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ABSTRACT 

Beginning with the question on how to determine the 
genre of a music piece, we elaborate on the 
representation of rhythm for the classification into 
genres. The aim of such classification differs in principle 
from that of traditional Music Informa tion Retrieval 
algorithms. First, we formalise the rhythmic 
representation of music fragments. This formalism is 
then used to construct a similarity function called kernel. 
To allow the discrete comparison of rhythmic fragments, 
a pre-processing step in the algorithm computes a 
common quantization unit among the input data. A 
simple injective mapping into 

N
 allows the kernel to 

employ the Euclidean dot product. A small database of 
jazz, classical and rock fragments is used in an 
implementation of a Support  Vector Machine. The issues 
that arise with different time signatures are analysed. 
Finally, we share some early results of the experiments 
comparing the three genres, showing that rhythm 
conveys good information for classification, within the 
conditions of the experiment.  

1. INTRODUCTION 

The present work started when considering the question 
on how to determine the music genre of a music p iece. 
Despite current inconsistencies with genre taxonomies in 
the music industry [8], there is informally sufficient 
agreement on the taxonomy of western genres that allow 
us to classify music pieces into broad and distinctive 
categories such as rock, blues, jazz and classical. 
Cognitively, it is relatively easy even for the untrained 
ear to make such distinction. Publicatio n in the field of 
Music Information Retrieval (MIR) has been produced 
that tries to identify and retrieve music pieces or 
fragments [4, 11]. Meudic proposes similarity 
measurements for rhythm, pitches and contours  [5, 6]. In 
many instances, the problem con sists of finding the best 
ways to match a given (possibly “inaccurate”) executi on 
performed by a human against a collection of music 
pieces. We, in turn, shall concentrate on another 
problem, that of classifying existing musical pieces 
according to their genres. For instance, two distinct 
musical pieces might have very different melodies and 
have been composed by different authors. Despite these 
facts, they can still belong to the same genre. We are 

more interested in investigating the musical properties 
underlying the pieces that allow for the distinction and 
the formalism of the musical representation. We begin 
by limiting ourselves to the rhythmic content of musical 
pieces.  This paper is organized as follows: section 2 
describes the musical representatio n of rhythmic 
fragments. The mathematical representation is then  used 
in the theory of Kernels in section 3. Section 4 describes 
the implementation of the Support Vector Machine and 
the early results of the experiment. We close laying out 
possible paths for future research in section 5 and 
reasoning upon the results  in conclusion . Our hope is 
that the techniques employed while trying to answer this 
question shall evolve and collaborate along with other 
existing formalisms at some point in the future as tool s 
of musical analysis.  

2. RHYTHMIC REPRESENTAT ION 

A polyphonic rhythmic fragment is defined as parallel 
sequences of note durations over time. We construct our 
set X of possible polyphonic rhythmic fragments 
formally as follows: consider  the finite set nBH ⊆ of 
monophonic rhythmic fragments, where B  = {sound, 
rest}. B is isomorphic to the Boolean set which, indeed, 
is the internal representation used in our experiment. H is 
a monoid with the binary o perator being the note 
concatenation. mHX ⊆  is a monoid with the binary 
operator defined as voice concatenation.  

For example, the polyphonic rhythmic fragment  
 

 
 
is represented as the element {(rest, sound, rest, sound) 
,(sound, sound, rest, sound )} X∈ , taking the quarter 
note as the quantization  unit. Differently than Vuza’s 
rhythmic representation of periodic subsets of  [10], 
ours is not concerned with the intrinsic periodicity of 
patterns within a given music piece.  



  
 
 The music pieces represented as elements of X  
serve as input to the Support Vector Machine that 
performs the learning and classification tasks.  
 We introduce one pre -processing step that adjusts the 
internal representation of the input due to possible 
differences in the quanti zation of elements of X . A 
quantization unit is a number of the format q-1,  q ∈ . 
Figure 1 shows two rhythmic fragments with two, a) and 
b), with quantization units 4-1 and 6-1, respectively. In 
this case, the common quantization unit is 12-1. 
Generically we have 
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for the overall quantization q for all inputs.  This pre-
processing step will enable a fair comparison between 
rhythmic fragments  in the algorithm. Differences in time 
signature will have certain implications in the 
comparisons, as discussed in section 4. 
 

 
Figure 1: Two rhythmic fragments with different 
quantization 

3. KERNELS 

Kernels are functions that measure a degree of similarity 
between two objects. Kernels have been successfully 
used in pattern recognition problems , including 
identification of performers by their playing style  [2] and 
text classification [1]. One of the main kernel algorithms 
is Support Vector Machines (SVMs) . Extensive 
information about kernels and SVMs can be found in [1] 
and [9].  
 The learning process in SVMs itself takes place in 
two steps: the learning and the testing phases.  In the 
learning phase, SVMs take pairs of the form 

}1,1{),( −+×∈ Xyx ii  where in our case 

}1,1{ −+∈iy  represents one of two different target 

genres for input sample  ix .  
 The algorithm then estimate s a decision function 

}1,1{: −+→Xh  that generalizes for unseen data 
inputs while trying to minimize the risk of 
misclassification. The decision function h makes use of 
the similarity function →× XXK : , the kernel 
function. The kernel function measures the similarity 

between two input data.  The decision function  is used 
during the testing phase and  has the form 
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where l is the size of the training sample set , φ  is a 
feature mapping described below  and 㬐j is the 
embedding strength of input ix . Musical instances that 
are more difficult to classify during the learning phase 
yield higher values in 㬐 by the algorithm.  㬐 and b are 
calculated during training. By convention, sign(0)=+1. In 
this domain, t he objective in the design of the kernel 
function is to measure quantitatively genre similar ity. 
 In certain problems, a mapping from the input space 
into another space, called the feature space, is explicitly 
defined. This occurs often under two circumstances: 
when the data is not linearly separable in the original 
input space or when the input space  X  does not allow a 
scalar multiplication  XX →× , where  is one the 
possible kernel fields  or . The feature space is 
possibly high dimensional or infinite.  
 We define the feature mapping φ : X → 

N
 as 

 
)()( iux =φ                           (3) 

 
where each component iu  of the vector is 1 if there is 
any sound at time slot i and 0 otherwise.  Therefore, the 
image of φ  forms a spanning set of 

N
 where each 

component of each vector is either 0 or 1. The vertical 
projection introdu ced by φ  collapses notes from all lines 
into one voice. The result is a non -polyphonic 
representation in 

N
 that carries some polyphonic aspect 

of the whole piece but that lacks the completeness of the 
overall polyphonic information embedded in the original 
representat ion.  
 The kernel function is  
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that is the dot product in 

N
. The kernel is in fact 

computing the rhythmic similarity between two 
fragments by adding 1 if and only if there is a note in 
common between the fragments.  The comparison is 
performed by the multiplication.     
 The feature mapping φ  is injective but not 
surjective. In fact, it is introduced here to comply with 



  
 
the requirement of existence of a multiplication 
operation by a real scalar  in a vector space over the real 
field. This multiplication operation is explicit in the  
inner product’s linear function property 
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for all a,b ∈ , u,v ∈some feature space F, a Hilbert 
space. If X  were an abelian group with a scalar 
multiplication  XX →×  defined, and conformed to 
the requirements for becoming  such Hilbert space, it 
would be possible to establish an isomorphism between 
X  and 

N
. However, the pure ly rhythmic information 

contained in X  excludes a meaningful semantic 
interpretation of what would be real numbers 
representing rhythmic events in the original input 
domain. The feature mapping is then explicitly declared, 
despite its injective property.  Given the image of the 
feature mapping, the image of the inner product function 
is the non-negative natural numbers.  

4. THE EXPERIMENT AND P RELIMINARY 
RESULTS 

A kernel function defines a simila rity function that can 
be used in different learning algorithms. Our 
implementation of the kernel K was linked to the 
SVMLight software [3 ], utilizing its user -defined kernel 
option. We categorized the pieces into three genres: 
jazz, rock and classical, pe rforming the training and 
classification in pairs. This approach to multi -class 
classification, called pairwise classification, trains and 
executes one classifier for each pair of classes. For small 
number of genres pairwise classification is still 
practical. However at some point other approaches are 
necessary.  

 In the experiment, t he musical pieces were arbitrarily 
selected, with some restriction with  regards to the time 
signature. They are grouped by genre in table 1.  

 The theory allows for the kernel to compare 
fragments with different time signatures. However, the 
rhythmic fragments were deliberately restricted to those 
with time signatures 2/2, 2/4 and 4/4, with the intention 
of avoiding a vertical ‘misalignment’ of beats  and a 
more complex interpret ation of the results . For example, 
consider the two fragments in Figure 2.  

 
Figure 2: Two rhythmic fragments with different time 
signatures 

They are modelled as {(rest, rest, sound, sound)} and 
{(sound, sound, sound, rest, rest, rest)}, respectively, 

taking the eight note as quantization unit . The current 
model would have counted one sound in common in the 
dot product, that in the 3 rd slot. Another interpretation 
could use a different quantization formula aligning the 
bars, which w ould yield no sound in common  in the dot 
product. Thus, the question of how to properly compare  
rhythmic fragments with different time signatures 
remains open. 

 

Music Composer Measures 

Classical 
Sonata No. 8 C 
minor, Op. 13 
(Pathétique), 
Movement 2  

Beethoven 23 

The Well-Tempered 
Clavier Part I, 
Prelude and Fugue 5 
in D major BWV 
850 

Bach 27 

The Seasons, July. 
Song of the Reaper 

Tchaikovsky 36 

Symphony no. 25 in 
g minor, K 183, 
Movement 1  

Mozart 34 

Concerto No.1 in A 
Minor BWV1041  

Bach 85 

Partita for 
unaccompanied 
flute,  Allemande 
BWV 1013 

Bach 65 

Rock 
Start Me Up Rolling Stones 44 
Eye Of The 
Beholder 

Metallica 53 

Stairway to Heaven Led Zeppelin 65 
Let it Be Beatles 62 
Just Got Paid  ZZ Top 53 
Jazz 
On Green Dolphin 
Street  

Ned 
Washington 
and Bronislaw 
Kaper 

58 

Lazy Bird John Coltrane 52 
Serial Number   Mark Kramer 58 
One For Helen  Bill Evans 56 
Speak Low  Kurt Weill  50 

Table 1. Sample music by genre, composer and measurers  

 The classification accuracy represents how many 
music fragments were correctly classified over the total 
number of fragments pairwise. The accuracy of the 
SVM is depicted in table 2.  

 
 Albeit the relatively small database, one can see that 
the rhythmic kernel conveys good information for 
classifying musical genres. When interpreting the 



  
 
numbers, one should keep in mind the limited number of 
samples, the treatment given to polyphony and the fact 
that only the rhythmic feature was used.   
 

 Rock Classical 

Jazz 0.8 0.818 

Rock  0.909 

Table 2.  Accuracy of the experiment  

5. AREAS OF THEORETICAL INVESTIGATION  

The bilinear form in K’s inner product has codomain , 
despite its inherent discrete nature. This motivates a 
search for a discrete definition of a kernel. Ongoing 
research is trying to redefine the rhythmic representation 
so that an inner product applies directly to the input set 
and the feature mapping  does not have to be explicit. 
The idea consists of finding a symmetric bilinear form 
whose domain is a -module. Modules are 
generalizations of vector  spaces. Instead of using the 
traditional definition of inner product over the field , 
this approach will try to find an inner product module  
over . A free -module is an inner product space  [7].  
 Other areas of investigation would include the study 
of the influence of other features such as harmonic and 
intervallic structu res in trying to classify music pieces 
according to their genre.  

6. CONCLUSION 

The rhythmic representation introduced here allows us to 
construct a kernel function that computes a similar ity 
measurement that can be used in the categorization of 
musical genres. Although a relatively small database for 
testing was used, this formalism along with the 
categorization capabilities of Support Vector Machines 
shows that good classification accurac y can be achieved 
from the rhythmic structure of fragments of music 
pieces. Future research would allow a more explicit use 
of the polyphonic structure of pieces. A proper 
assessment on the generalization capability of the model 
is still necessary. The generalization allows one to bound 
the expected error rate in classification for a large 
number of rhythmic fragments given a certain number of 
fragments as training inputs.  
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