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ABSTRACT

Tempo variations in classical music are an important means
of artistic expression. Fluctuations in tempo can be large
and sudden, making applications like automated score fol-
lowing a challenging task. Some of the fluctuations may be
predicted from (tempo annotations in) the score, but pre-
diction based only on the score is unlikely to capture the
internal coherence of a performance. On the other hand,
filtering approaches to tempo prediction (like the Kalman
filter) are suited to track gradual changes in tempo, but do
not anticipate sudden changes. To combine the advantages
of both approaches, we propose a method that incorporates
score based tempo predictions into a Kalman filter model
of performance tempo. We show that the combined model
performs better than the filter model alone.

1. INTRODUCTION AND RELATED WORK

Interpreting the world around us is easier when we know
what to expect. As in other modes of perception, this ap-
pears to be true for music listening as well. Musicians,
especially in classical music, use tempo and timing of indi-
vidual notes as a means of expression, thereby transmitting
musically important information such as emotion [1], and
a structural interpretation of the piece [2]. These cues are
helpful to human listeners, who are familiar with conven-
tions regarding the expressive performance of music.

However, computer systems designed to ‘listen to music’
typically have no access to expressive performance con-
ventions, and interpreting expressively performed music
has proved to be challenging for such systems. A sce-
nario where this is particularly relevant is automatic on-
line tracking of music performances with respect to a score
(known as automatic score following). This problem has
been addressed by several authors in different contexts,
like real-time accompaniment of a soloist by a recorded or-
chestra [3,4], live visualizations of performances and auto-
matic page turning [5]. One of the main challenges in this
problem is to accommodate for the fluctuations of tempo in
the performance that is being tracked. When fluctuations
in tempo are not known in advance, they can lead to am-
biguities in the interpretation of the music, that can easily
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cause score following systems to lose track of the perfor-
mance, in the sense of forming an incorrect hypothesis of
the position in the score that corresponds to the current po-
sition in the performance.

The question of estimating the tempo of a performance
at a particular score position, can basically be answered
from two complementary perspectives. On the one hand,
one can predict performance tempo based solely on score
information. This can be regarded as an a priori hypothe-
sis of performance tempo, that does not take into account
any information about an actual performance of the piece.
On the other hand, one can treat the question as a time se-
ries prediction problem, in which the tempo prediction at
a given position in the score is based primarily on the ob-
served performance at previous score positions.

Arzt and Widmer have shown that even a simple tempo
model based on an weighted average filter improves the
automatic score following performance [6]. Furthermore,
Bayesian methods for time series modeling have been ap-
plied to tempo tracking in various works: Hidden Markov
Models [4, 7], Kalman filter models [8, 9] and particle fil-
ters [10, 11].

One problem of filtering approaches is that by defini-
tion they make predictions using only information from
the past. They succeed in modeling slow trends in the
data but will fail to model faster changes as sudden jumps.
However, such jumps appear frequently in expressive mu-
sic performances. Some of these jumps are means of ar-
ticulation induced by the performer, but some are also in-
tended by the composer and annotated in the score (e.g.,
ritenuto: a sudden decrease of the tempo) and hence can
be predicted by a score model.

To combine the advantages of filtering approaches with
the benefits of a score based approach, we propose a method
that incorporates score based tempo predictions into a Kal-
man filter model of performance tempo. The score based
model for performance tempo is an adaption of the model
for expressive dynamics proposed in [12]. The Kalman fil-
ter is able to exploit prior knowledge about the variance
of performance tempo and of the deviations of performed
note onsets with respect to the local performance tempo.
Additionally, the score model is used to ”correct” the filter
model whenever it has some additional information from
the score.

We show that a combination of score and filter based
models performs better than filter models alone, both by
large scale evaluation on a corpus of classical piano per-
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formances, and by an illustrative example.
The outline of the paper is as follows: In section 2, we de-

scribe a baseline filtering model (subsection 2.1), the Kal-
man filter (subsection 2.2), the linear basis model for score
based tempo prediction (subsection 2.3), and the extended
Kalman filter tempo model that allows the integration of
score based tempo predictions (subsection 2.4). In section
3, we describe the data and experimental setting used to
evaluate the model. Finally, we discuss the experimental
results (section 4) and present conclusions (section 5).

2. METHOD

We represent the tempo using the log beat period ∆log
k at

beat k using

∆log
k = log2(τk+1 − τk) (1)

where τk is the beat time of the k − th beat (see 3.1.1 for
how to compute the beat times). The logarithm was also
proposed in [8] and is closer to the human perception of
tempo: Relative tempo fluctuations become independent
of the absolute tempo, e.g., a doubling of the tempo always
corresponds to a subtraction of 1 in the log beat period
domain.

2.1 Baseline approach

To compare the Kalman filter model to a baseline we use
a (very) simple tempo model similar to the one proposed
in [6]. The beat period of the current note ∆log

k is predicted
as the weighted average of the beat periods of the n recent
notes:

∆̂log
k =

∑k−1
i=k−n (∆log

i × i)∑k−1
i=k−n i

(2)

2.2 Kalman filter

The tempo prediction problem can be formulated as an in-
ference problem in a (continuous) state space model. We
are interested in the one-step predictive distribution
p(ŝt|o1:t−1), where ŝt is the state prediction at time t, and
o1..t−1 are the observations from time 1 to t − 1. Kal-
man filters [13] provide a very efficient way of recursively
computing p(ŝt|o1:t−1) in linear dynamical systems with
Gaussian noise. The restrictions to linear dynamical sys-
tems can be loosened by using a linear approximation of
the model, so that also non-linear models can be described
by an (extended) Kalman filter (see [14] for a comprehen-
sive tutorial).

A Kalman filter model for tempo tracking when no score
information is present was first proposed in [8] and is re-
viewed here briefly: Considering a beat sequence indexed
by k = 1..K we denote the state of the system at beat k as
sk = (τk,∆

log
k )T , where τk is the beat time of the k − th

beat and ∆log
k is its log beat period. The states of the model

evolve as follows:

τk = τk−1 + 2∆log
k−1 + vτk (3)

where vτk is Gaussian noise with zero mean and variance
Q(1).

Fluctuations of the beat period ∆log
k are assumed to be

Gaussian distributed:

∆log
k = ∆log

k−1 + v∆
k (4)

where v∆
k is Gaussian noise with zero mean and variance

Q(2). The covariance matrix Q = diag(Q(1), Q(2)) de-
scribes the amount of tempo fluctuation we expect. Hence,
the state prediction due to the transition model is written as

ŝk = f(sk−1) + vk (5)

where f is a non-linear function defined by equation 3 and
4 and vk ∼ N (0,Q).

Our observation ok consists of the beat time τk. These
beat times incorporate fluctuations like expressive elements
and timing errors and hence are modeled as a Gaussian dis-
tribution with mean τk and variance R:

ok ∼ N (τk, R) (6)

Having observed ok, sk is computed as a weighted average
of the prediction ŝk and the observation ok:

sk = ŝk + K(ok − ŝ(1)k) (7)

where K is called the Kalman gain. For details on how to
compute K we refer the reader to [13, 14]

2.3 Linear basis modeling

Linear basis modeling refers to a technique introduced in
[12], to model expressive parameters in a musical perfor-
mance as a linear sum of basis functions, which describe
features of the musical score. Although the approach in
[12] was described for loudness, it can be applied with-
out significant modifications to other expressive parame-
ters, such as tempo, articulation, and chord spread. In this
paper, we will focus exclusively on modeling tempo fluc-
tuations, quantified inversely as the log beat period.

The intuition behind the linear basis model is that any
musical knowledge about the score that could be relevant
for shaping expressive tempo is encoded a priori in the ba-
sis functions. Basis functions can be as simple as indicator
functions for notated accents, or fermata in the score, but
they may be arbitrarily complex. A basis function may for
example express phrase shapes that are heuristically com-
puted from the score (as in [12]).

The parameters of the model are the weights for summing
the basis functions to approximate the expressive tempo
curve. They can be easily estimated from data, as de-
scribed below. The estimated parameters can be used for
musicological research (e.g. to quantify differences be-
tween performers [15], or the relevance of different mu-
sical aspects for expressive tempo), but also to predict ex-
pressive tempo for new scores.

Given a musical score, represented as a list of N notes
x = (x1, · · · , xN ), and a set of L predefined basis func-
tions ϕ = (ϕ1, · · · , ϕL), the sequence of log beat periods
∆log is modeled as a weighted sum of the basis functions:

∆log = f(x,w) = ϕ(x)w + ε (8)



Figure 1. Two basis functions and their weighted sum for
modelling the log beat period in Chopin Nocturne Op. 1
(bars 127-129)

where we use the notation ϕ(x) to denote the N × M
matrix with element ϕi,m = ϕm(xi), w is a vector of
M weights and ε is an error vector. Note that L ≤ M .
This is because basis functions can be instantiated multiple
times. For example, if a basis function ϕl is associated to
a score annotation ritardando (see subsection 2.3.3), ϕ(x)
will contain an instantiation of ϕl for each ritardando an-
notation that occurs in x (shifted in time to be aligned with
the annotation). It is important to note that even if w does
not contain exactly L elements, each element of w can be
associated with one of the L unique basis functions ϕl. We
will use the notation [w]l to denote the set of weights in w
that are associated with unique basis function ϕl.

2.3.1 Learning basis function weights from data

Given a training set D = ( (x1,∆
log
1 ), · · · , (xP ,∆log

P ) )
of P piece/performance pairs, we solve equation (8) for w,
for each piece/performance pair 1 ≤ p ≤ P individually:

ŵp = argminw

∥∥∆log
p −ϕ(xp)w

∥∥ (9)

where ‖·‖ denotes the `2-norm.
Then, we compute the estimated weight ŵl for each unique

basis function ϕl simply as the mean of all weights associ-
ated to ϕl, as computed from the training data:

ŵl =

{
W l if |Wl| > 0
0 otherwise

(10)

that is, ŵl is the average over the set of weightsWl, where:

Wl =

P⋃
p=1

[ŵp]l (11)

2.3.2 Prediction

For a new score x, the sequence of log beat periods is then
estimated as:

∆̂log = f(x, ŵ) = ϕ(x)ŵ (12)

The weight vector ŵ is constructed by first constructing
the matrix ϕ(x), and then for each of the L basis functions
in ϕ(x), selecting the associated weight ŵl.

2.3.3 Basis functions used

In the current context we define basis functions that rep-
resent tempo annotations in the score. The basis func-
tions are intended to represent the prototypical effect of
the annotation on the tempo curve. We distinguish three
prototypes. Firstly, there are annotations that indicate a
constant tempo (e.g. lento, allegro, or a tempo 1 ). Such
annotations are represented by a step function, with value
one over the range where the annotation is active, and zero
elsewhere. Secondly there are dynamic tempo annotations,
prescribing a decrease (e.g. ritardando), or increase (e.g.
accelerando) in tempo, respectively. They are represented
by a ramp function over the range where the annotation is
active, and zero elsewhere. A simple example of two such
basis functions is shown in figure 1. Lastly, there are anno-
tations with only an instantaneous effect, such as fermata.
Such annotations are represented by an impulse function
with value one at the time of the annotation, and zero else-
where.

It is important to note that although the prototype of the
tempo curve is fixed by the basis function, the basis func-
tions do not impose a specific direction, such as a tempo
increase in case of a accelerando, and a decrease in case of
a ritardando. Both annotations are represented by the same
ramp function, and only the sign of the weights (which
are learned from real performances), determines if the ef-
fect of, say a ritardando annotation, will be an increase or
rather a decrease in tempo.

2.4 Combined model

To combine score and filter information, we first compute
the first-order temporal difference of the linear and loga-
rithmic score model predictions (Eq. 12):

u
(1)
k = 2∆̂log

k − 2∆̂log
k−1 (13)

u
(2)
k = ∆̂log

k − ∆̂log
k−1 (14)

Using u(1)
k and u(2)

k as control input, the prediction of the
combined model becomes:

ŝk = f(sk−1) + b

[
u

(1)
k

u
(2)
k

]
(15)

where b is a control input parameter.

3. EXPERIMENTS

To evaluate the proposed tempo model we use it to predict
the next (log) beat period given all previous beats of real
performances.

1 Referential annotations such as a tempo, or tempo primo are handled
by combining the both referent and referee annotations into a single basis
function



3.1 Data set

For the evaluation we use the Magaloff corpus [16] a data
set that comprises live performances of virtually the com-
plete Chopin piano works, as played by the Russian- Geor-
gian pianist Nikita Magaloff (1912-1992). The music was
performed in a series of concerts in Vienna, Austria, in
1989, on a Bösendorfer SE computer-controlled grand pi-
ano [17] that recorded the performances onto a computer
hard disk. Symbolic scores were obtained from scanned
sheet music using optical music recognition (OMR). Per-
formances were aligned to the score automatically, and
were corrected manually.

Tempo markings in the score are available as far as they
have been recognized in the OMR process. Unfortunately,
many tempo markings are not correctly recognized, and
recognized markings are not always positioned correctly. 2

Even if this is expected to limit the potential benefit of
the score model, the current annotations are sufficient to
demonstrate the benefit.

The data set consists of 131 pieces, adding up to approx-
imately 9 hours of music, and 59917 beats.

3.1.1 Preprocessing

To make the data set usable for the evaluation several pre-
processing steps are undertaken: Firstly, performance on-
sets, that happen at the same time in the score, are replaced
by their arithmetic mean. Secondly, we deal with the fact
that the performance data differs from the actual score in
the number of notes: Deletion of notes happens when the
performer skips notes and insertion happens when he plays
additional notes that are not present in the score. To ac-
count for the errors, which would emerge when comput-
ing the inter-onset intervals, the missing sections are cut
out manually from the performance (insertion case) or the
score (deletion case). Thirdly, the beat times are obtained
by interpolation of the unique performance note onsets and
finally, all predicted and target sequences are normalized to
a total duration of 1 to be independent of the mean tempo.

3.1.2 Parameter estimation

The noise covariance Q and variance R of the Kalman fil-
ter have been optimized using a grid search over the whole
data set using leave-one-out cross validation. We have
found that parameters optimized using an Expectation -
Maximization (EM) algorithm do not produce better tempo
predictions (as measured by the log beat period). Some-
times the target sequence even has a lower likelihood under
our model assumptions than a predicted sequence.

The window size of the weighted average filtered was
also optimized by grid search. 3

The weights of the linear basis model have been trained
for each piece individually, also using a leave-one-out ap-
proach on the complete data set, according to the method
described in subsection 2.3.1.

2 For a subset of the data (around 5%, including Op. 62, No. 2, in
figure 2), tempo annotations have been corrected manually.

3 We obtained the best results using n=6 beats

3.2 Evaluation measures

As in [12], we use two quantities to quantify how well
the model is able to capture tempo variations of the per-
formances: r is the Pearson product-moment correlation
coefficient, denoting how strong the observed log beat pe-
riods and the log beat periods of the fitted model linearly
depend on each other. The quantity R2 is the coefficient of
determination and is a measure for how much of the tempo
variance is accounted for by the model.

4. RESULTS AND DISCUSSION

Table 1 lists the results for all algorithms on the complete
data set described in section 3.1. A one-tailed paired t-test
on the R2 measures indicates that the Kalman filter signif-
icantly outperforms the weighted average filter (t(130) =
2.942, p = 0.005). Integration of the proposed score model
improves the performance even more and has been found
to perform significantly better than the weighted average
filter (t(130) = 4.019, p = 0.00005) and also significantly
better than the Kalman filter alone (t(130) = 2.271, p =
0.025) . As shown in figure 2 the weighted average filter
and the Kalman filter capture the main tempo fluctuations
but are always one step too late. This is because in the pre-
diction step it always uses the tempo that was computed
in the last update step. In contrast, information from the
score is available off-line and can tell the filter models in
time when sudden changes happen. This is shown in fig-
ure 2, where a ritenuto causes the performer to slow down
between beats 222 and 227 and then, after an in tempo, re-
turns to the initial tempo at beat 228. The same happens
between beats 271 and 278 (ritenuto from beat 271 to 274
and in tempo from beat 275 to 278) ).

We find that the Kalman filter works best when the tempo
variance parameter Q(2) is very low 4 in comparison to
the other noise variance parameters, resulting in smooth
beat period state sequences ∆log. Due to large tempo fluc-
tuations it is convenient to have a stable tempo estimate
that captures the slow fluctuations only. Fast fluctuations
are modeled by the beat time state τ with higher variance
Q(1). We have also incorporated additional tempo states
with different transition variances as proposed in [10], but
have not found it beneficial for the predictions.

Note that although the explained proportion of variance
may seem rather low, this is not unexpected for models of
such complicated human behaviors as music performance.
It reflects that we still know relatively little of the factors
that contribute to musical expression. Also, it is likely that
not all model assumptions are met. For one thing, the score
model assumes that annotated tempo directives will always
be followed by the performer (to an extent determined by
the training data). This assumption is unlikely to be true
in all cases, for example when the performer used an other
edition of the score, possibly containing different annota-
tions than those used by the model.

The fact that a rather simple score model improves the

4 For good performance, typical values of Q(1) ranged from 8 to 12,
typical values of Q(2) ranged from 0 to 10−4, typical values of R ranged
from 26 to 38 and typical values of b ranged from 0.035 to 0.045.



Figure 2. Tempo predictions for Chopin Nocturne Op. 62, No. 2 (bars 57–71)

Algorithm R2 r
avg. std. avg. std.

WAF 0.217 0.232 0.499 0.190
EKF 0.224 0.242 0.520 0.183
EKF+LBM 0.242 0.229 0.537 0.165

Table 1. Accuracy of different tempo prediction models on
the Magaloff corpus (WAF: Weighted average filter; EKF:
Extended Kalman Filter; LBM: Linear basis model)

filtering approach in spite of overly strong assumptions,
and partially incomplete tempo annotations (see subsec-
tion 3.1), shows that the score is a robust source of in-
formation for modeling expressive tempo in music perfor-
mances.

5. CONCLUSIONS AND FUTURE WORK

Applications like score following benefit from models that
can predict the tempo fluctuations of a performance. Cur-
rent (filter based) tempo models only take into account
notes that were played in the past and hence can not an-
ticipate any sudden tempo changes. This main drawback
of the filtering approaches can be alleviated by incorporat-
ing information from the score. In this paper we present a
method to improve tempo models by combining them with
a scored based model of tempo. We show that the Kalman

filtering approach outperforms the weighted average filter
and its performance further increases when used in combi-
nation with the proposed score based model.

Note that also other sources of tempo knowledge - like
tempo curves learned from previous performances of the
same piece [6] - could be integrated into the model using
the proposed procedure.

In future work we would like to jointly estimate parame-
ters of the filter and the score model using a probabilistic
formulation of the score annotation model. Besides, we
plan to investigate other combination methods, in addition
to the one presented in subsection 2.4. In cases where an-
notations over longer sections occur (e.g., accelerando, ri-
tardando) it could be effective to increase the Kalman gain
in order to put more trust in the observations than in the
transition model. In this manner, the filter is informed that
some relevant changes are going to happen and it should
react more sensible to incoming observations.

Finally, we plan to integrate the new tempo model into a
score following application to prove its usability in prac-
tice.
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