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Abstract 

Research on eating behavior is limited by an overreliance on self-report. It is well known that 

actual food intake is frequently underreported, and it is likely that this problem is 

overrepresented in vulnerable populations. The present research tested a chewing detection 

method that could assist self-report methods. A trained sample of 15 participants (usable data 

of 14 participants) kept detailed eating records during one day and one night while carrying a 

recording device. Signals recorded from electromyography sensors unobtrusively placed 

behind the right ear were used to develop a chewing detection algorithm. Results showed that 

eating could be detected with high accuracy (sensitivity, specificity >90%) compared to 

trained self-report. Thus, electromyography-based eating detection might usefully 

complement future food intake studies in healthy and vulnerable populations. 
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Introduction 
 

 Eating behavior research has mainly relied on dietary self-report, including food 

records, 24-hour recall, food frequency questionnaires and diet history. Although frequently 

utilized, these methods come with several disadvantages in that they require high compliance 

and motivation and are subject to self-presentation and memory biases. Thus, unsurprisingly, 

when comparing subjective measures with more objective measures of energy intake (e.g., 

intake in controlled, residential programs, energy expenditure measures such as the Goldberg 

cut-off (Goldberg et al., 1991) or doubly labeled water methods) reported calories are 

frequently underestimated in a range from 4%-37% (Livingstone & Black, 2003; Stice, 

Palmrose, & Burger, 2015; Thompson & Subar, 2008). A recent review even classified self-

report based energy intake ‘wholly unacceptable for scientific research’ (Dhurandhar et al., 

2015). These limitations and the advent of mobile measurement technology have sparked the 

use of smartphone devices and ambulatory psychophysiological measurements for assessing 

food intake. Many apps equip the user with databases to select food and portion size, 

possibilities of take photographs of their foods (Lieffers & Hanning, 2012), audio-recording, 

barcode scanning (Illner et al., 2012) or even automated food identification and portion size 

estimation (Boushey et al., 2017). While these approaches result in better self-monitoring 

adherence (Lieffers & Hanning, 2012) and control over temporal compliance (Shiffman, 

Stone, & Hufford, 2008), thereby outperforming paper based methods, they still rely on user 

activity: One needs to be aware of an eating episode and record it precisely (its start and end, 

any leftovers in case of photos). 

 Another group of methods therefore tries to bypass such user compliance. Laboratory 

measures include as video (Cunha, Pádua, Costa, & Trigueiros, 2014) or scale-based 

approaches (Manton, Magerowski, Patriarca, & Alonso-Alonso, 2016; Zhou et al., 2015) and 

have reported good precision but they are not (entirely) mobile and can thus not be used in 

free-roaming individuals. Other measures can be recorded in a natural environment and are 

focusing on eating episodes instead of calorie intake. E.g., ‘bite counters’ are based on the 

assumption that eating always involves characteristic dominant hand movements (to the 

mouth), hence an accelerometer-based wrist band might be able to capture bites taken (Dong, 

Hoover, Scisco, & Muth, 2012; Salley, Hoover, Wilson, & Muth, 2016; Scisco, Muth, & 

Hoover, 2014; Thomaz, Essa, & Abowd, 2015; Ye, Chen, Gao, Wang, & Cao, 2016). Apart 

from the limitation that eating with the non-dominant hand will be missed most bite counters 

still rely on the user input to press a start button before the eating episodes in naturalistic 
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environments. Other approaches aim at detecting eating episodes based on continuous 

measurements of swallowing and/or chewing activities: For example, audio recording at the 

inner ear has been used (Amft, Kusserow, & Troster, 2009; Bedri, Verlekar, Thomaz, Avva, 

& Starner, 2015; Nishimura & Kuroda, 2008; Papapanagiotou, Diou, Zhou, van den Boer, et 

al., 2016; Päßler & Fischer, 2014). Because of specialized algorithms that are needed to 

process the acoustic signals, most devices achieve acceptable results in laboratory setting with 

restricted food types and eating episodes, however, their accuracy in unrestricted, more 

challenging environments needs to be established. Privacy protection implications arise 

because voices in the vicinity are recorded as well. In this respect, non-audio-based 

physiological measures can be useful alternatives. While photoplethysmography (PPG) 

detects muscle related blood flow in the ear concha during chewing (Papapanagiotou, Diou, 

Zhou, Boer, et al., 2016), electroglottography (EGG) is used to measure impedance changes at 

the neck when a bolus of food passes through the larynx to detect swallowing (Farooq, 

Fontana, & Sazonov, 2014). However, the most common physiological measures used at 

present utilize electromyography (EMG) to detect swallowing (laryngography) (Amft & 

Troster, 2008; Carvalho-da-Silva, Van Damme, Wolf, & Hort, 2011) or chewing (masseter, 

temporal muscles; Farella, Palla, & Gallo, 2009; Kemsley, Defernez, Sprunt, & Smith, 2003; 

Kohyama, Mioche, & Bourdio, 2003; Mattes & Considine, 2013; Po et al., 2011).  

 Despite elaborated approaches to discriminate ingestive behavior from the various 

interferences and confounds (environmental sounds, speaking, laughing, coughing, sneezing, 

yawning, head movements, whistling, smoking), only few have been examined in free living 

individuals for longer durations (Farooq, Fontana, Boateng, Mccrory, & Sazonov, 2013; Po et 

al., 2011; Scisco et al., 2014). Scisco et al. (2014) had participants wear a wrist-band for 2-

weeks to measure bite counts. Farooq et al. (2013) compared two machine learning 

procedures to detect food intake signals from jaw motion data collected from free-roaming 

subjects over 24 hours. Po et al. (2011) used a previously validated time-frequency based 

algorithm (Farella et al., 2009) on 3 hours of continuous EMG data and identified chewing 

behavior with good sensitivity and specificity. Such real live proofs of concepts are crucial 

because the long recordings in varied environments increase the potential sources of false 

positives due to artefactual EMG measurements, which the detection algorithm needs to 

reject. Night recordings seem important, as jaw movements are likely to occur during sleep 

(Po, Gallo, Michelotti, & Farella, 2013), particularly, but not only in individuals with 

bruxism. Long term recordings also require high individual and social acceptability (e.g., by 

low obtrusiveness and visibility of sensors) of the devices, which is crucial for any practical 



5 
 

application in larger populations. Furthermore, high accuracy might be achieved in the 

laboratory but not generalize to the natural environment: accuracy decreased from 81% to 

62% when applying laboratory based models of chewing behavior to free-roaming data 

(Fontana, Farooq, & Sazonov, 2014). 

 The present research focused on indirect, continuous recordings of chewing episodes 

based on mobile EMG in free-roaming individuals. Instead of targeting precise calorie intake 

or macro-nutritional composition (what and how much is eaten) our approach focused on the 

occurrence of eating episodes (when and how long, episode frequency) indicated by chewing 

activity. This choice is based on the reasoning that any fully automatic classification of food 

content and amount will always be imprecise and that omission of eating episodes is a key 

contributor. Underreporting can, for example, be due to unconscious omission of eating 

occasions, recording fatigue or conscious misreporting (e.g., denial of consumption) (Maurer 

et al., 2006). Further suggesting that especially missing eating episodes contribute to 

underreporting, Poppitt and Prentice (1996); Poppitt, Swann, Black, and Prentice (1998) 

found that although main meals were well reported, between-meal snacks were omitted from 

participants’ 24-hour report with more than one third of snack consumption being absent. 

Similarly, Johansson et al. (2001) found that underreporters (relative to their food intake 

level) seem to selectively underreport unhealthy snacks (less so healthy foods). In sum, 

although our EMG-based chewing detection approach misses food content and amount, it 

captures important eating episode characteristics: time, duration and frequency throughout the 

day.  

 We took advantage of EMG recordings from miniature, non-invasive electrodes behind 

the ear, which are dominated by activity of the lateral pterygoid muscle (the only muscle of 

mastication involved in opening the jaw). This simple measurement along with mobile 

lightweight amplifiers allows for long recording periods (including during night), low risk of 

sensor detachment, and is relatively unobtrusive for most users. However, the detected eating 

episodes have to be compared to a ‘gold standard’ of food intake. Although the most precise 

method might be doubly labeled water, it seems inappropriate since individual eating episodes 

cannot be identified. Thus, we test this method against (app and device assisted) self-report in 

a sample that was specifically trained to report every single eating episode. We expect that 

this EMG-based method alongside sophisticated data analysis will be able to capture eating 

episodes with high sensitivity. However, specificity is also of key importance: confusion of 

speaking, drinking, laughing, yawning, head movements, smoking or bruxism with eating 

episodes could lead to an overestimation of eating. Previous jaw-motion sensor /EMG 
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research reviewed above has demonstrated excellent sensitivities but did not record 

continuously over the day and night in natural environments and can thus not speak to 

specificity. Hence, in our proof of principle research, 24-hour recordings were obtained from 

15 well trained ‘calibration participants’ in their daily life to obtain valid measures of 

sensitivity and specificity of EMG-based meal detection relative to self-report.  

 

Participants 

 Participants were recruited from the master’s students in clinical and health 

psychology at the University of Salzburg because these individuals could be expected to 

demonstrate the level of background knowledge and high motivation to comply with the self-

recording instructions (described below). Participants had a mean age of 21.7 (SD = 2.13, 

range = 18 - 25), healthy BMI (M = 22.0 kg/m², SD = 2.9, range = 17.5 – 26.7) and normal-

range scores on the Eating Behavior and Weight Problems Inventory, EWI (Diehl, 1999). A 

brief interview enquired about the presence of nail biting or bruxism1. Participation in the 24h 

protocol was remunerated with € 12. One participant was excluded due to technical problems 

during the ambulatory recording, leaving 14 participants (six women). Ethical approval for 

the measurement protocol was granted by the local ethics committee.  

Self-reported eating episodes 

 To provide a record that closely represents an accurate record of actual eating, our 

specifically trained participants marked eating on- and offset in the continuous signal using a 

marker button on the recording device. Using a customized smartphone app, they further 

reported the duration and type of eating (snack or a main meal). Time segments for meals not 

marked correctly on the device by the participants (with one marker missing) were 

reconstructed based on the app information (7% of the data reconstructed).  

EMG measurement of eating episodes 

 To measure the muscular activity during chewing episodes, two pairs of disposable 24 

mm diameter solid-gel snap electrodes (Ag/AgCl, sensor diameter 10 mm) were attached to 

cleansed skin sites with centers approximately 2 cm apart (the electrodes have been cropped 

to avoid shorts as indicated in Figure 1). Each pair of electrodes was placed on the bone 

structure behind one ear on a line between the mastoid and the masseter muscle (see Figure 

                                                           
1 A previous study reported a prevalence of diagnosed nail-biting of 46.9%, however, a large number of analyzed 
participants (71.2%) spent less than 10 minutes per day on biting fingernails (Pacan et al., 2014). Awake bruxism 
was prevalent in 22.1% - 31% of individuals as reviewed by Manfredini et al. (2013). 
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1). The ground electrode was applied to the neck, close to the cervical spine. EMG activity 

was recorded using a VarioPort (Becker MediTec, Karlsruhe, Germany). The signals were 

digitized using a 512 Hz sampling rate and further processed using the EMGdetect module in 

the ANSLAB software suite (Blechert, Peyk, Liedlgruber, & Wilhelm, 2016; Wilhelm & 

Peyk, 2005) and MATLAB R2015a (Mathworks, Inc., Natick, MA, USA). 

Procedure 

 After being welcomed and informed consent had been obtained, participants were 

equipped with the sensors. Quality of signals was verified and ambulatory recording was 

started. An in-lab training and calibration sequence familiarized participants with the types of 

movement artefacts and potential sources of false positives (eating falsely detected by EMG) 

by recording and displaying the EMG signal while participants repeatedly chewed on a cereal 

bar, made head movements, spoke and laughed. At the same time this recording allowed for a 

within participant standardization of the EMG signal (see below). The use of the device 

marker button and the smartphone app was trained by having participants mark beginning and 

end of the various eating episodes and enter smartphone data subsequently. Participants then 

left the laboratory and went about their daily routines without restrictions in terms of 

movement or eating (other than not to take a shower or wash their hair during recording). 

Additionally, participants received a take-home note, reminding them about the most 

important data entries. The ambulatory recording lasted until the next morning to potentially 

include breakfast as well. The sensors have been removed upon return of the recording 

equipment to the laboratory. Finally, participants completed a questionnaire asking about 

unpleasantness of wearing the device (0 - very pleasant to 100% - very unpleasant) and 

precision of self-reports (0 – very unprecise to 100% - very precise).  

Data Analyses 

 The EMGDetect module in ANSLAB was used to process the data. After low-pass 

filtering (243 Hz), high-pass filtering (150 Hz), and rectification with implicit downsampling 

to 8 Hz to obtain a signal representing muscular effort, different thresholds2 were applied to 

the spectral power of this rectified EMG signal within the frequency band of 1 to 4 Hz (range 

of typical chewing frequency). Prior to the detection, the spectral power was normalized using 

information from the calibration phase to make the algorithm robust against variability in 
                                                           
2 As soon as the spectral power exceeds twice the minimum power during the chewing calibration, a potential 
chewing phase is assumed to start. The end of the phase is reached as soon as the spectral power falls below 
the minimum power during the calibration again. 
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terms of the intensity of EMG activity among participants. Detected chewing phases shorter 

than 5 seconds are then discarded to avoid false positives in case of short movement artefacts. 

In the remaining set of chewing phases, those phases not farther apart than 15 seconds are 

merged into larger ones. Chewing phases which are shorter than 20 seconds after merging are 

also discarded. In the next step phases in which the rectified signal exceeds the maximum 

rectified signal value during chewing calibration for at least 25% of the phase duration by at 

least 50% are also discarded. Finally, chewing phases affected by signal clipping for more 

than 10% of their duration are also removed to reduce false positives. Agreement between the 

dichotomized EMG signal (1=eating present, 0=eating absent, right EMG channel only, 1-

minute resolution) and the self-reported marker periods is illustrated in Figure 2. This figure 

shows an excerpt from a rectified EMG recording along with the reported and detected eating 

episodes. 

Results 

An average of 20.4 hours were acquired (SD = 6.74, range = 4.33 – 24.7, exclusion of the two 

participants with <5 hours recording did not alter the results, so they were retained in the 

sample). Participants reported 29 main meals and 43 snacks with an average meal time of 12.1 

minutes and 5.6 minutes, respectively. Participants’ self-reported unpleasantness of wearing 

the device was M = 47.7, SD = 24.2. Subjective precision of eating reports was very high (M 

= 90%, SD = 9.1%).  

Table 1 shows the sensitivity and specificity rates obtained for the different participants along 

with the mean detection rates and the respective standard deviations. In addition this table also 

includes information about the participants’ habits with respect to bruxism and nail biting. 

Since the chewing of finger nails and bruxism results in potentially lower sensitivity or 

specificity values, Table 1 also shows the mean sensitivity and specificity rates when 

excluding the respective participants from the calculations.  

Discussion 

The present study compared an ambulatory EMG-based eating detector with self-reported 

eating in a sample of trained participants during ~20 hours of naturalistic activities. As 

reviewed above, previous research using physiological recording has reported relatively high 

sensitivities and specificities, however, was either lab-bound or ambulatory sensor placement 

was either obtrusive (well visible to the environment), or potentially privacy threatening (in-

ear microphones). Still other research had focused on sensitivity and failed to record long 
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stretches of non-eating episodes to test detection algorithms for specificity (Po et al., 2011) 

(i.e. the risk for false positives in case of head movements, speaking, yawning etc.). Our 

results indicate that under naturalistic conditions of daily life, eating can be detected with 

sensitivities and specificities >90% (when excluding bruxism and nail biting). These results 

are promising in light of a decade long search for automated eating detection approaches.  

 This optimistic outlook is given on the background of three key assumptions. First, as 

introduced above, our approach focusses on eating episode frequency rather than eating meal 

size and content: Chewing patterns do not allow us to conclude what and how much is eaten 

(i.e. calorie content, nutrients), just that eating is taking place. However, one of the main 

problems of underreporting is the omission of shorter between-meal snacks in traditional 

eating records (Johansson, Wikman, Åhrén, Hallmans, & Johansson, 2001; Poppitt & 

Prentice, 1996; Poppitt et al., 1998). In addition, recent evidence documents the high 

prevalence of these shorter snacks (Ovaskainen et al., 2006) and it becomes more and more 

evident that they are consumed for hedonic (subjective liking, craving or reward) rather than 

homeostatic (hunger) reasons (Cleobury & Tapper, 2014; Reichenberger et al., 2016). Thus, 

any interventions for heathy and intuitive eating (i.e. eating in line with homeostatic needs, 

i.e. (Tylka & Wilcox, 2006)) would have to focus on these ‘micro-eating’ episodes. Thus, the 

omission of smaller, shorter or ‘on the go’ eating episodes could be curbed by an EMG-based 

detector. Nevertheless, in case total calorie intake is of interest (e.g., in participants with 

obesity or diabetes), the EMG-based detector could be combined with a subjective content 

recording app (maybe with camera, barcode or voice-recording assistance), thereby gaining 

cross-validating information about certain underreporting features (see below). 

 Our second assumption here is that self-reports in the present ‘calibration’ sample are 

valid and therefore represent a ‘gold standard’ or a viable reference to compare our chewing 

detection against. This might appear as conflicting with the above described prevalent 

problem of underreporting that motivated this study in the first place. However, firstly, no 

superior method with sufficient temporal resolution is known to us and we have taken 

particular care to motivate and train our sample. Second, the high agreement between both 

data types seems to validate our approach: if self-report was very unreliable, such high 

accuracy would not have been possible. Supporting this assumption, subjectively perceived 

precision of self-reports was very high. We do not expect these self-reports to generalize to 

the general public at all (in fact we expect lower protocol adherence and precision of self-

reports in an untrained and maybe less educated sample). Yet, future studies in other 
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populations should now be able to rely on the EMG-based detection with considerable 

certainty based on the present sensitivity and specificity data.  

A third assumption or consideration during study design was that visibility or ‘social 

intrusiveness’ of any recording device is crucial for its acceptance. For example, a study of 

Pettitt et al. (2016) observed that a wearable device taking pictures of the eating episodes did 

affect peoples’ activities and they felt uncomfortable wearing it in public, and most 

importantly, might have affected their eating behavior. Hence, in our study the sensor 

placement was in a region that is relatively hidden or at least not as attention grabbing as more 

central sites at face or throat, where signals may have been of even higher quality and 

specificity. Our more remote sensor placement was not without costs: Based on visual 

inspection of signals during the calibration phase, it is likely that sensors did not capture 

chewing activity exclusively, but to some extent also strong head movements. With the advent 

of wireless, battery operated surface sensors (EMG, plethysmography, impedance 

measurements, distance sensing), several additional placements could be made at innocuous 

sites to improve robustness of detection despite unobtrusive placement. Combinations with 

other sensors such as microphones, video or even neural activity from EEG (Debener, Emkes, 

De Vos, & Bleichner, 2015) might further increase detection accuracy (e.g., combination of 

jaw motion and accelerometer sensors in Fontana et al. (2014) 

Based on these assumptions, the following future directions appear particularly 

promising. A first set of future directions would optimize the food-intake detection algorithms 

by a) provoking eating-irrelevant muscular activity (nail biting, bruxism, smoking), b) 

discriminating eating and drinking, and c) recording naturalistic behaviors that triggered false 

positives. Individual differences in dental health, nail biting, bruxism, and smoking could 

further be considered correlatively. Subjective recording mode (marker button on the 

recording device vs. smartphone entry) would be a worthy topic for future research because it 

would yield an index of reliability of self-report. Technology-wise, future basic research 

might combine more sensors at different sites while balancing the sensor number with their 

visibility. A second set of future directions could treat self-report as a dependent variable, 

especially in samples that are vulnerable for underreporting. Utilizing the EMG-based 

approach could aid in characterizing underreported eating episodes based on time point (e.g., 

morning vs. evening?), and duration (snack vs. main meal). In addition, one could aim to 

elucidate specific reasons for such underreporting: To illustrate, comparing self-report and 

EMG-based eating detection could allow for discriminating unconscious versus conscious 
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omission of eating episodes (e.g., ‘just forgot’ vs. ‘no time’, ‘distracted’, ‘uncomfortable 

reporting’, ‘stressed’, ‘in company’). Likewise, comparing both assessments over longer 

periods could tap into recording fatigue, which should influence self-report only. Third, an 

important future direction would be an automated prediction of underreporting and 

corresponding motivational prompting/interventions, specifically in vulnerable individuals 

(e.g., elevated BMI, restrained eating style) in order to attain more accurate food records 

and/or to promote eating awareness. While an end user product (e.g. including wireless, light 

weight EMG sensors) is not yet available, hardware development is advancing rapidly and 

real-time detection of chewing/eating would be very feasible with current computing 

capabilities of smartphones. Hence, a last and obvious future direction is to combine the 

detection of eating events with self-report: An EMG-based chewing detection could trigger 

input prompts on the smartphone which could confirm and specify eating episodes (whether, 

what, how much, contexts, etc.). This could be expected to effectively undermine at least the 

unconscious sources of underreporting and strongly reduce memory biases. Thus, the EMG-

based chewing detection could aid in influencing eating behavior by accurately capturing the 

number and duration of eating episodes. Such ‘omission free’ reporting of food intake could 

advance basic eating behavior research and inspire new awareness-based eating behavior 

interventions.  
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Table 1: Detection results of the algorithm. The columns Nail biting and Bruxism show 

whether the participant reported to nail biting or to have bruxism, respectively. The last row 

shows the statistics after excluding participants who either have bruxism or reported chewing 

of finger nails. 

Subject Nail 

biting 

Bruxism Sensitivity (%) Specificity (%) 

1   100.0 84.1 

2   94.1 96.0 

3   96.7 90.7 

4   94.4 96.6 

5   100.0 87.3 

6  x 42.0 98.6 

7   94.6 89.1 

8   35.5 98.5 

9 x x 74.2 96.4 

10 x  92.3 59.6 

11 x  100.0 40.0 

12  x 98.0 93.1 

13   100.0 89.2 

14   100.0 97.6 

Mean (SD): 87.3 (21.7) 86.9 (16.8) 

Mean (SD) after exclusion: 90.6 (20.8) 92.1 (5.2) 
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Figure captions 

Figure 1. Electrode placement for the EMG assessment. 

Figure 2. Rectified EMG signal, EMG-based eating detection and self-reported eating 

episodes classified into main meals and snacks. The upper part of the detection result shows 

false positives in red and true positives in green. In the lower part false negatives and true 

negatives are shown in red and green, respectively  
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