and visual stimuli needs to be coupled
by the same mechanism which couples perceptual units in
the real world to create a cohesive environment [3]. There
have been efforts to simultaneously present data in both
the auditory and the visual domain, in order to give the
perceiver a more concise understanding of the dataset [3].
Such an example can be seen in Point Cloud (Fig. 1) [2].

4.2 Perceptual Issues

Our perception tends to fail at grasping the bigger pic-
ture when presented with a single viewpoint of informa-
tion. This phenomena is exemplified, for instance, by the
need to interactively change perspectives while viewing a
3-dimensional structure in the real world. When doing so,
we allow ourselves to acquire different views, which then
provide better sense of the object.

Sonification suffers from an analogous problem. When a
complex data space is projected onto a linear audio sig-
nal, we are unable to gain different sonic views of the
dataset, rendering the system less effective. One solution
is to change the mapping parameters so that the perceiver



is able to acquire a variety of sonic perspectives [3], dis-
cussed in Section 5.2. Additionally, the use of sound spa-
tialization enables us to address this problem [11].

Sound spatialization is used in our system to assist a per-
ceiver in gaining multiple perspectives of the dataset. In
doing so, the complex data space is not collapsed into a
single audio signal originating from one direction.

4.3 Spatial Sound

“A cascading sequence of sound objects, each
emanating from a different virtual space, pro-
vides the dimension of spatial depth to an oth-
erwise flat perspective and articulates a vary-
ing topography” [12].

The use of multiple loudspeakers for spatial sound repro-
duction allows stimuli to be presented from different lo-
cations, preventing the complex data space from collaps-
ing into a single audio signal originating from one direc-
tion. This, in turn allows a perceiver to interactively nav-
igate around the acoustic environment in order to acquire
different sonic views. Similarly, this mode of interaction
is how humans localize acoustic energy in the physical
world [8, 13]. Nasir and Roberts [11] explains that “lo-
cation information can be used to enhance the sonification,
or can be used to represent qualitative information.”

Similarly, representation of spatial data via the means of
visualization has had its share of exposure, dating back to
the thorough dissection by semiologist Jacques Bertin [11,
14].

As we are dealing with a dataset that presents spatial in-
formation within specifically localized regions, it is only
natural to include spatialization as a key aspect of the rep-
resentational system. By correlating each spherical coor-
dinate of the earth to the spatial position in the rendered
(sound) field (longitude and latitude mapped to azimuth
and elevation), we enable the auditory stimulus to be local-
ized at its respective position. In other words, a perceiver
would be “looking” at the dataset from a viewpoint inside
the Earth.

One of the main objectives of the underlying research is
to represent a single spatial dataset via multimodal stim-
uli. However, spatial acuity is much finer for vision than
it is for hearing [3]. In order to allow users to distinguish
stimuli coming from separate distinct locations, some con-
sideration needs to be addressed.

4.4 Localization of sound

In order to effectively convey the perception of space, we
have explored methods of sound localization, specifically
those that pertain to sonification, as discussed in [11]. These
methods are also thoroughly examined in various texts con-
cerning sound spatialization, such as [3, 8, 15].

Non- spatial audible variables: These are the building
blocks of sonification, which typically includes synthesis
parameters such as pitch, loudness, and tempo. As dis-
cussed in Section 5.2, we have mapped the flash rate value
of every data point to its corresponding granular stream’s

grain density, and grain amplitude.

Non- spatial motifs: These higher order components are
intended to provide a better system for the perceiver to un-
derstand patterns in the dataset. Description of our imple-
mentation can be found in Section 6. Although these spe-
cific structures typically needs to be learned, we believe
that the human brain is able to adapt, and find patterns in
these higher-level dimensions— if there are patterns to be
perceived.

IID & ITD: The Duplex Theory [16] states that we per-
ceive directionality (and auditory space in general), through
the use of Interaural Time Difference and Interaural Inten-
sity Difference. The use of multiple loudspeakers allow us
to successfully use this mechanism in placing a localized
stimuli in a radial space. Due to the fact that this mecha-
nism is a well developed component of our perception, the
spatial data could be perceived without further training.

Time-based effects: Temporal factors provide excellent
cues for sonic data exploration. The ability to traverse dif-
ferent time scales provide the means to understand various
hidden structures in a dataset. We have explored temporal
transformations to analyze Microstructures and Macrostruc-
tures in the dataset (Section 6.3).

S. SYNTHESIS ENGINE

Some of the various synthesis techniques used for soni-
fication are more suitable than others, depending on the
data that is analyzed (for example, in the case of multi-
dimensional datasets). Undoubtedly, most of the “effec-
tive” sonification systems consider the dataset, and imple-
ments techniques that would best fit the data.

Our system is implemented using Parameter Mapping
Sonification due to its effectiveness in displaying multivari-
ate data [3]. This technique involves the mapping of data
features onto parameters of sonic events, such as pitch,
level, and onset time. Our model implements granular syn-
thesis as the synthesis engine in order to render short, dis-
crete events in the dataset (lightning occurrence). Further-
more, these short bursts of energy resembles the sound of
thunder, which in turn enhances the effect of Gestalt Prin-
ciple of Past Experience.

As the visualization algorithm displays a unit of occur-
rence for a brief period of time, the sonification engine ren-
ders a short burst of sonic energy. This allows the auditory
and visual stream to be coupled together, as discussed in
4.1. We respect natural physical coherences by binding the
visual and auditory events together temporally, giving the
impression of causality [3, 14].

5.1 Granular Reverberation

Thunder is the result of a shock wave caused by a sudden
thermal expansion as lightning passes through the air. A
typical lightning bolt lasts for about approximately 20 ps.
As the mass of energy is introduced into the cumulus cloud
enclosure, its impulse response takes the shape of irregu-



larly spaced delays as a result of spectral reflections in the
cloud formation [17].

This effect can be synthesized using a technique known
as granular reverberation. The foundation for granular re-
verberation is Asynchronous Granular Synthesis, which scat-
ters grains statistically within a region defined on the time/
frequency plane (Fig. 3) [18]. The number of grains in a
particular region determines the density of sound particles
(for each granular cloud).
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Figure 3. Varying density of 3 granular streams mapped
to flash rate [19]

5.2 Mapping Strategies

The data of lightning occurrences is presented as a time
series corresponding to the days in a single year. Every
data point (Fig. 4) in the dataset holds a value correspond-
ing to the amount of lightning (flash rate) for a particular
geographic coordinate (longitude, latitude) of a given day.
To simulate the individual lightning strikes (while retain-
ing the ratio between each data point), we have chosen to
map the flash rate values to the density of grains (discussed
in Section 5.2.1).

Although this is not the “actual individual lightning oc-
currence,’ the triggering rate of the grains somewhat gives
us a cue of how “dense” the occurrences are around a par-
ticular part of the world. The maximum amplitude and the
duration of the grains in a particular stream are also cor-
related to the values of each data point, as a means to in-
tensify the data mapping. Other synthesis parameters such
as grain triggering rate and grain length random deviation
are mapped to stochastic processes.

The use of synthetic grains with sharp attack and decay,
and a lifespan between 10 ms to 50 ms enables us to evoke
the idea of individual bursts of lightning bolts. The short
barrage of energy also results in a very strong association
with the rendered points in the visualization. This, in turn,
results in the tendency for these two different stimuli to be
grouped together as an interconnected event.

The nature of this technique allows for a multitude of
low-level parameter manipulations. In contrast, the usage
of granular synthesis in creative applications (as opposed
to sonification practices) often requires thousands of con-
trol parameters per second, resulting in the need of higher-
dimensional control parameters.

“Granular synthesis requires a massive amount
of control data. If n is the number of param-
eters per grain, and d is the density of grains
per second, it takes n times d parameter values
to specify one second of sound” [1].

On the other hand, multivariate datasets provide us with
a wide range of parameters that could be assigned to gran-
ular synthesis’ control data. The issue lies in fine tuning
the synthesis engine to fit the dataset, and finding the best
ways to parameterize, so as to allow changes in the data
to be perceived by the user. This is where aesthetic fea-
tures of the sonification plays an important role— to allow
the dataset to be cognized by the user.

5.2.1 Parameterization

For every flash rate value in the dataset, we create a Gaus-
sian function (1) centered on the data point. The normal-
ized flash rate is then set to the height of the curve’s peak
(Fig. 5). In effect, sonic grains are statistically rendered
around the data points, based on their actual location in
the dataset (Fig. 6). Consequently, the density of grains
in a particular area now gives a perceptual description of
occurrences in that region.

(z —b)*
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where a, b and c are real constants

Additionally, this allows the algorithm to retain each data
point’s relative weight compared to other points on the
same data slice, independent of the temporal scaling (dis-
cussed in Section 6.3). One could implement an algorithm
that is set to render a non-statistical element at each data
point, but the result would be a repeating cycle, akin to
looping an audio file. Instead, the synthesis engine renders
a sequence of grains for each data point on the grid. As
such, the density of grains at a particular location in time
retains its overall weight every cycle. However, it does not
appear to be an exact repetition of the previous cycle as a
result of statistically generating new grains every time the
data point is updated.

5.3 Grain Density

The attempt to provide perceptually distinct cues for indi-
vidual lightning occurrence also causes the data to be ob-
scured. The number of grains (per data slice) at an instance
becomes far too dense for the differences to be perceived ! .
We discuss the technique of focusing on individual streams
in Section 6.2.

Our auditory system perceives events happening with in-
tervals less than 20 Hz as distinct events. However, as these
events are sped up to more than 20 Hz, they are perceived
as a continuous stream. The visual equivalent of this can
be seen in the phenomenon called Persistence of Vision.
At 30 frames per second, our brain processes these visual
stimuli as a continuous event.

In the case of the represented dataset, the speed at which
the grains are generated would correspond to grain density
per data point. When we take the whole data slice into
account, we get a number of grains that is generated at a
rate that temporally smears the grains into a continuous
tone.

! https://soundcloud.com/muhammad-hafiz-wan-rosli/graindensity
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Figure 4. An array of data points for a single day
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Figure 5. Probability curve of one data point in Figure 4

Suppose we have an average grain density of 100 grains
per second for a single data point. The number of grains in
one second of time would be:

[longitude resolution x latitude resolution x grain density]
720 x 360 x 100 = 25,920, 000 grains per second (2)

Therefore, the problem of data representation through the
means of granular synthesis is somewhat reduced to a per-
ceptual and psychoacoustical problem. How do we pose
a potential solution to parse this dense information space
acoustically?

6. GRANULAR TRANSFORMATION

“Xenakis observed how sound particles could
be viewed as short vectors within a three di-
mensional space bounded by frequency, am-
plitude and time” [1].

6.1 Frequency Transformation

As is well known, the Cocktail Party Effect illustrates that
our brain is capable of focusing auditory attention on a
particular stimulus while filtering out a range of stimuli
[8,20]%. However, this effect is influenced not only by
our ability to segregate sounds based on their spectral and
temporal qualities, but also by the spatial relationships be-
tween the sounds.

Consider, for example, the ability to segregate multiple
instruments in a recording, and to focus on a specific in-
strument. We are able to do so because we associate each
unique instrument with a specific timbre (and melodic mo-
tives). Furthermore, our ability to identify unique instru-
ments is also affected by the direction of which the sounds
originate from [8, 13]. These cues help us localize sound

2 http://sonification.de/handbook/media/chapter3/SHB-S3.1b.mp3
[20]
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Figure 6. Grain distribution for data points in Figure 4

sources, which ultimately contributes to recognizing a stim-
ulus as a continuous pattern.

6.1.1 Unique bands per quantized longitude

“The ability to selectively attend to simultane-
ously sounding auditory objects is an ability
that is not yet completely understood. Nonethe-
less it provides fertile ground for use by de-
signers of auditory displays” [3].

Bandlimiting a set of grains allow us to theoretically dif-
ferentiate between separate groups of stimuli, i.e “granu-
lar streams”. As discussed in section 5, the synthesis en-
gine exploits our perceptual ability by bridging the con-
nection between what is seen and what is heard. However,
the downside of using granular means for synthesizing the
stimuli disables us from clearly identifying the separate
grains, causing the mass of sounds to be perceived as a sin-
gle evolving event. Although this effect is useful in parsing
the overall macro pattern, the microstructure tends to lose
its meaning through the dense cloud of sound particles.

By mapping the differences in azimuth (of the dataset)
not only to its corresponding spatial position (in the ren-
dered field), but also to a specific frequency band (Fig. 7),
we allow the data to be segregated based on its spectral
content and spatial location. However, the generation of
synthetic (sinusoidal) grains is far too similar to one an-
other, even with the assistance of spatial relationships.

This effect is further diminished due to the Minimum Au-
dible Angle, which is defined as the Just Noticable Differ-
ence (in azimuth) for listeners [21]. One solution might be
to fine tune the quantization of longitudinal space to fit the
space where the model will be rendered in. The number of
speakers used affects the ability to render directional stim-
uli, which, in turn, helps in segregating directional sources.
We intend to further explore this possibility in the near fu-
ture via the use of the Allosphere [22].

6.1.2 Granular clouds

The grouping of elements is further explored by segregat-
ing groups of grains to form what is known as granular
clouds. If a set of grains are bounded by a pre-determined
set of rules and parameters, then they would appear to
morph “in unison”. We implemented this technique for
the different continents, which allowed us to analyze the
trend of change per continent, and how one continent’s
flash rates relate to another’s. In doing so, we now reduce



the amount of concurrent events to “concentrate” on, en-
abling us to analyze the macroscale patterns. Here lies an-
other example of how mapping a dataset to a higher-level
representation could give rise to new meanings, and allow
us to find patterns that were otherwise difficult to perceive
(or even non-existent).

6.2 Amplitude Transformation

As discussed in [2], our visual system is able to focus on
a group of stimulus in a specific position, while disregard-
ing the other stimuli— akin to looking through a magnify-
ing glass. Although our auditory system is able to segre-
gate, and focus on different stimulus [20], the dense spatial
dataset prevents a perceiver to tune in to specific areas of
interest. To achieve a similar result (as the visual senses),
we have implemented a means to “blur out” or “smear”
the dataset— except for the area being viewed. This notion
of Interactive Data Selection has been implemented, and
discussed in the context of Parameter Mapping Sonifica-
tion [3,23,24].

6.2.1 Acoustic focus

To focus on a specific area of the dataset, we pass the sonic
grains through a conditional construct that checks if the
generated grains are within a specific boundary. If these
grains are within the boundary, then they are rendered.
Otherwise, the grains are not rendered.

If we were to perform the conditional statement on a data
point, instead of the rendered grains, we would not be able
to render areas in between the data points. Instead, we
are now able to seamlessly move the focal point around
the dataset, while rendering grains that are only within the
boundary.

Implementing this type of control not only enables us to
focus on a specific data point, but also allows us to control
the width of the scope, i.e the number of data points to be
included in the focused region. Another parameter that is
now at our disposal is the ability to control the loudness
roll-off of the regions around the focused area.

6.2.2 Multiple focus

The number of focused regions could also be controlled
(Fig. 8), so as to allow the perceiver to, for example,
compare the data of several areas of interest. This control
scheme reinforces the effect of temporal, and frequency
transformations.

6.3 Temporal Transformation

Time domain transformation is well known in the realm
of electronic music, discussed in depth by composers and
musicians alike, including Stockhausen in his 1972 lec-
ture entitled Four Criteria of Electronic Music. Speeding
up a sequence of rhythmic events causes a transformation
from distinct individual events perceived as rhythmic, into
a continuous tone. Further increment of the speed creates
an increase in pitch, whilst a decrease in speed results in a
lowering of the pitch.

Temporal transformations allow us to traverse between
time scales to perceive different relationships in the dataset’s
temporal structure. In the case of our implementation, it al-
lows us to perceive differences in Microstructure and Mac-
rostructure.

6.3.1 Microstructure

The analysis of fluctuations in lightning occurrences for
a particular location might not be a trivial task, as there
are a multitude of concurrent granular streams. Coupled
with the ability to segregate granular streams via amplitude
transformations (Section 6.2), the relationship of one par-
ticular data point through time would be easier perceived
if the temporal domain is stretched.

6.3.2 Macrostructure

On the other hand, if we were to compress the temporal do-
main, the distinct granular streams would be transformed
into continuous tones 3 . A crucial point to note is that these
manipulations do not effect the ratio between data point
values (in a data slice). Therefore, the individual flash
rates per time frame retains the same weight throughout
the temporal transformation. What seemed to be a mass
of micro-events resembling noise is now transformed into
(720 x 360) pitched tones.

As a result, we can now compare data points over time
by listening to the differences in pitches: The higher the
pitch of a particular data point, the higher the lightning
occurrence. Additionally, we can now analyze the data to
extract higher level information, such as the ratios between
tones (how the flash rate of a particular point relates to the
flash rate of another point), the amount of frequency shift
(glissando) corresponding to the changes in flash rates of
a particular location (data point), and the rate of frequency
shift in relation to another data point (rate of change for
flash rates).

3 https://soundcloud.com/muhammad-hafiz-wan-
rosli/graintemporaltransformation

Figure 7. Bandlimiting grains per quantized longitude

Figure 8. Multiple focus and loudness roll-off



If a granular stream does not change through time, then
the number of occurrence for that data point does not fluc-
tuate. In effect, we can hear the fluctuating changes of a
particular location by listening to the granular streams that
change from tone to rhythm, and vice versa.

7. INTERFACE FOR EXPLORATION

The mapping of spatial data to spatial sound was indeed
one of the crucial components of this research. However,
as the perceiver is an important component to the sonifi-
cation, interface, naturally becomes an important factor as
well.

We are currently in the process of designing custom hard-
ware that would enable us to address spherical coordinates
via a multi-touch spherical interface. However, we have
explored (off-the-shelf) interfaces to navigate the system,
which has produced satisfactory results.

Frequency and Amplitude transformations, as well as zoo-
ming capabilities are executed via the use of trackpad or
Wacom tablet [25]. The Griffin Powermate [26] was used
to achieve temporal transformations, whereas a Graphical
User Interface was used for parameter control.

As a compositional aesthetic, we have also included a
mode where the rate of reading the data slice is increased
after every yearly iteration. In the “final” iteration, the
whole year’s worth of data would be presented as a sin-
gle impulse, which contains the “energy contained in one
year’s worth of lightning/ thunder”.

8. TOOLS

The initial version of the system was realized using a het-
erogeneous setup to allow fast prototyping. The data pars-
ing, handling and processing was done using python, in
particular the interactive ipython notebook. The sonifica-
tion was done using Csound [27] within the ipython note-
book, and the visuals were done using processing [28]. The
synchronization and data interchange between applications
was done using Open Sound Control [29].

9. CONCLUSION AND FUTURE WORK

We have explored, and described a granular model for mul-
timodal representation of spatial data via spatial sonifica-
tion. We have also discussed the perceptual issues that
are taken into consideration, and propose solutions to over-
come them. Interactivity, mapping strategies and transfor-
mations related to granular synthesis have also been ex-
amined to provide a platform for pattern discovery. These
techniques can be used as an auditory display to comple-
ment a visualization component, as well as an interactive
tool for sonic data exploration.

We are currently in the process of porting the system from
its surround-sound version to a large immersive 3D space,
the Allosphere. This would allow us to render sounds in a
periphonic (full 360°) environment. Explorations on spa-
tial interfaces will also be carried out as we believe interac-
tivity is a major component to sonification. The Allosphere
is a 3-story facility that contains a 10 meter diameter sphere

that provides 360° realtime stereographic visualization us-
ing a cluster of servers driving 26 high-resolution active-
stereo projectors. Audio is projected by 54 loudspeakers
positioned along three rings of the sphere [22,30].
Another approach to the granular paradigm is through the
use of granulation, which divides a sample into short en-
veloped grains, and reproduces them in high densities (as
opposed to generating synthetic grains via granular synthe-
sis). Granulation of samples possesses a unique, organic
aesthetic quality which could assist in unraveling the “po-
etics” of the dataset, which in turn could allow users to
be more perceptually engaged. Unique spectral transfor-
mations could also be applied to selected areas in order to
assist the user in data exploration— examples of these trans-
formations range from user defined systems to algorithmic
processes, such as Dictionary- Based Methods [12].

9.1 Perceptual validation

We plan to conduct several user studies to analyze the ef-
fectiveness of our system. The following are potential sce-
narios of a user-study.

The users are exposed to multiple 10 second segments of
the sonified dataset, specifically those which contain cor-
relation in the change of lightning occurrences over time
between two data points. The excerpts would contain a
combination of various segments (both sparse and dense)
to be analyzed by the user. In each segment, the user is
presented with the dataset, sonified using well-known spa-
tial sonification techniques [11], followed by our system.

For every segment, the user is asked:

o If there were any correlations in the data. The
user would be asked to determine the number of per-
ceived distinct stimuli. They are are also asked to de-
termine which data point contains more occurrences
using the frequency and/ or density difference (Sec-
tion 6.3).

¢ To point towards the source of the incoming stim-
uli. Users are allowed to navigate (Section 7) via
discussed transformations (Section 6). The accu-
racy is measured based on radial distance from ac-
tual stimuli.

e Which type of sonification is preferred. This qual-
itative selection is compared to the quantitative re-
sult of the tests, and the correlation between aes-
thetics, and accuracy (function) is measured to de-
termine their interdependence.

The result of this user-study would allow us to quantita-
tively measure our system, and show if multimodality in
spatial data representation assists the accuracy of data per-
ception. Furthermore, it would also show if the aesthet-
ics of a system play an important role in the perception of
data (in a data representational system). Additional tests
would include different datasets, and different synthesis
techniques.
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