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SUMMARY

The emergence of real-time decision-making applications in domains like high-frequency trading,
emergency management and service level analysis in communication networks, has led to the definition
of new classes of queries. Skyline queries are a notable example. Their results consist of all the tuples whose
attribute vector is not dominated (in the Pareto sense) by one of any other tuple. Because of their popularity,
skyline queries have been studied in terms of both sequential algorithms and parallel implementations for
multiprocessors and clusters. Within the Data Stream Processing paradigm, traditional database queries
on static relations have been revised in order to operate on continuous data streams. Most of the past
papers propose sequential algorithms for continuous skyline queries, whereas there exist very few works
targeting implementations on parallel machines. This paper contributes to fill this gap by proposing a parallel
implementation for multicore architectures. We propose: i) a parallelization of the eager algorithm based on
the notion of Skyline Influence Time, ii) optimizations of the reduce phase and load-balancing strategies to
achieve near-optimal speedup, iii) a set of experiments with both synthetic benchmarks and a real dataset in
order to show our implementation effectiveness. Copyright (©) 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years our ability to produce information has been growing steadily, driven by an ever
increasing computing power, communication rates and hardware/software sensor diffusion. Data are
often available in the form of continuous streams, and the development of automated tools to gather
and analyze information “on the fly” in order to extract insights and detect patterns has become a
valuable opportunity. Consequently, an increasing number of applications [1] (e.g., financial trading,
environmental monitoring, and network intrusion detection) need continuous processing of data
flowing from several sources, in order to obtain promptly and timely responses to complex queries.

In this paper we study parallel solutions for skyline queries over data streams [2]. They are a
particular class of preference queries that compute the set of Pareto-optimal points from a given set.
Fig. 1 shows a representation of the skyline. In this example the points represent hotels with the
attribute price per night and distance from the center of the town. The result of the query is the set
of the most interesting hotels that cannot be bettered in both price and distance by any other. In the
literature the skyline set is also referred to as Pareto frontier [3] or maximum vector [4].

Skyline queries have received considerable attention in the database and information retrieval
community, owing to their importance in multiple-criteria optimization. They have been studied in
several papers that can be classified according to two main factors: i) whether the query is executed
in a centralized or in a distributed/parallel fashion, ii) whether it operates on static datasets or on
continuous data streams. All the four combinations are possible.
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Figure 1. Example of a skyline query given a set of 2-dimensional points: red points are the ones in the
skyline set, black points are dominated by at least one red point.

A large volume of papers have focused on sequential algorithms for computing the skyline on
static datasets [2, 5, 6, 7, 8]. Most of these approaches present strategies to avoid scanning the
whole dataset (e.g., using suitable index data structures). A summary will be provided in Sect. 2.3.

The problem of computing the skyline on data streams has additional difficulties. The skyline
is a blocking operator that requires to scan the entire input before producing the first output [9].
Since the stream is possibly unbounded, the approach is to compute the skyline on a sliding window
corresponding to the most recent points [10, 11, 12, 13, 14]. In this way the skyline comprises only
the live data and the query produces a stream of skyline updates once new points arrive or expire.

Parallel implementations of continuous skyline queries have not been sufficiently investigated yet.
The major contribution of this paper is to propose a parallel implementation targeting multicores.
We use the eager algorithm proposed in [10] based on the concept of Skyline Influence Time (SIT).
This algorithm is characterized by an intensive pruning activity, which allows the computation to
save memory at the expense of a higher computational burden with respect to other algorithms. To
the best of our knowledge, this is the first time that this algorithm has been parallelized and the
performance evaluated on multicores. The other contributions are:

e a critical aspect for an efficient parallelization of the eager algorithm is to provide effective
ways to deal with pruning, which may greatly impact on load balancing. To this end, we
present some partitioning strategies to balance the workload and we assess their effectiveness
both using synthetic distributions and in a real dataset;

e we design an asynchronous reduce to compute the global SIT of each point without blocking
the threads of the implementation;

e we perform thorough experiments under different scenarios in terms of window length, arrival
rate and we analyze our implementation by using data generated by a real-world application.

This work is the extended version of the conference paper published in [15], which covers only a
small fraction of the results presented in this paper.

This paper is organized as follows. Sect. 2 provides a brief overview of skyline computations on
static datasets and on continuous streams. Sect. 3 introduces the preliminary concepts and definitions
of the skyline problem and describes the eager algorithm. Sect. 4 and 5 present our parallelization
and the optimizations. Sect. 6 shows the experiments and Sect. 7 gives the conclusion of this work.

2. RELATED WORK

The skyline operator originates from the maximal vector problem in computational geometry [4]
and it has been firstly introduced in the database context in [2]. With the emergence of data-
intensive applications, skyline queries (and extensions like top-k queries) have obtained a renewed
interest especially in application scenarios in which inputs are available as unbounded data streams.
Skyline queries represent a computationally demanding phase of several environmental monitoring
applications [16], in which streams of readings are produced by properly deployed sensors and their
actual values interpreted by a real-time decision-making process (e.g., for early fire detection).
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CONTINUOUS SKYLINE QUERIES ON MULTICORE ARCHITECTURES 3

In this section we review the sequential algorithms for continuous skyline queries, some parallel
implementations, and solutions for skyline queries on static sets of data.

2.1. Sequential Algorithms

Algorithms for continuous skyline queries maintain a sliding window of the most recent points [9].
Since the skyline changes over the time due to point expiration and arrival, the output is a sequence
of skyline updates, i.e. which points are inserted/removed in/from the skyline at each time instant.

The first algorithm has been proposed in [11] for n-of-N queries, which consist in computing
the skyline for the most recent n tuples (Vn < N) where N is an upper bound to the window size.
The algorithm supports the pruning of obsolete tuples, i.e. non-expired tuples that cannot enter the
skyline set and can be safely discarded. The algorithm is designed only for count-based windows.

More often sliding windows have a temporal semantics. The seminal work for time-based
continuous skyline queries is represented by [10]. In this paper the authors propose a lazy and an
eager algorithm. The first one performs most of the activities when a skyline point expires and the
stored points that will appear in the skyline must be identified. In contrast, the eager variant performs
an intensive preprocessing at the reception of each new point in order to: i) expunge tuples from the
system as early as possible (pruning) by keeping only those tuples that may enter the skyline in the
future; ii) minimize the actions performed when a skyline point expires.

Another algorithm is LookOut [14]. With respect to eager and lazy it performs better in the case
of anticorrelated datasets. Furthermore, it adopts a more general model in which tuples may have
a different lifetime. The algorithm exploits the Quad Tree index data structure that, though not
balanced in principle, is more efficient in the insertion of new points than the R*-trees used in [10].
Most of the benefits achieved by LookOut with anticorrelated datasets are due to the use of quad
trees rather than being an inherent feature of the algorithm.

2.2. Parallel Implementations

Continuous skyline queries have been studied in distributed environments. Data are often generated
by data sites and streamed directly to a central server that evaluates the query. Various solutions
require a pre-processing on data sites to reduce the data sent to the server. In [17] this class of
skyline operators has been evaluated over time-based windows, while in [18] the authors assume
intelligent data sites that notify the server only of the changes that may affect the global skyline.

All the aforementioned works assume the centralized processing of the query. Parallel
implementations have been rarely investigated and they represent an open research issue. Parallel
skyline queries over uncertain streams (i.e. in which the values of the attributes of each input
point have a trustability threshold) have been discussed in [12] by proposing parallel solutions
for multicore CPUs. The authors of that work argue that parallel solutions are mainly useful for
uncertain streams, where the complexity of the skyline computation makes the whole problem more
difficult to be solved in real-time. We agree with them. However, due to the recent explosion of data
availability, the real-time execution of skyline queries over classic (certain) streams has also become
a time-consuming task.

2.3. Traditional Approaches on Static Datasets

The problem of computing the skyline on a static set of data (e.g., finite relations) is different than
the counterpart on data streams. In fact, the set of data relevant to the skyline computation are all
available before starting the processing, and the output is a single skyline set rather than a sequence
of incremental updates. Therefore, the problem requires different procedures and algorithms.

Solutions have been proposed for various architectures such as multicores [19], P2P systems [20,
21], shared-nothing machines [22] and FPGAs [23]. Most of these approaches share the idea of
partitioning the whole dataset into subsets, computing the local skylines in parallel, and composing
the final result by merging the local results. An important work is the BBS algorithm presented
in [24], based on a Branch & Bound approach that traverses a R*-tree using a best-first search and
inserts entries ordered by a specified distance function.
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One of the most critical aspects is to define effective partitioning strategies of the dataset among
the processors. Various solutions have been proposed [25]. The most common is a grid-based
partitioning [22, 21]. The idea is to create a grid on the data such that each cell has roughly the same
number of points. The local skyline of each cell is computed in parallel by different processors.
The main drawback is that many partitions may not contribute to the final skyline. A partitioning
technique applied in [26] is based on a random partitioning that distributes the points uniformly
among the partitions. Also in this case many points may belong to the local skyline but not to
the final skyline. An angle-based partitioning scheme has been proposed by [27]. The algorithm
transforms the points using hyper-spherical coordinates. In this way the skyline points are equally
spread in all the partitions and their contribution to the global skyline is approximately the same.

3. SKYLINE COMPUTATION OVER DATA STREAMS

The goal of the skyline query is to determine the points received in the last 77, time units that belong
to the skyline set. Each point « is represented as a tuple of d > 1 attributes z = {z1, z2,..., 24}
Given two points x and y, we say that x dominates y (denoted by z < y) if and only if Vi €
[1,d] z; <y, and 3j | ; < y;. The skyline of a given set S is the subset of all the points not
dominated by any other point in S. The output is a stream of skyline updates expressed in the
format (action, p, t),where action indicates whether the point p enters (ADD) or exits (DEL)
the skyline at time ¢. The computation has three main phases:

e Point expiration: a skyline point x will be removed from the system when it reaches its
expiration time;

e Point maintenance: if a new point x is not a skyline point at its arrival time, it cannot be
discarded immediately because it could become a skyline point when all its dominators expire;

e Pruning: once a point x arrives, the older points dominated by it (obsolete) can be discarded.

The received points that cannot be pruned (non-obsolete points) must be stored in a data structure
denoted by DB. This data structure implements an abstract data type with the following operations:
the insertion of a new point, the removal of an existing point, and the search of the critical dominator
of a given point p, i.e. the youngest point » which dominates p.

In this work we study the parallelization of the eager algorithm described in [10]. The algorithm
computes for each incoming tuple p the minimum time in which p may become a skyline point. This
time is referred to as the Skyline Influence Time of p (briefly, SIT,). When the system time reaches
SIT,, if point p is still in the system the algorithm immediately adds the point to the skyline and
produces an ADD update onto the output stream. Otherwise, if a younger tuple » dominating p is
received before the system time reaches SIT,, p is discarded (pruned).

There are several reasons that make the eager algorithm very attractive. First, it requires a lower
memory occupancy in most of the situations because it applies pruning systematically. Second, it
is characterized by a more stable processing time per point than the lazy variant [10]. Furthermore,
it maintains a single data structure for the points instead of two separated data structures for the
skyline set and for the candidate points as in lazy. However, it requires a higher computational cost.

3.1. SIT-based Algorithm

The main concept exploited by the eager algorithm is the Skyline Influence Time of a point:

Definition 3.1. The Skyline Influence Time of a point p (denoted by SIT,) is the expiring time of
the youngest point € S dominating p (its critical dominator).

The algorithm maintains an event list £L (typically indexed by a B-tree [10]). Two types of events
are supported: i) skytime(p,t) indicates that point p will enter the skyline at time ¢, ii) expire(p,t)
indicates the exit of point p from the skyline at time ¢. The rationale of the eager algorithm is to
perform most of the work during the reception of a new point in order to update the event list. Then,
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the events are processed chronologically by emitting the changes in the skyline set through ADD and
DEL updates transmitted onto the output stream of the computation.
At the reception of a new point p the algorithm executes the following steps:

1. Pruning phase: all the points in DB dominated by p must be removed and their associated
events cleared from £L. If a removed point was part of the skyline, a DEL update must be
emitted onto the output stream;

2. Insertion phase: the new point p is added to DB;

3. Search phase: the critical dominator r of p in DB must be found. If it exists, we add the
event skytime(p, r.t**?) into £L£ where r.t*"? is the expiring time of r, i.e. SIT, = r.t**?.
Otherwise, if r does not exist, p becomes a skyline point immediately and we add the event
expire(p, p.t“"P) into the event list.

The algorithm processes the events in the chronological order. When the time of an event has
been reached, there are two possibilities:

e in the case of a skytime(p,t) event, the point p is added to the skyline and an ADD update is
emitted. A new event expire(p,p.t°*P) is added to £L;

e in the case of an expire event, the associated point (which is part of the actual skyline) is
removed from DB and a DEL update is transmitted onto the output stream.

This behavior allows us to define an important property (the proof can be found in [10]):
Lemma 3.1. If a point p reaches its expiration time, that point is part of the skyline at that time.

Therefore, for each non-obsolete point p there are two possible situations. If a new point r that
dominates p is received before the system time reaches SIT,, p is pruned and its skytime event
cleared from £L. Otherwise, when the system time reaches SIT, the corresponding skytime event
is executed, p enters the skyline and an ADD update is emitted. When point p reaches its expiration
time, for Lemma 3.1 it is part of the skyline. The point is deleted and a DEL update is emitted. The
expiration time of p matches the skyline influence time of the points critically dominated by it, that
are exactly the ones that have to be inserted into the skyline as a consequence of p’s expiration (each
one of them will have a corresponding skytime event in £L).

4. PARALLEL IMPLEMENTATION ON MULTICORES

Our parallelization is based on the data-parallel paradigm, in which the data structures DB and £L£
are partitioned among a set of parallel workers (W1, Wa, ..., W,). We adopt a partitioning method
in which each point is owned by a unique worker for its entire validity time. A discussion and a
comparison of different methods will be proposed in Sect. 5.3.

Two other functionalities are part of our parallel implementation: i) an emitter (E) receives points
from the input stream and distributes them to the workers; ii) a collector (C) receives the skyline
updates from the workers and produces a single, time ordered, output stream.

Once a point p has been received by the emitter, it assigns the ownership of p to a specific
worker (denoted by W},) according to a specific partitioning strategy. Then, the point and the owner
identifier are transmitted to all the workers. Each worker W; performs the following actions:

1. discard all the points dominated by p in its local partition DB; (pruning);
2. calculate its local SIT; (S8IT, of W;) by accessing the points in its local partition DB;;
3. if ¢ = k the worker is the owner of p and stores the point in its DB;.

To determine the global value of SIT, the workers perform a reduce phase, i.e. SIT, = max;-,; SITj7
and the event skytime(p, SIT,) is added to £Ly, i.e. the event list of the owner W}, which is the
worker needing the result of the reduce operation. Owing to the fine-grained nature of the reduce, it
is centralized in the collector: C receives the values of SIT’;, from the workers, calculates the global
SIT, and sends the result to the worker W}, owning the point, as shown in Fig. 2. It is worth noting
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that the owner of a point has only a slightly greater computation burden than the others, since it
needs to wait for the reduce result on that point and to update its event list correspondently. Most of
the work (the pruning and the search of the critical dominator) is executed on the same point by all
the workers on their partitions in parallel.

reduce request&reply

(p, owner_id)

skyline_update

(ADD, p, time)
(DEL, p, time)

Generator

skyline_update,
(p, owner_id)

reduce request&reply

Figure 2. Scheme of the parallel implementation: emitter, worker and collector functionalities.

Our implementation uses the runtime support of FastFlow [28], a programming environment
designed for streaming applications. The functionalities of the parallel program are written in C++
using standard POSIX threads. Communications between threads are performed using pop and
push operations on lock-free FastFlow queues [29]. According to the FastFlow model, queues
are used to exchange memory pointers to shared data structures. In addition, we have two other
threads: a generator in charge of producing a stream of tuples according to a certain arrival rate and
distribution, and a consumer responsible for collecting skyline updates. The emitter and the collector
functionalities can be alternatively executed by two special worker threads. This can be useful in
multicores with a limited number of cores. In the sequel we will assume that they are implemented
as separated threads.

4.1. Time Synchronization

The sequential algorithm is characterized by time-driven internal activations, i.e. when a skyline
point expires or the SIT of a non-obsolete point is reached. On shared-memory machines we have a
unified system time. In the sequential implementation the system time is used in two different cases:
i) to assign a timestamp to each new point, ii) to check if the time of a skytime or expire event has
been reached. In the parallel implementation the first case is managed by the emitter, which assigns
the timestamp of a new point using the current system time. In particular, if point p arrives before r
we have that p.t%"" < r.t®"".

Each point p is transmitted to all the workers to compute their local SITs and to prune the obsolete
points from their partitions. These two operations depend on the timestamps assigned to the points
by the emitter. Skyline updates are produced by the execution of the skytime and expire events
(second case). Each worker must process these events consistently with the received timestamps:
if a worker receives a point p with timestamp p.t*"", it must execute all the events with timestamp
less than p.t*"" before processing the new point. This technical aspect of the implementation will
be clarified in the sequel.

Furthermore, skyline updates from different workers may arrive at the collector unordered.
Therefore, a timestamp-based ordering is required in the collector, see the next section.

4.2. Implementation Description

As explained in Sect. 3, the sequential computation is activated in two cases: /) when it receives a
new point; 2) when an event from the event list is raised. In the parallel version the two activations
must be properly handled. In particular, the first is handled by the emitter, while the second is
handled directly (and independently) by the workers for the points belonging to their partitions. In
the sequel we will describe the behavior of the emitter, collector and worker functionalities.
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Emitter. The emitter assigns a timestamp to each received point, selects the owner according to
some partitioning strategy, and transmits each point to all the workers. According to the FastFlow
model, the broadcast to the workers is performed by reference, i.e. by passing the initial pointer of p
to the workers. Therefore, the emitter service time is independent from the point size. The push and
pop primitives on the FastF1ow queues are very efficient and require few hundreds of nanoseconds
on cache-coherent multicore architectures [29]. This allows the emitter to be very fast in performing
the broadcast. Therefore, it is never a bottleneck in our test cases.

Worker. At the arrival of a new point p all the workers execute the following steps on their partition
of DB. In particular each worker W:

1. prunes from DB; all the points dominated by p; the private event list ££; is cleared from the
events related to the pruned points;

2. for each skyline point pruned at the previous step, W; generates a DEL update to the collector;

3. calculates the local SIT;. If p has no dominator in DB;, then SIT;'7 is zero. W; sends the value
of SIT; to the collector for the reduce phase.

After these steps, the owner (denoted by Wy) adds p to its partition and then waits for the
completion of the reduce phase. Once SIT, has been received, the owner:

4. sends an ADD update to the collector if SIT, =0, i.e. p must be added to the skyline
immediately;

5. updates ££; by adding: a skytime event with time SIT,, if SIT, > 0, or an expire event with
time p.t**? if SIT, = 0.

As previously discussed, each worker must produce chronologically ordered updates. To this
end, at each arrival of a point p we must guarantee that: i) all the events with a timestamp smaller
than p.t*" have been raised; ii) no event with timestamp greater than p.t*”" has been raised. In
our implementation the workers process their event lists according to the timestamps of the new
received points. When worker W; receives a new point p, before starting the computation related to
this new point it evaluates all the events in ££; with timestamp smaller than p.t*"". That is, all the
fired events are executed (unrolled) in the correct order at the beginning of the processing on each
new received point. This solution may represent a problem if the input stream is excessively slow.
To avoid this problem, the emitter transmits periodically a punctuation [30] (a null point) marked
with the current time to the workers in order to go on in the processing of their event lists.

Collector. The collector is in charge of performing two important tasks: the reduce phase of the
algorithm, and the time-based ordering of skyline updates received from different workers.

For the reduce phase, each worker calculates its SIT;‘7 and sends it to the collector. When all the
local SIT values have been received, the collector sends the value of the global SIT, to to the owner.
The collector is able to manage multiple reduce requests for different points simultaneously.

The collector must preserve the chronological order of the updates on the output stream. To do
that the collector buffers the updates and keeps them ordered by timestamp using a priority queue
Q. It also keeps, for each worker W;, the timestamp last_T; of the last update received from that
worker. By assuming that each worker produces ordered updates to the collector, W; cannot generate
next updates with a timestamp lower than last_T;. Therefore, the collector can safely forward all
the buffered updates with a timestamp 7" such that 7" < min}._, last_T;.

5. OPTIMIZATIONS

In this section we focus on three aspects of the parallel implementation: i) how to store the set of
non-obsolete points in memory, ii) how to optimize the reduce phase, iii) how to keep the size of the
partitions as similar as possible in order to balance the workload among workers. In the first part of
the description we show results with five dimensions per tuple, which is a typical size used in past
works [11, 12, 14]. Experiments with greater dimensionalities will be shown at the end of the paper.
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5.1. Spatial Distribution and Data Structures

Each partition DB; is an abstract data type with the following operations: insertion and removal of
a point, and youngest Dominator(p) to find the youngest point € DI3; that dominates the point
p. In this paper we will use arrays, which allow the insertion of a new point and the removal of an
existing one to be performed in constant time (points do not need to be stored in the arrival order),
while the search of the youngest dominator requires to scan the entire set at the worst case. In a
single scan of the array we are able to:

o find the points dominated by the new point p and delete them from the data structure;
¢ find the youngest dominator of p and calculate the SIT.;
e insert p in the database (if the partition is the one of the p’s owner).

To improve spatial locality, we can use an attribute-oriented organization [31]: d separated arrays
store the values of the same coordinate of different points contiguously in memory. This layout
enables the vectorization of the code of the youngest dominator search.

The use of arrays is justified by the specific properties of the SIT-based algorithm, which
requires to maintain only the set of non-obsolete points. The size of DB depends on the pruning
probability that in turn depends on the spatial distribution of data. We will consider three synthetic
datasets generated according to spatial distributions popular in the skyline literature [10, 14]: /) the
independent distribution in which the coordinates of the points are uniformly distributed in their
domain; 2) the anticorrelated distribution in which the points exhibit a strong anticorrelation; 3)
the correlated distribution in which the coordinate values are generated with a high correlation
coefficient. These distributions are sketched in Fig. 3 for bidimensional datasets. As we can see,
the correlated distribution has the smallest number of skyline points. The anticorrelated distribution
maintains the largest skyline whereas the independent one represents an intermediate case.
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(a) Correlated. (b) Anticorrelated. (c) Independent.

Figure 3. Correlated, anticorrelated and independent distributions on a bidimensional space.

Fig. 4 shows the number of non-obsolete points (|DB]) as a function of the points received
per window |W|= AT, where A denotes the arrival rate. The pruning probability p, equal to
p=1—|DB|/|W], is in general high, with the highest values with the correlated dataset. With
millions of points received per window, the SIT-based algorithm needs to maintain in memory few
thousands of points, leading to scenarios in which the array-based implementation is a good solution.
This consideration is further emphasized by the data parallel paradigm, in which the partitions are
smaller with higher parallelism degrees. In very pessimistic cases of very large sets of non-obsolete
points (in the order of millions), arrays could lead to a too high processing time per tuple, and the
use of index structures like R-trees and R*-trees [10, 32] could be beneficial. The use of such index
structures in our parallelization will be studied in our future works. In our implementation the DB
is implemented by dynamically resizable arrays (the basic size is of 100 tuples).

5.2. Asynchronous Reduce

The skyline influence time of a new point p is calculated through a reduce phase involving all the
workers and the collector. At the end of this phase, the value of SIT), is transmitted by the collector
to the worker W}, that has the ownership of that point. In the basic version the reduce is performed
in a synchronous fashion: W, waits explicitly for the value of SIT,. The waiting time depends on
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Figure 4. Number of non-obsolete points: correlated, anticorrelated and independent distributions, d = 5.

the latency of the reduce operation, which in turn depends on the computation time of the pruning
phase and the search of the youngest dominator of p performed in parallel by the workers on their
partitions. If the partitions are not evenly sized, this latency is the one of the slowest worker.

The idea is to make the reduce asynchronous: Wj, does not have to wait for the completion of the
reduce phase, but it can process the subsequent points received from the emitter while the reduce
result is not available yet. This behavior is correct because the computation on the subsequent points
does not depend on the result of the reduce phase on point p. In fact, both the search of the youngest
dominator and the pruning phase use only the spatial coordinates of the points and their expire time.
The asynchronous reduce works as follows:

e when a new point p is received by a worker, whether it is the owner or not it participates to
the reduce phase without waiting for the result;

o the owner Wj non-deterministically waits for the reception of a message either from the
emitter (a new point) and from the collector (the result of the pending reduce on p).

Although the pruning and the search of the youngest dominator do not depend on the value of
SIT,, the workers must pay attention to how skyline updates are generated and transmitted to the
collector. In fact, the asynchronous reduce is a sort of out-of-order processing in which the end of
the computation on point p is postponed until the value of SIT, is available. During the time interval
from the beginning of the reduce computation on p and its completion, other points can be received
by W, and processed and some skyline updates possibly generated. In particular:

e all the skyline updates generated during such time interval (i.e. the ones raised by the
triggering of skytime or expire events) will be stored and maintained in the chronological
order into a local reordering buffer of worker Wy;

Furthermore, let r be the first point received by the worker during that time interval, we can
recognize the following possibilities:

e 1 does not dominate p. The reception of r has no effect on the updates related to point p;

e r dominates p and SIT, < r.t*": p is marked as deleted, and when the reduce result is
available an ADD update and a DEL update for p are inserted in the pending buffer with time
SIT, and r.t*"" respectively. It is worth noting that any successive point s that dominates p
does not have any effect on the updates generated on p, because s.t*"" > r.t*"";

e r dominates p and SIT, > r.t*"": p is marked as deleted and no skyline update related to p is
produced after the reception of SIT, from the collector.

When the reduce result has been computed by the collector, the owner worker flushes to the collector
(in the temporal order) all the updates in the pending buffer if no other pending reduce is present,
or flushes only the updates with timestamp lower or equal than SIT, otherwise. It is worth noting
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that although a worker can have more pending reduce requests on different points, they will be
completed by the collector serially and the results transmitted in that order.

This optimization produces an average gain about 10%-20% under various configurations in terms
of arrival rate, window length and point distributions on the Intel multicore described in Fig. 5.
Fig. 6 shows the results with a configuration with a window length of 20 seconds and an arrival
rate of 100K points/sec generated according to the independent distribution (d = 5). We map at
most one thread per core, i.e. 12 is the maximum number of workers. In this setting the maximum
parallelism degree is not sufficient to sustain the input rate, i.e. the so-called offered bandwidth is
lower than the required bandwidth (the input rate). Fig. 6a shows the speedup measured as the ratio
between the offered bandwidth with n workers and the one of the single-threaded program?.

INTEL MULTICORE AMD MULTICORE
A multiprocessor composed of two Xeon Sandy Bridge E5-2650 CPUs for a A multiprocessor composed of two Opteron 6176 CPUs with 32GB of RAM.

total of 16 cores working at 2Ghz. Each core is equipped with a private L1d | Each CPU is composed of two multicore chips featuring six single-threaded

cache of 32KB and a private L2 cache of 256KB. Groups of 8 cores share a L3 | cores (for a total of 24 cores). Each core operates at 2.2 GHz with private L1d

cache of 20MB. and L2 cache of size 128KB and 512KB per core and a L3 cache of 6MB
shared among the six cores on the same chip.

Figure 5. Multi-core architectures used in the experiments.

With the asynchronous reduce the speedup is closer to the ideal one. With high parallelism
degrees the benefit is greater (see Fig. 6b) because the partitions of DB are smaller and their
relative unbalance is higher. With the synchronous reduce the workers are blocked waiting for the
completion of the reduce whose latency depends on the slowest worker. With the asynchronous
reduce we are able to mitigate this by achieving a better offered bandwidth.
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Parallelism degree (number of Workers) Parallelism degree (number of Workers)
(a) Speedup. (b) Relative gain.

Figure 6. Asynchronous reduce: A = 100K points/sec, Thy, = 20 sec and independent distribution.

5.3. Load-balancing Strategies

In order to balance the workload we need to keep the size of the partitions as similar as possible.
We tackle the problem in three different angles:

o the ownership of the points must be assigned in order to balance the size of the partitions;

o the processing of a new point could prune several stored points that might be not uniformly
distributed among the workers. Therefore, the strategy must take into account the actual load
of the workers instead of distributing the same amount of new points to them;

e we do not assume any knowledge about the point distribution. Therefore, we can not apply
static rules that exploit solely the spatial coordinates of the points to assign the ownership.

TWe consider the relative speedup by excluding the emitter/collector threads from the total parallelism degree.
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In the following we present three heuristics: On-demand (OD), Least Loaded Worker (LLW) and
Least Loaded Worker with Ownership (LLW+).

On-demand strategy. The idea of this heuristic is the following: each point is broadcast to the
workers and the first able to accommodate the new point in its input queue becomes the owner. This
heuristic works well when we have a small number of enqueued points on average. In fact, it does
not distinguish between a queue which is almost full and one which is almost empty. In principle,
if the computation is not a bottleneck the queues between the emitter and the workers are empty
on average. However, due to possible high variance of the stream arrival rate and/or of the internal
processing time per point, it is possible that for some transient periods some points are enqueued
waiting to be processed. If the number of enqueued points is small, the difference between “almost
full” and “almost empty” is negligible and load balancing is good. Otherwise this difference may
become very large, thus hampering load balancing.

The experiments on the Intel multicore confirm this behavior. Fig. 7a shows the difference A
between the number of non-obsolete points owned by the most loaded worker and the one of the
least loaded worker . In the experiment we use 12 workers and the independent distribution (d = 5).
Similar results are achieved with different configurations.

Load balancing with the On-Demand strategy Load balancing with the LLW strategy
2500 —— T 1000 —— T
Queue size=30. Queue size=10K.
2250 Queue size=5. ====== 9 Queue size=100. ———---
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o
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e
@
o
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Elapsed execution time (sec) Elapsed execution time (sec)
(a) OD strategy. (b) LLW strategy.

Figure 7. Load difference with the OD (a) and the LLW (b) strategy and different queues sizes. Configuration:
A = 100K points/sec, Toy = 10 seconds and independent distribution.

With this configuration the computation is a bottleneck, and the input queues in front of the
workers grow up to reaching their maximum capacity (queue size). We consider queue sizes of 1,
5 and 30 points. The experiment shown in Fig. 7a consists in 50 seconds of execution in which
we measure the factor A with a sampling interval of 100 usec. As we can observe, the smaller the
queues size the lower the load difference. The best results are achieved with queues of one single
position: in this case each new point is assigned to a worker that is immediately ready to process it.
We can note a transient period in which the load difference is relatively high (near to 250 points)
and then it falls rapidly near to zero. This is because at the beginning of the execution the ownership
of the points is assigned to the first worker as long as it is able to sustain the input stream rate.

LLW strategy. This strategy gives to the emitter the knowledge of the number of points owned
by each worker. The owner selection is done by selecting the worker with the smallest partition.
To know the actual size of the partitions, workers and the emitter share atomic integer counters
(instances of the std: : atomic class of the standard C++ library). Fig. 7b shows the results of the
same experiment of Fig. 7a in which we use the LLW strategy instead of OD.

Also in this case the number of enqueued points plays an important role. Consider the case in
which at time ¢ the emitter assigns the ownership of a new point p to worker W; that is the least
loaded one. This worker will start the computation on p at time ¢ 4+ 7, where 7 is the time interval
needed by the worker to dequeue and execute all the points already in its input queue before point
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p. When p is extracted from the queue, W; might no longer be the least loaded worker, since the
execution of the points during the interval 7 can modify the size of its partition.

This behavior is confirmed by the experiments in Fig. 7b. With a queue size of 5 elements, the
load difference is smaller than the one achieved with the same queue size and the OD strategy. We
also measure the load difference with bigger queue sizes of 100 and 10K elements.

LLW+ strategy. To reduce the error in the selection of the least loaded worker, the emitter counts
for each worker the number of enqueued points for which it has been designed as the owner. Fig. 8
shows the results under the same configuration of Figs. 7a and 7b. LLW+ is also affected by the
length of the queues, however, the load difference A is smaller than for LLW.

Load balancing with the LLW+ strategy

T T
Queue size=10K.

180 Queue size=100. ------ : 1
Queue size=5.

3100
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Elapsed execution time (sec)

0

Figure 8.Load difference with LLW+ strategy and different queues sizes. Configuration: A = 100K
points/sec, Ty, = 10 seconds and independent distribution.

Comparison. We conclude this analysis with a comparison among the aforementioned strategies.
In addition, we study a strategy unaware of the actual load of the workers, i.e. the Round-Robin
strategy (RR) in which the ownership is simply assigned in an interleaved manner.

Fig. 9a shows the result of an experiment using small queue sizes (i.e. few positions). We can
observe that the LLW and LLW+ strategies provide very similar results. This is an expected result,
since with few enqueued points the two strategies approximate the worker load similarly.

Fig. 9b shows the results with more enqueued points. We omit the OD strategy because the load
unbalance is too high with respect to the other strategies. LLW+ performs better than the others.
As confirmed by the data reported in Tab. I, this strategy is able to maintain the lowest mean load
difference and variance under various scenarios in terms of queue sizes.

In conclusion, all the strategies are influenced by the average number of enqueued points between
the emitter and the workers. In general, the load difference gradually gets worse with many enqueued
points, that is in cases in which the computation is near being a bottleneck with the actual stream
rate and window length. In scenarios in which the implementation is broadly able to sustain the
input stream pressure, few points are present in the input queues on average, and all the strategies
behave similarly. The comparison shows that the LLW+ heuristic is clearly the winner, as it is able
to reach the best results in terms of load balancing even in cases in which we have many enqueued
points waiting to be served by the workers. This is a good property, because large buffers are useful
in general to sustain irregular streams without blocking the computation.

6. EXPERIMENTS

Our parallel implementation has been evaluated on the Intel and the AMD multicore architectures
described in Fig. 5. For the experiments we use the gcc compiler version 4.8.2 with the —03
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Load balancing with low Queue sizes Load balancing with high Queue sizes
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Figure 9. Load difference with different strategies. Configuration: A = 100K points/sec, T, = 10 seconds
and independent distribution.

Queue size RR OD LLW LLW+
Mean | Var. Mean Var. Mean Var. Mean | Var.
1 64.02 | 229.18 | 34.13 1790.67 | 3.15 4.28 2.55 4.05
5 64.20 | 230.88 | 581.45 | 3948.31 | 3.64 4.60 2.61 4.33
100 64.54 | 246.26 | * * 12.93 136.26 10.89 | 23.06
10K 70.06 | 424.65 | * * 104.60 | 16483.29 | 50.90 | 280.42

Table I. Load difference between the most loaded worker and the least loaded one with difference strategies.
*Very large values.

optimization flag. All the threads are mapped onto the cores in an exclusive fashion, i.e. “at most
one thread per core”. The use of hyperthreading on Intel produces noisy results with cases in which
we measure a slight benefit and, more often, cases with lower performance than exclusive mapping.
This is justified by the fact that FastF1low makes use of an aggressive busy-waiting spinloop to
access the lock-free queues [29]. This intensively consumes important CPU resources. Therefore,
for the sake of uniformity in all the experiments we set the maximum parallelism degree to 12 and 20
workers on the two architectures respectively (4 cores are used for the generator, emitter, collector
and consumer threads, see Sect. 4). All the results shown in this section are the average values of 10
runs. The variance is always small and we can omit to show the error bars in the plots.

6.1. Varying the Number of Stored Points

In the first set of experiments we study the performance of the parallel skyline implementation by
varying the number of points received during the timespan 73, of a sliding window. We show two
classes of experiments. In the first one we fix the arrival rate A and we vary the window length T’,,.
In the second we do the opposite.

We refer to the service time (denoted by Tg) as the average time interval between the beginning
of the executions on two consecutive points received from the input stream. In the sequential single-
threaded implementation, the service time is equal to the processing time per point:

T = Tp x Ty x A x (1—p) (1)

where T is the calculation time per point, T}, is the window length, X is the stream arrival rate
and p is the pruning probability, i.e. the probability that a point p received at time instant p.t*"" is
dominated by a younger point r received before p expires, i.e. s.t. r.t*" < p.t*"" + Ty, = p.t*P.

If the workload is balanced among workers, the service time with parallelism degree n is
roughly equal to Té”) o~ T‘él) /m. The inverse of the service time is the offered processing bandwidth

B{Y =1 / Té”), i.e. the average number of points that the implementation can serve in a time unit.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
Prepared using cpeauth.cls DOL: 10.1002/cpe



14 DE MATTEIS ET AL.

If the offered bandwidth is greater or equal to the stream arrival rate (the requested processing
bandwidth), we are able to sustain the stream rate. Otherwise, the computation is a bottleneck.

To measure the offered bandwidth in cases in which the parallelization is a bottleneck, we change
the behavior of the emitter that does not set the timestamps of the points, but they are filled by the
generator by reading them from the dataset file. In this way the timestamps always correspond to the
real stream rate, even if the computation is a bottleneck and the emitter is periodically blocked due
to the backpressure on the workers’ queues. We have used this configuration for all the experiments
of Sect. 6.1 and Sect. 6.2 (and also for the results of Fig. 6).

Unless otherwise noted, we adopt the LLW+ heuristic discussed in Sect. 5.3 and we use a fixed
dimensionality of d = 5.

Varying the window length. In this experiment we fix the arrival rate from the input stream to
A = 40K points/sec and we show how the offered bandwidth increases by adding more workers.
When the offered bandwidth equals the requested one, i.e. Bq(un) = ), the computation is not a
bottleneck and the offered bandwidth stops growing if we add more workers.

Fig. 10a shows the offered bandwidth as a function of the parallelism degree on the Intel
architecture with the anticorrelated distribution. Analogously to past research works [10, 12], we

use window lengths of few tens of seconds (10, 30, 60 and 90 seconds).
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Figure 10. Effect of the window length on the offered bandwidth as a function of the parallelism degree on
the Intel architecture. Anticorrelated (a) and independent (b) distributions with input rate of 40K points/sec.

The optimal parallelism degree T is the minimum number of workers such that the offered
bandwidth equals the requested one. The optimal parallelism degree is greater with longer windows,
since more points are stored in the partitions. In the experiments, 8 workers are sufficient to remove
the bottleneck with a window length of 10 and 30 seconds. For longer windows of 60 and 90 seconds,
10 and 12 workers are needed. Fig. 10b shows the results with the independent distribution. As
expected, the computation is able to sustain the same stream arrival rate with fewer workers.

We omit the results of the correlated distribution because, due to the very intensive pruning, the
bottleneck can be removed with very low parallelism degrees (1 or 2 workers).

Varying the input stream rate. We study the processing bandwidth by varying the arrival rate and
fixing the window length. Fig. 11a shows two distinct scenarios. In the first one with a stream rate
of 50K points/second, we need 8 workers to reach the required bandwidth. In the second scenario
with a rate of 100K points/second the bottleneck cannot be removed.

An interesting aspect can be observed by comparing the results of Fig. 10a with the ones of
Fig. 11a. In the former, with a rate of 40K points/second and a window length of 30 seconds (1.2M
points received per sliding window), the bottleneck is removed with m = 8 workers. In the latter,
with a rate of 100K points/second and a window length of 10 seconds (1M points per window), we
are not able to remove the bottleneck with the available number of physical cores. This behavior
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Figure 11. Effect of the input stream rate on the offered bandwidth. Anticorrelated (a) and independent (b)
distributions with window length 7%, = 10 seconds on the Intel architecture.

can be explained by studying the cost model of the skyline computation. By assuming the workload
perfectly balanced, the offered bandwidth with n workers is:

n n

1
B(TL) = = = 2
w Té”) Tél) TF X Tw X A X (1 *p) ( )
The optimal parallelism degree can be determined as follows:
= AT = T x Ty x A% x (1 —p) 3)

Even if A\ x T, is fixed, the contribution of the two terms (arrival rate and window length) to the
optimal parallelism degree is different, since 7 grows as the square of A and linearly with T,.

Fig. 11b shows the results with the independent distribution. In this case there is a smaller number
of stored points with respect to the anticorrelated distribution and the offered bandwidth is higher.

6.2. Evaluation of the Load-balancing Strategies

In this section we analyze the impact of the partitioning strategies on the speedup. We choose for
each data distribution a set of parameters (\, T;,) such that the computation is a bottleneck. The
speedup is measured in relation to the offered bandwidth of the sequential implementation, hence
independently from the partitioning strategy.

Tab. II shows the configuration parameters of the experiments for the three distributions (d =
5), the number of non-obsolete points and the measured pruning probability. For the correlated
distribution we consider a longer window length and a higher stream rate in order to have a sufficient
computation grain. The size of all the FastFlow queues has been configured to a maximum
capacity of 10K points (only references are stored, for a total of about 80 KB per queue). In the
on-demand strategy we set the queue size to the minimum value of 1 position.

Distribution Tw A Non-obs. points  Pruning prob.
Anticorrelated 10 sec. 80K point/sec 13,968 0.9825

Independent 10 sec. 100K point/sec 4,296 0.9957

Correlated 60 sec. 250K point/sec 1,308 0.9999

Table II. Configuration parameters, number of non-obsolete points and pruning probability.

Figs. 12a, 12b show the speedup in the anticorrelated case on the Intel and the AMD architectures.
As we can observe, the LLW+ strategy achieves the highest speedup. With 10K points in the
worker’s queues, LLW is less effective than the other strategies, as shown in Fig. 9b.
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Figs. 12c, 12d show the results for the independent distribution. LLW+ performs worse than in
the anticorrelated case. However, it is still the best strategy. Finally, Figs. 12e, 12f show the results
with the correlated distribution. In this case the set of non-obsolete points is very small on average.
Due to the small size of the worker partitions (few tens of points), a higher relative difference in the
partition sizes leads to a significant load unbalance that prevents to achieve a near-optimal speedup.
This behavior is more evident on the AMD multicore because we can use higher parallelism degrees.
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Figure 12. Effect of the partitioning strategy on the speedup.

6.3. Maximum Sustainable Input Rate

In this section, we measure the maximum input rate )\Sﬁgw sustained with n workers. By increasing

the input rate more points are maintained in the window and the computation scans more data to
produce the outputs. Each arrival rate A such that the following condition is satisfied:

A< B(M) — n
- Tr X A X Ty x (1 —p)

can be sustained by the computation with n workers. Given a parallelism degree n, the maximum
sustainable input rate can be determined as follows:

A — n
mae Tr x Ty x (1 —p)

which grows as the square root of the parallelism degree.

The results of Fig. 13 are consistent with this analysis. We consider two window lengths of 30 and
60 seconds. To find the maximum rate we use a bisection method in which we execute several times
the experiment by varying the input rate. A bottleneck is detected if the emitter tries to perform
a push on a full destination queue more than 5 times consecutively. With T,, = 60 seconds the
maximum rates are lower (about 20%) because more points are in the window. On average up to 12
workers the maximum rates on the AMD multicore are about 1%-13% higher than on Intel.

The highest rates are achieved with the correlated distribution because the computation is more
fine grained. On the AMD architecture the correlated case achieves worse results with 20 workers
than with 16 (see Fig. 13f) because of a slight load unbalance.
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Figure 13. Maximum sustainable input rate per parallelism degree. Window lengths T, = 30 and 60
seconds. Independent, anticorrelated and correlated distributions. LLW+ partitioning strategy.

6.4. Varying the Dimensionality

In the previous experiments we have used a fixed dimensionality equal to d = 5. In this section we
analyze the maximum sustainable input rate with the maximum number of workers as a function
of the dimensionality of the points. Fig. 14 shows the results by changing the dimensionality from
4 to 16 in order to have a wide spectrum of values. For the sake of brevity we shows the results
only for 7, = 30 seconds on the Intel multicore. For all the distributions the pruning probability
is smaller with higher dimensionalities, and more points are maintained in the partitions leading to
lower maximum sustainable input rates.

6.5. Evaluation on a Real Dataset

We analyze our parallelization on a real dataset from the Lausanne urban canopy experiment
(LUCE). Data were collected from a wireless sensor network within the project SensorScope?.
show the results with T;, = 30 seconds on the Intel multicore with 12 workers.

The LUCE project was aimed at understanding the meteorological properties in the urban
environment. It consists in high temporal and spatial density measurements. From the available data
(radio duty cycle, radio transmission power, radio transmission frequency, primary buffer voltage,

#The dataset can be downloaded from:
http://lcav.epfl.ch/files/content/sites/Icav/files/research/Sensorscope/sensorscope-monitor.zip.
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Figure 14. Maximum sustainable input rate on the Intel multicore by varying the dimensionality.

secondary buffer voltage, solar panel current, global current, and energy source), we extract the solar
panel current, global current, primary buffer voltage and secondary buffer voltage to create a stream
of d = 4 points by sorting the sensor readings acquired from different sources (as done in [16]). We
have chosen this subset of dimensions because their values exhibit a greater variability (the others
have quite constant values in the dataset).

This experiment is important because the data point distribution changes over the time.
Fig. 15a shows the maximum sustainable input rate with different parallelism degrees on the Intel
architecture. The point coordinates are generated following the real dataset while their timestamps
are configured in order to vary the input stream speed by using a uniform timestamp distribution.
Due to the size of the dataset (4.7M) we consider window lengths of 15 and 30 seconds.

Maximum input rate - Real Dataset Maximum input rate with 12 Workers
150000 T T 350000 T

Tw=30 sec. — Correlated. C——

Tw=60 sec. C— Real. XXXx3
— — [ ] Independent. -
§ 120000 §280000 [ Anticorr. C—— |
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(a) Amaq real dataset. (b) Comparison with the synthetic distributions.

Figure 15. Maximum sustainable input rate with the real dataset (a) and comparison with the synthetic
distributions (b).

Fig. 15b compares the maximum input rate sustained with 12 workers and d = 4 in the correlated,
anticorrelated, independent distributions and with the real dataset. As we can see, the highest rate
sustained with the real distribution is closer to the one with the independent distribution and higher
than the anticorrelated case. Fig. 16 confirms this behavior by showing the total number of points
maintained in the worker partitions against the total number of points received per window. The
amount of points with the real dataset are slightly more than the independent case.

As we can see, the maximum sustainable input rate with the real dataset is slightly lower than the
one with the independent distribution as more points are maintained in the partitions. In conclusion,
this experiment confirms that our implementation performs well also with a real dataset generated.
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Figure 16. Pruning effect in the real dataset compared with the synthetic datasets, d = 4.

7. CONCLUSIONS AND FUTURE WORK

In this paper we studied parallel skyline queries based on the eager algorithm. We discussed
optimizations of the reduce phase and we proposed several strategies to achieve load balancing.
The result is a parallelization that provides good speedup in almost all the most important data
distributions, as well as in a real dataset extracted from an environmental monitoring application.

In the future we plan to provide a comparison between our parallelization and other sequential
algorithms and their possible parallelizations. Interesting is the analysis of our parallelization with
other data structures (indexes) used to maintain the partitions of the points. The comparison will
focus on both absolute performance and memory occupancy, possibly by deriving cost models [33].
Furthermore, other load balancing strategies can be studied in the future, such as strategies in
which the size of the partitions is estimated using statistical forecasting tools. We expect that these
strategies will allow us to achieve good speedup with highly correlated datasets, which still remain
a challenging case. Finally, our work deserves to be investigated by providing autonomic supports
to dynamic execution conditions (e.g., workload levels, input rates) [34] by changing the number of
workers and the partitioning strategy at runtime.
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