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Abstract 

A Transactive Memory System (TMS) is a mechanism that captures the ability of teams 
to encode, store and retrieve knowledge collectively. TMS, thus, helps in locating “who 
knows what”. Such knowledge enables team members in an organisation to solve 
problems requiring knowledge beyond their own expertise, and has thus been suggested 
as one of the microfoundations of dynamic capabilities – the ability of organisations to 
renew themselves. TMS has been shown to be valuable for efforts to integrate and 
renovate knowledge assets of the organisation. However, prior research on TMS has 
focused mainly on face-to-face teams with only few studies considering the more 
difficult case of distributed work arrangements. In this research, I will expand on this 
proposition and present a computational framework that supports TMS in virtual teams. 

The objective of the research was to broadly examine the ways in which machine 
learning algorithms and natural language processing techniques could be employed to 
provide support to TMS in virtual teams. Specifically, this research builds and evaluates 
a computational framework that pushes the boundaries of knowledge on distributed 
work arrangements through the lens of TMS. 

The research methodology followed the design science research. The validation of the 
computational framework has been done using data mined from archived mailing lists 
of a real Free Open Source Software development virtual team. In order to identify who 
knows what in the studied virtual team, I used mined data from experts’ conversations 
and survey data. Based on these foundations, I built a computational framework that 
involves two main components: The first component handles the mining of raw textual 
data and the second handles the classification of this data into broad areas of expertise. 

My findings highlight the impediments to TMS in virtual teams and prove the 
usefulness of machine learning techniques and natural language processing in 
identifying expertise. Also, these findings suggest that it is possible and beneficial to 
support TMS through algorithmic means. From a theoretical point of view, this research 
contributes to the TMS research with a novel framework for augmenting TMS in 
distributed work arrangements. These findings are generalisable to a similar type of 
virtual teams. Although, only a limited number of skills were considered, the developed 
computational framework can be improved and extended to include a greater range of 
skills and other types of communities. 
 

Keywords  Transactive memory systems, Talent analytics, Distributed work 

arrangements, Natural language processing, Text mining, Machine learning, Python, 

Stack Overflow, Apache Spark 
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Definitions 
 

Corpus A large collection of texts. A corpus is a body of written or natural 

speech data upon which a linguistic analysis is based. 

Feature vector A feature vector is a vector that contains information describing a 

phenomenon’s important properties. For example, in image 

processing, a simple feature representation of an image is the raw 

intensity value of each pixel.   

Tokens Loosely referred to as terms and roughly corresponding to words. 

Derived from a text through the process of tokenisation. 

Classification Establishing which category an entity falls under; this is a classic 

machine learning task. For instance, identifying whether an image 

represents a cat or not classifies it into two groups. Analysing data 

about music albums can result in classifying them into genres. 

Web crawler Also called a spider, is an Internet robot that automatically and 

methodically browses and indexes the World Wide Web, usually 

for the purpose of Web indexing by search engines. 

Abbreviations 
 

AI  Artificial Intelligence 

API  Application programming interface 

CS  Computer Science 

CSV  Comma Separated Values 

FOSS  Free Open Source Software 

IS  Information System 

Q&A  Question and Answer 

ROI  Return On Investment 

SVM  Support Vector Machine 

TMS  Transactive Memory System 

TOS  Terms of Service 
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1 Introduction 

1.1 Background 

Competitive advantage is a fascinating longstanding riddle in management studies. Many 

explanations have been given for the reasons for which some businesses achieve and 

sustain competitive advantage while others stumble. One of these explanations is the 

dynamic capability argument. This argument stresses the importance of the 

organisation’s outstanding capacity to sense new opportunities and seek them by 

incessant adaptation, integration and reconfiguration of its internal and external abilities 

in a continuously shifting landscape (Teece et al., 1997). There is a need for more 

research on identifying the mechanisms, processes and routines that can be identified as 

offering microfoundations by which organisations develop dynamic capabilities (Teece, 

2007). 

Argote and Ren (2012) proposed transactive memory as a microfoundation of dynamic 

capabilities. They described how a system that encodes, stores and retrieves knowledge 

in an organisation can assist it with its efforts to integrate and renovate its knowledge 

assets. In this research, I will expand on their proposition and present a computational 

system that supports this microfoundation. 

Coming up with novel methods to collect and analyse data should not be confined 

anymore to marketing, finance, sales or product development departments. Human 

resources function, just like the aforementioned operations has a large volume of data 

about employees and their performance. Still, the problem facing Human resources is 

that its approach to managing talents differs greatly from the methodologies developed 

by the other organisational functions. While marketing and finance generate insights that 

executives build upon to make strategic decisions, Human resources usually concentrates 

on what it does (Boudreau and Ramstad, 2005). 

To address this gap, Human resources should move its attention from its own 

performance and strive to come up with talent insights that support strategic decisions of 

the organisation (Boudreau and Ramstad, 2005). Human resources can be assisted in this 

regard with the latest advancements in talent analytics.  
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As competition through talent intensifies between organisations, human capital 

investments become a determining factor in their competitive position. Talent analytics 

are being used to attract and retain talents in industries experiencing intense competition 

for talent. Human resources is already using analytics in such ways as to assess flight 

risk and team performance for example (Davenport et al., 2010). Still, in this regard, 

Human resources trailed other departments. Since, although it amasses a staggering 

amount of data on employees that makes it more efficient at measuring turnover and ROI 

on specific programs, it still struggles to relate this data to improvements in business 

performance and leading programs to the long-term needs of the organisation. 

Recently, Human resources departments are also experimenting with new tools and 

building new capabilities for insight discovery that would let them contribute to the 

improvement of the organisation’s strategic decision making. Granted that to secure 

funding for the acquisition of such technologies, Human resources needs the approval 

and full backing of the leadership in the organisation. HR needs to show that they too 

can foster a culture based on the scientific method and data-driven decision making and 

not just gut feelings. 

1.2 Research problem 

Human resources as part of organisations that are faced with fast-changing business 

landscape, is more than ever pressed to help create, use and share knowledge to establish 

and sustain competitive advantage. And at the centre of these knowledge-based 

organisations are teams which are becoming more and more virtual. These teams are 

increasingly geographically distant and the bulk of their communication is computer-

mediated. This raises issues in managing and coordinating knowledge between teams as 

this knowledge is scattered among team members. Hence, it is important that the Human 

resources can identify and make the most of these individual’s knowledge. Still, there is 

a lack in the understanding of how members of virtual teams are aware of their 

teammates’ knowledge, how they build trust in each other’s expertise, and how they 

achieve effective coordination of that knowledge. 

Expanding the concept of Transactive Memory System (TMS) beyond teams and 

couples, speculation has been made on how organisations may work as TMS. Anand et 

al. (1998) devised a prototype that demonstrates how an organisation may be regarded 
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as a collection of TMS. They argued that some sort of information system (IS) (e.g. 

intranet, search engine, forum…etc.) may be utilised to improve the development of 

organisational TMS.  

Moreland (1999) argues that TMS in an organisation could have other characteristics 

than those of the TMS in couples and groups. For instance, sizeable groups have a 

diminished cohesion and their members are less inclined to share knowledge. He 

suggests that organisational TMS may be built following interpersonal and technological 

approaches. The technological approach would consist of using IS to construct and 

support an organisational TMS. Moreover, Griffith et al. (2003) indicate that poor TMS 

development in virtual teams “will be mitigated to the extent that technologies or 

organisational systems are used to support transactive memory development”. 

Free and Open Source Software (FOSS) is a good illustration of distributed work 

arrangement in which the development process is mostly done in virtually distributed 

teams. FOSS has been extensively researched because of the possibility to mine data 

from archives of mailing lists, source code and bug reports. Such repositories are mined 

in hope of uncovering empirical evidence supporting hypotheses concerning FOSS’s 

development process. Even though existing FOSS mining techniques yielded sound 

results, more challenging questions require different and a more suitable approach to 

analyse it. In this thesis, I am exploring an alternative approach to mining FOSS 

repositories called text data mining. In addition to development processes and design 

decisions, these mailing lists contain information about developers’ traits and qualities. 

Text analysis tools will be used to understand and predict these developers’ 

characteristics including their skillset. 

Text contained in a mailing list is less structured than other types of data encountered in 

a FOSS development environment such as source code or issues report. This gives 

developers more flexibility to discuss a wide range of issues, yet it hinders the mining of 

meaningful information. This wide variety of topics discussed and the resulting 

ambiguity in the conversations on a mailing list is higher than the one found in an issues 

tracker database for example. This results in making the classification of text a complex 

task.  

Due to this nature of text as not having a structure, we are referring to it as unstructured 

data. Nonetheless, text has a linguistic structure suited for human comprehension but not 
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for machines. To transform the unstructured text data to a structured data suitable for 

analysis I am going to apply natural language processing (NLP) and the analytical 

methods associated with it. 

In this thesis, I develop a model that assesses behavioural characteristics linked to 

Transactive Memory Systems (TMS) in virtual teams by means of Natural Language 

Processing (NLP).  The scope is limited to virtual teams which are defined by Jarvenpaa 

and Leidner (1999) as a temporary, geographically distant working team which 

communicate electronically. The fact that these teams are temporary means that the 

members do not necessarily know each other a priori and might not work in the same 

team in the future. The geographical distance between the team’s members means that 

they are located across geographical but also usually across organisational boundaries. 

They hardly if at all have a face-to-face meeting. Lastly, this kind of teamwork is possible 

through computer-mediated communication. 

TMS is assessed in this thesis as it was conceptualised by Lewis (2003) as a combination 

of three dimensions: Group knowledge stock; Specialisation of expertise; and accuracy 

of knowledge identification. 

With the flourishing applications of machine learning in various areas and the surging 

need in software engineering to deal with the huge amount of text online, machine 

learning gained traction in speech recognition and natural language classifications. This 

study takes advantage of the advancements in machine learning tools in linguistics to 

build classifiers based on labelled text mined from a large programming Question and 

Answer (Q&A) site. Q&A sites such as Stack Overflow (2017) make it possible for 

developers to explain their problem to the other members and get solutions, these may 

include code snippets together with attached explanations, named code-description 

mappings (Wong et al., 2013). 

This research addresses issues in NLP concerned with large corpora built from FOSS’s 

mailing lists to classify conversations by domain of knowledge. NLP is a branch of 

computer science that uses Machine Learning (a subfield of Artificial Intelligence) and 

linguistics to analyse and understand human languages. The input can be speech, text or 

keyboard input but NLP is particularly aimed at processing sizable corpora of text. 
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Document classification aim is to choose the right class label for a given textual input. 

In the basic classification task, independence of each input is assumed, and the list of 

labels is pre-defined. Some illustrations of document classification are: 

• Categorising emails into spam or not spam. 

• Assigning a topic to news articles, from a fixed set of topics like "Business" 

"Science" and "Politics" 

The prohibitive costs of manual annotations have made automatic classification a much 

more attractive alternative. This automated process is based on choosing words from the 

document that would provide a satisfactory impression about its content. Several 

classification methods have been developed by using properties of words in the 

document and corpora of texts or by means of external sources like dictionaries. 

1.3 Research questions 

This research studies how one of the fundamental microfoundations of dynamic 

capability can be augmented with artificial intelligence techniques, and what benefits 

could this have on the TMS of virtual teams. I emphasis three key processes: TMS, 

Machine learning and NLP. Through the lens of these processes, I will present a novel 

method to supporting TMS in virtual teams algorithmically, as opposed to the prevailing 

methods that use only survey data. 

The hypothesis that drives this research is that: By offering algorithmically augmented 

support to TMS we can be benefit the development of TMS and as a result improve the 

functioning of the virtual team. 

Consequently, this research will focus on the following three research questions: 

RQ1: How TMS manifests itself in virtually distributed teams and how can we locate 

who knows what within these teams? 

Answering this first question would lead to a proper grasping of both notions of TMS 

and virtually distributed work, this in turn would help answering the following questions. 

The suggested potential of text classification to pinpoint the skillset of a team member 

sets the basis for the second research question of this thesis: 
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RQ2: How can we map the skillset of the individual members of a virtually 

distributed team? And how can we extract the information that represent these 

skillsets? 

Finally, the third question is founded on the outcome of the study on the empirical 

settings featured in the third chapter of this thesis: 

RQ3: How would the developed software tool support the development of TMS 

within virtually distributed teams? 

The answer to this question may pave the way for future IS built with requirements 

satisfying the optimal functioning of TMS when establishing actual virtually distributed 

teams. Indeed, through an algorithm-based artefact founded on NLP and ML, I propose 

a conceptual model of an IS to augment organisational TMS. This may inform future 

implementations of computationally efficient forms of TMS. 

1.4 Structure of the research 

This research is organised as follows: In chapter 1, I identified the problem, formalised 

the research questions and presented the structure of this research. In chapter 2, I 

performed a systematic literature review on Transactive memory systems and an outline 

of the state of the art in text mining, machine learning and natural language processing. 

I also briefly reviewed the existing tools that support in one way or another TMS in 

virtual teams. Chapter 3 identifies the methods and design propositions, it also presents 

a description of the research data and outlines its collection and pre-processing methods. 

It also presents the plan of the survey. In chapter 4, I formalise the proposal of the artefact 

to solve the research questions and present the steps followed to develop it, I also evaluate 

the performance of the artefact, moreover, a brief survey report is provided at the end of 

this chapter. In chapter 5, I discuss the findings of the research and put them into their 

theoretical perspective, I also evaluate the relevance of the developed artefact in helping 

improve the development of TMS. Finally, chapter 6 concludes the research by giving a 

summary of the work conducted and identifying the limitations of the research and also 

suggesting directions for future research. 
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2 Literature review 

In this section, I review the literature about the theoretical foundations of transactive 

memory and the advancements in machine learning and natural language processing 

techniques. Additionally, I will give an overview of the already existing tools that support 

TMS in organisations. 

2.1 Transactive memory system 

The Transactive Memory System (TMS) was first described by Wegner et al. (1985) in 

a study of the memory structure of romantic couples where they defined it as “a set of 

individual memory systems in combination with the communication that takes place 

between individuals”. 

In his study of TMS in close romantic relationships Wegner (1987) asserted that 

individuals tend to expand their limited memory by utilising external memory aids such 

notes, dairies or by relying on other individuals for recalling information. For this reason, 

Wegner concluded that TMS is an automatic process that arises in natural groups. It is 

this last aspect that prompted research on whether work groups develop a similar 

mechanism of memory retrieval and organisation as the one studied in romantic couples. 

Wegner's original theory was a significant departure from the general understanding of 

the group mind (Wegner et al., 1985; Wegner, 1987). Until that time, the group mind 

was thought to be a linear progression that replicated the processes of the individual 

mind. Wegner disagreed with this concept and he argued that the group mind behaves 

rather differently from the cumulative processes of the individual mind. Moreover, he 

argued that TMS is not traceable to any individual component of the group but rather 

exists separately from the individual memories of the group. Thus, Wegner’s 

contribution in the conceptualisation of TMS was to better clarify the workings of the 

group mind as a distinct concept by describing its various elements. 

TMS theory supplants previous theories which predominantly considered group memory 

as an individual memory system (Wegner, 1987). Even though TMS is more complex, 

notions associated with the memory of an individual are still relevant to those regulating 

TMS, these include encoding, storage, and retrieval. Still, other notions became 
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prominent in this model, these include accuracy, validation and sharedness of the group’s 

shared mental model (Brandon and Hollingshead, 2004). 

TMS captures who knows what in a group and check for the uniqueness of that 

knowledge. Individuals in interpersonal relationships tend to form a specialised division 

of cognitive labour regarding encoding, storage and retrieval of knowledge from various 

substantive domains. Therefore, expertise in narrow areas of knowledge is developed by 

each individual in the group. Other individuals in the group are expecting a member to 

possess such expertise as explained in Figure 1. This results in a reduced overlap of 

members’ knowledge and a more efficient processing of the information within the 

group. 

 

Figure 1 Transactive memory system (Wegner, 1987) 

 

In its original form, TMS was conceptualising how the group mind might operate. When 

it was first conceptualised, there was not enough empirical evidence to back up the 

existence of TMS as a phenomenon. It could not be effectively measured empirically and 

not enough metrics were in place to clarify the various TMS processes. 

Building on their research on learning in successful teams, Moreland, R. L. et al. (1996) 

moved empirical research on TMS from personal relationships to groups. The goal of 

their research was to test whether TMS had a mediating effect on the training methods 

and group performance. What resulted however is the emergence of three constituents 

that indicated TMS: Specialisation, Coordination and Credibility. Specialisation 
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represents the degree of knowledge differentiation in a group. The specialisation of 

members of a group may be explained by coincidental knowledge, pre-existing 

individual expertise, or by the consent to take responsibility for a specific knowledge as 

part of the group. Subsequently, those members are supposed to re-share information 

with the group. Coordination denotes the ability of individuals in a group to collaborate 

efficiently. Credibility indicates the level of confidence in the accuracy of the 

information each individual of the group has about other teammates.  

These pioneering empirical studies therefore produced some preliminary measures by 

which TMS is tested in groups and thus led to an improved understanding of this 

phenomenon. 

Moreland, R. L. et al. (1996) observed student teams during an experimental radio kit 

assembly exercise. Among these teams, those instructed together performed better than 

those instructed individually. The researchers examined the videotaped experiment and 

coded behaviours indicative of TMS. Measuring the TMS was derived from observations 

made about participant’s knowledge (inferring Specialisation), participants’ confidence 

about the reliability of teammates’ knowledge (inferring Credibility) and about the level 

of efficiency of knowledge processing (inferring Coordination). When all these TMS 

behaviours were accounted for however, all teams performed equally, those trained 

together and individually. Therefore, the researchers concluded that TMS accounts for 

the enhanced group performance. There could be, however, other causes for the 

improved performance apart from a stronger TMS, these can be a better communication 

or training.  

R. Moreland, L. Myaskovsky (2000) conceived two new experimental settings to 

determine whether the performance improvement attributed to group training is due to 

better communication among teammates rather than to TMS. This set of experiments 

showed that TMS is different from training and communication and is improving group 

performance by knowledge of teammates’ skills. Students were randomly assigned to 

sixty-three three-person same-sex teams which were then subjected to different training 

conditions:  Individual, Performance Feedback, or Group training. These teams were 

then instructed to perform a radio kit assembly. Teams whose members underwent 

Performance Feedback condition with no prior communication with other teammates 

performed just as well as teams in the Group training condition. The aforementioned 
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training methods did not affect team members’ ratings on the ease of communicating 

with teammates about radio assembly.  

TMS coordination represents a group members’ aptitude to collaborate efficiently, it is 

deemed critical for improved group performance. Team members engaging in 

coordination action were observed during a laboratory experimental set by Hollingshead 

(2000). For this experiment, clerical workers were tasked to work together. The workers 

managed to recall and acquire new knowledge when their collaborators were in different 

area of expertise. Opposite outcomes to these were obtained when the same workers 

collaborated with partners with the same expertise.  

TMS credibility indicates the level of confidence team members have in the knowledge 

accuracy of teammates, it is an indicator of members’ mutual trust in each other’s 

expertise. R. Moreland, L. Myaskovsky (2000) showed through the radio assembly 

experiment that the teams who trained together had a higher level of TMS accuracy than 

those who trained individually. These findings support Wegner’s conceptualisation of 

TMS that indicates that a person relies more on others for information when he/she 

considers them as a credible source of knowledge.  

TMS has been studied in field settings and it was demonstrated that it accounts for 

improved group performance. Research by Austin (2003) further examined multiple 

dimensions of TMS and worked on operationalising them. These generalisable measures 

benefitted research on TMS in various contexts. 

Austin (2003) put forward hypotheses that investigated the connexion between a group’s 

performance and the behavioural dimensions of its TMS. The results indicate that the 

accuracy of the TMS is a strong indicator of a group’s performance. Thus, accurately 

assessing an individual’s area of expertise within a group would improve a group’s 

performance. Austin (2003) studied the relation between a developed TMS and improved 

performance in 27 teams working for a sporting goods organisation. Austin identified 

through semi-structured interview protocol 11 skills and knowledge areas for the study 

of these teams. Team members were tasked to identify individuals in their team whom 

they thought had the most knowledge in that specific expertise or knowledge domain. 

Austin (2003) conceptualised TMS as a combination of four dimensions: Group 

knowledge stock; Consensus about knowledge sources; Specialisation of expertise and 
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accuracy of knowledge identification. Knowledge stock of a group is, as defined by 

Austin, the aggregation of individual knowledge. Group knowledge stock is considered 

the central corpus of knowledge that can be accessed by any member of the group. The 

consensus about knowledge sources can be thought of as the degree to which members 

of a group agree about who has what knowledge. This aspect draws a parallel with 

Wegner’s transactive encoding where a group examines received knowledge and process 

it in various ways to achieve a common understanding. Austin states that this component 

of TMS offers a link to research on team mental models for performance evaluation of a 

group. Specialisation of expertise, a dimension proposed by Wegner as well, is defined 

by Austin as a deeper knowledge base in a narrowly delimited field of expertise. The last 

dimension, accuracy of knowledge identification, is described by Austin as the extent to 

which members recognised by others as holding a specific knowledge actually do possess 

it. These results showed that TMS can be assessed in field settings although this requires 

first-hand observation involving an identification of the team’s skill sets which can be 

inconvenient. Measuring TMS using this method would prove laborious and 

cumbersome in organisations with teams that have vastly diverse areas of expertise.  

Although laboratory settings supported conceptualising TMS, adapting these measures 

to a field setting was difficult. For example, measures utilised during an experimental 

setting like radio assembly set were developed for a setting with well-defined tasks which 

did not vary among comparison groups, this would be a remarkable feat in a real-life 

organisation. To a certain extent, this caused fragmentation in TMS research and a 

reduced interest from organisations. This difficulty was mainly overcome by (Lewis, 

2003) when she described how she developed and test validated a field measure of TMS. 

The measure consisted of a 15-item scale tested in a laboratory setting of 124 groups, a 

field setting of 64 Master of Business Administration consulting teams, and a field setting 

of 27 teams from technology companies. Lewis’ scale consists of three sub-scales 

assessing the three components of TMS: Specialisation, Credibility and Coordination. 

The results of her study prove that indirectly measuring TMS is as effective at monitoring 

TMS as the direct measuring. This is significant to field research since measuring TMSs 

by direct observation is impractical in several applied settings. 

In face-to-face settings, research showed that groups develop TMS by using any 

appropriate knowledge on hand, this may include past experiences, formal or informal 
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conversations between teammates, expertise based on assignments and surface 

characteristic such gender, ethnicity and age (Brandon and Hollingshead, 2004; Lewis, 

2004; Wegner, 1987). Notably, Hollingshead (1998) observed that important information 

was encoded in the nonverbal and paralinguistic communication cues present in the 

communication used to retrieve information from others in a team. Since there is a 

scarcity or sometimes absence of such cues in virtual teams, developing TMS can be 

difficult. Overcoming these difficulties is possible when communication between 

teammates is frequent and effective. 

According to the first conceptualisation by Wegner (1987), TMS is a team-level concept, 

which makes measuring it a demanding undertaking. Measuring the group knowledge 

can be approached essentially in two ways: holistic and collective (Cooke et al., 2000). 

The collective method requires, first, that individual measures be gathered and then 

combined into a team-level measure. The individual measures may be gathered from 

surveys, discussions, or by observing groups (Cooke et al., 2000). Although this 

aggregation method is preferred by most recent researches for its ease of use, still it 

overlooks the significance of the interactions between individuals in a team (Cooke et 

al., 2000). The collective approach thus assumes that individuals equally influence 

group’s cognitive phenomena (Mohammed et al., 2000). 

2.2 Machine learning 

Machine learning is about extracting knowledge from data. It is an important branch of 

artificial intelligence and it is also an interdisciplinary field of statistics and computer 

science (Sebastiani, 2002). It began as pursuit to develop an algorithm that is able to 

learn, adapt, optimise and get better from experience and environment (i.e. data). 

Machine learning has many applications in various disciplines, notably in marketing 

personalisation, fraud detection, NLP and financial trading (Marr, 2017).  

Machine learning uses algorithms to make it possible for computers to learn, without 

being programmed, to identify patterns indiscernible to human operators. Essentially, a 

machine learning algorithm is presented with a collection of teaching data, then is 

expected to utilise that data to solve a problem. For instance, an algorithm can be given 

a teaching set of images with captions saying either “this is a fish” or “this is not a fish”. 

Then the algorithm is provided with a new set of images and it would recognise which 
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images represent fish. Machine learning keeps on adding images to its teaching set. Each 

image that it classifies (successfully or unsuccessfully) is included in the teaching set, 

and the algorithm actually becomes smarter and more reliable at solving the problem 

with each iteration. It is, basically, learning. 

Machine learning algorithms can be categorised according to the anticipated outcome of 

the algorithm. Typically, machine learning algorithms are classified into three categories: 

Supervised, unsupervised and reinforcement learning. A supervised learning process, as 

seen in Figure 2 requires that when given input and output variables, an algorithm has to 

estimate a general rule for mapping inputs to the desired outputs. The objective is to get 

an accurate approximation of the mapping function that can be used to predict the output 

variables for that data from a new input (Manning, Christopher D., and Hinrich Schütze., 

1999). 

 

 

Figure 2 Machine learning Supervised process 
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This method is named supervised learning since the algorithm is trained on a dataset with 

known correct answers. This set acts as a teacher that supervises the learning process. 

The algorithm repeatedly attempts to make predictions on the training data and the 

“teacher” is correcting it. This learning process ends once the algorithm reaches a 

satisfactory level of accuracy (Manning, Christopher D., and Hinrich Schütze., 1999). 

Unsupervised learning is when given only some input variables with no mapped output 

variables. The objective of such method is to uncover hidden patterns in the data. These 

algorithms are named unsupervised learning since contrary to the supervised learning, 

there are no correct answers and there is no “teacher”. The goal is to have the algorithm 

learn how to find the interesting structure in the dataset (Manning, Christopher D., and 

Hinrich Schütze., 1999, p.232). 

2.3 Natural language processing 

Organisations are just beginning to understand the enormous potential value stored in all 

the text generated on a daily basis. Organisations are leveraging Natural Language 

Processing (NLP) to derive understanding from the massive unstructured data available 

online and create new value and improve efficiency. 

NLP has long been one of the issues that are hotly researched in computer science 

because of its great significance. Although machines surpass humans at making sense of 

highly structured data, yet there are certain vital areas where humans are indisputably 

better than computers. Comprehending natural language is one of these areas. In this 

section, I am explaining what NLP is, how it works, and how pairing it with machine 

learning could solve text classification problems. 

NLP roots date to the period just after World War II, it started as the intersection of 

artificial intelligence and linguistics. NLP was founded on several diverse fields such as 

computer science, linguistics, mathematics, electrical engineering and psychology 

(Jurafsky, D. Martin, J.H., 2014), NLP researchers are thus expected to widen their 

knowledge base considerably. 

With the advent of machine learning, the 1980s was a crucial decade for NLP as it 

resulted in deep changes, these include: 

• Deep analysis was supplanted by approximations that are simple and robust. 
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• The use of probabilities in machine learning processes grew considerably. 

• Sizable, structured set of texts called corpora were utilised to train machine 

learning algorithms. 

Certain NLP tasks are done more routinely than others, these include: 

• Tokenisation: dividing text into a sequence of tokens, which more or less 

corresponds to words;  

• Part-of-speech tagging: reading text and assigning parts of speech to each token, 

such as noun, verb, adjective; 

• Generating parse trees: performed to identify grammatical relationships in 

sentence; 

• Named entity classification: e.g. grouping names of animals, months of the year, 

or countries; 

From these elementary tasks, it is possible to build more complex applications, like the 

one I will be reviewing in the next section. 

2.4 ML and NLP combined 

The automatic classification of text is a good instance of how ML and NLP can be paired 

together to allow machines to develop better models to understand human language. The 

aim of text classification is to categorise documents into one, two (binary classification) 

or more (multiclass classification) classes to help sort through big datasets of documents. 

The costs of doing this operation manually are prohibitive and labour intensive. 

Moreover, this automation would allow machines to develop better models than they 

would have done by relying only on a static set of commands from human programmer. 

Unsupervised ML models (e.g. Clustering and Topic Modelling) are utilised in the 

automated uncovering of clusters of similar documents within a larger collection of 

documents. However, in this thesis I focused only on supervised techniques of 

classification. 

2.4.1 What is the Classifier’s purpose? 

Classifiers make predictions. In other words, when a classifier is presented with a new 

text to classify, it predicts the class to which the text belongs and assigns it a class label. 

If the classification algorithm or the strategy used allows it, the classifier can also return 
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a confidence measure to show the accuracy of the classification in assigning labels to 

documents.  

2.4.2 Flow of Supervised Documents Classification 

Document classification process is done in the following three main steps: 

2.4.2.1 The dataset 

A set of documents is needed to perform a statistical method of classification, these 

documents must be already manually labelled with the correct class name. The quality 

of this set determines the accuracy of the statistical NLP classifier. 

Another important characteristic of this set is its size, it has to be large enough and 

include a suitable number of items in every class. Additionally, the set must contain 

documents which have a relatively low degree of attributional similarity in various 

classes to allow a well-defined demarcation between these classes. 

2.4.2.2 Pre-processing 

Supervised approaches to text classification include statistical features which are 

computed based on statistical information gathered from the training documents. The 

raw form of these documents features words of equal importance. Pre-processing is 

needed to rid the text of the superfluous words and give more weight to words based on 

their importance in the text. A popular methodology used to do this is term frequency 

and inverse document frequency (TF-IDF). This methodology that helps to classify 

documents has been studied at length, in particular by (Salton et al., 1975; Salton and 

Buckley, 1988) for their vector space model. As a result of their reflections on the term 

discrimination model, they demonstrated that terms appearing in stored entities 

(documents) should be weighted proportionally to the term frequency and inverse 

proportionally to the entity’s frequency (Salton et al., 1975). Additionally, Sparck Jones 

(1972) introduced the concept of inverse document frequency (IDF) by proposing a 

weighting scheme for specificity of a term. 

Combining TF-IDF weights and entity length normalisation resulted in superior retrieval 

performance on collections of documents and it has been widely used in supervised 

approaches (Provost, 2013). 

TF-IDF is usually calculated as follows: 
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Given a set of Q documents, let fwd be the frequency of the term w in the entity d. Then 

the term frequency TFwd is defined as:  

𝑇𝐹𝑤𝑑 =
𝑓𝑤𝑑

𝑚𝑎𝑥𝑘𝑓𝑘𝑑
 

Meaning that the term frequency of the word w in the document d is fwd normalised by 

means of dividing fwd by the maximum count of occurrences of any other word in the 

document d. Therefore, the word with the highest frequency in the document d would 

get a TFwd of 1, while the other words would get frequencies which are less than 1. 

On the other hand, the IDF for a word is calculated as follows: 

Assuming that the word w occurs in qw of the Q documents in the collection, then: 

𝐼𝐷𝐹𝑤 = log2(𝑄/𝑞𝑤) 

Together, the TF-IDF weight for the word w in the document d is the product of the two 

statistics calculated above: TFwd × IDFw. The words with the highest TF-IDF are usually 

the words most suitable to describe the topic of the document (Provost, 2013). 

2.4.2.3 Classification Algorithms 

There are numerous algorithms that have been used on quantitative data. And it is 

conceivable to utilise the majority of these existing techniques for text classification. 

Because text can be modelled as quantitative data where word’s attributes has 

frequencies. Still, textual data is a special type of data because the word’s attributes are 

scarce, and high-dimensional, with the majority of words characterised by low 

frequencies. 

Broad classes of techniques, that are typically utilised for text classification include 

Support Vector Machines (SVMs), Bayesian, Decision Trees and Neural Network. 

In machine learning, an SVMs are a subclass of supervised learning paradigm coupled 

with learning algorithms that analyse data utilised in classifications. Presented with a set 

of training samples, each one labelled, an SVM training algorithm can build a model that 

labels new samples. It is thus partitioning a feature space into two or more subsets. Which 

in our case means separating a corpus of text files into two or more classes. 

An SVM creates n-hyperplanes in an n-dimensional space, which may be utilised in 

classification and regression tasks. Thus, an effective separation is constructed by the 
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hyperplane with the greatest distance to the adjacent sample points from each class, given 

that typically the bigger the margin the smaller the generalisation error of the classifier.  

Since an SVM is a large margin classifier, specifically, it maximises the geometric 

distance between the decision boundary and the classes of samples. In simple instances, 

the separation boundary is linear, leading to clusters that are separated by lines in n-

dimensional spaces. Thus, the geometric intuition behind it is often plotted in the 

following way: 

 

 

Figure 3 Linear SVM geometric Intuition (Hamel, 2009a) 

 

Experimentation showed how SVMs reliably achieve excellent performance on text 

classification tasks, they usually outperform other techniques considerably. SVMs are 

able to generalise appropriately in high-dimensional feature spaces and they do not need 

feature selection, thus making the text classification significantly simpler. Furthermore, 

SVMs are more robust than the other conventional techniques. Together, these 

advantages make SVMs a suitable and easy-to-use choice for training text classifiers 

from example documents. (Joachims, 1998) 

Since their inception in 1995 (Cortes and Vapnik, 1995), SVMs have become one of the 

leading machine learning models. SVMs are now used commonly in fields ranging from 

classification of images and hand-written character recognition to mining big databases 

(Hamel, 2009b). 

Figure 4 summarises all the previously discussed text classification steps: 
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Figure 4 Flow diagram for supervised document classification 

 

2.5 Python 

The most prevailing data science tools used by the analytics community are the R and 

Python programming languages. The two languages are commonly used by statisticians.  

Although R’s functionalities were conceived with statisticians in mind, Python is 

commended for its intuitive and easy-to-use syntax enabling developers to write concise 

and efficient algorithms. Python is better suited for data scientists who have a 

CS/developer background, which is why I chose to work with it in this research. 

Table 1 Ten most popular data science tools in 2016 (KDnuggets, 2017) 

Tool 2016 % Share % Change 

R 49 +4,5 

Python 45,8 +51 

SQL 35,5 +15 

Excel 33,6 +47 

RapidMiner 32,6 +3,5 

Hadoop 22,1 +20 

Spark 21,6 +91 

Tableau 18,5 +49 

KNIME 18 -10 

Scikit-learn 17,2 +107 
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While not as feature-rich for analytics as R, Python’s resources for scientific computing 

are expanding fast. As of June 2016,  R and Python are duelling as top analytics/data 

science tool but Python is growing faster and soon will overtake R. Table 1 Shows the 

most commonly used data science tools in 2016 according to a poll by (KDnuggets, 

2017). 

The growing pace of Python’s functionality is staggering. As of May 2014, there were 

44000 packages in the Python Package Index. At the end of May 2017, there are over 

108,000 packages listed. Of these, 6929 are labelled as Scientific/Engineering 

(Python.org, 2017). 

Python, a general-purpose programming, natively supports basic functionalities 

necessary for analytics, such as data import and program control. For advanced analytics, 

additional libraries (i.e. NumPy and SciPy) offer added capabilities, such as, 

multidimensional arrays and matrices; high-level mathematical functions; optimisation; 

and linear algebra (Dinsmore, 2016). 

The most popular and feature-rich advanced analytics library for Python is by far scikit-

learn. This open source and free library builds on NumPy and SciPy to offer several 

supervised and unsupervised machine learning algorithms for classification, regression 

and clustering. Notable algorithms include logistic regression, support vector machines, 

random forests, naïve Bayes classifier and K-means. (Scikit-learn, 2017) 

Continuum Analytics is the publisher of Anaconda, a freemium and open source 

distribution of Python that delivers a multitude of improvements for large-scale data 

processing and predictive analytics. These enhancements include carefully selected 

Python packages and their dependencies for data science and analytics. Continuum 

Analytics also aims to simplify package deployment through an online repository with 

an updated version of every package. (Continuum Analytics, 2017) 

2.6 Existing tools to support TMS in virtual teams 

In this section, I will briefly review few of the computational systems that have been 

used to support TMS, by using the following illustrative examples: 
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• Answer Garden (Ackerman and Malone, 1990) is a web-based tool that help the 

development of organisational memory by assisting individuals in finding and 

sharing questions and answers; 

• GIMMe: Group Interactive Memory Manager (Lindstaedt, 1996) is also web-

based tool which is a centralised repository to store and access emails and  

conversations in an organisation environment; 

• KSE/Jasper II: Knowledge sharing environment (Merali, Y. and J. Davies, 2001) 

is a system that facilitate the sharing of information agents linked to each user. 

These information agents are able to organise, summarise and share knowledge 

from potentially many information sources in order to answer queries; 

• MILK (Agostini et al., 2003) is at its core a metadata management system used 

by organisations to help communities of interest. It integrates knowledge related 

to all sorts of involved entities, which includes users, communities, and informal 

knowledge; 

• OntoShare (Davies, J. and A. Duke, 2004) is an environment used by virtual 

teams to share knowledge based on ontologies. OntoShare uses Semantic Web 

technologies to assist communities of practice; 

All the mentioned systems and tools promote the development of transactive memory in 

one way or another. A search tool that assists users in locating relevant knowledge and 

associated people is offered by all the systems and is used to ease the building of TMS. 

For instance, MILK’s search tool indexes people’s expertise and the information 

available within the community based on information collected from the user’s profile 

and the metadata associated with the documents. MILK’s Metadata Management System 

(MMS) oversees the acquisition and organisation of knowledge from profiles that contain 

metadata descriptions of different aspects of the involved entities. Inaccuracies, however, 

occur with this method since the metadata are labelled by individuals who uploaded the 

material, while the profiles were built merely from how the users’ interacted with the 

system. These issues were mostly tackled in KSE/Jasper II and OntoShare which offer 

improved search tools that use keywords extracted from the whole document. 

Additionally, KSE/Jasper II and OntoShare allow individuals to do queries to look for 

users based on their interests. These search results are created from dynamically 

maintained users’ profile that can be edited by any user. Similarly, Answer Garden and 
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GIMMe emphasise the importance of NLP to benefit the development of TMS. For 

instance, Answer Garden operates a full text search engine to assign trusted answers by 

experts to a user’s query. Even though pinpointing expertise is associated with stronger 

TMS, Answer Garden chooses to keep the users’ contributions anonymous, which 

prevents locating the communities’ expert members. GIMMe uses latent semantic 

indexing to recognise the underlying structure in the relations between the words and 

topics included in an unstructured corpus of text. This eases the search through vast 

repositories of email archives. GIMMe also mines mails sent to a specific group alias 

and automatically adds it to an information space and categorises it according to its 

subject, this could be beneficial for TMS. Table 2 summarises the above mentioned 

illustrative example. 

Table 2 Summary of technologies used to support TMS (adapted from (Kleanthous and Dimitrova, 2006)) 

Type Capability Technology 

Search Search through metadata utilising user’s profile MILK 

Keywords extraction from documents and association 

with user’s profile 

OntoShare, 

KSE/JASPER II 

Text retrieval built on keyword extraction Answer Garden 

Latent semantic indexing GIMMe 

Recommendations Recommends resources and experts on user’s profile OntoShare 

Semantic-aware 

techniques 

Metadata to link information MILK 

Category hierarchy GIMMe 

Ontology OntoShare 

 

Semantic technology, which encodes meanings separately from data and content files, 

have been used to support the building of TMS. For example, GIMMe keeps 

hierarchically structured categories that enables knowledge location. These categories, 

nevertheless, are freely built by the users and become disorganised, thus hindering 

expertise and knowledge location, this in turn does not contribute to the development of 

TMS. On the other hand, OntoShare draws on ontology of domain categories to locate 

knowledge and identify members with similar interests. 
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2.7 Summary 

In the previous sections, I have reviewed transactive memory, machine learning and 

natural language processing theory. In my review of transactive memory literature, I 

showed that studies on organisational psychology had found that effective teams working 

within an organisation build transactive memory and recognise who are their cognitively 

central and peripheral peers. Moreover, these developments may be extended to a wider 

setting to include virtually distributed teams. 

I showed that typically, machine learning algorithms are grouped into three classes: 

Supervised, unsupervised and reinforcement learning. And that a supervised machine 

learning algorithm is trained on a dataset with known correct labels. This set acts as a 

teacher that supervises the learning process. The algorithm repeatedly attempts to make 

predictions on the training data until it reaches a satisfactory level of accuracy. 

I noted that organisations are leveraging NLP to derive understanding from the massive 

unstructured data available online and create new value and improve efficiency. And that 

NLP has a great significance in the field of computer science. Although machines surpass 

humans at making sense of highly structured data, yet there are certain vital areas where 

humans are indisputably better than computers. Comprehending natural language is one 

of these areas. NLP is trying to fill this gap. 

I explained how automatic classification of text is a good instance of how machine 

learning and NLP can be paired together to allow machines to develop better models to 

understand human language. And that in machine learning, SVMs are a subclass of 

supervised learning paradigm coupled with learning algorithms that analyse data utilised 

in classifications. Presented with a set of training samples, each one labelled, an SVM 

algorithm can build a model that labels new samples. 

I pointed to tools already used to support TMS in virtual teams. However, each of these 

tools has some shortcomings which I will try to address through the present 

computational framework. 
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3 Methods and Data 

In this section, the general design of the research and methods used in data collection are 

described. Also, the research context and text classification procedures are outlined. 

3.1 Research design 

The purpose of this study was to examine the ways in which NLP and machine learning 

techniques could be utilised to foster the development of TMS in virtual teams. This 

research addresses this problem by building and evaluating an IT artefact that pushes the 

boundaries of known applications of IT in business organisations. Therefore, it addresses 

vital problems previously considered not yielding to the algorithm-based approaches. 

This IT artefact is in the form of a prototype artefact that demonstrates the feasibility of 

addressing such a problem (March and Storey, 2008). In order to ensure the rigor required 

in conducting this research, I chose design science research (DSR) as the method for 

research. 

After the initial stages of the formalisation of the aspects of the problem and the literature 

review, the follow up stage of artefact design and creation proposition process was 

mainly creative, thus abductive logic was suitable for this stage (Dresch et al., 2015). 

The design and development of the IT artefact as well as its evaluation were implemented 

by means of deductive reasoning. It follows that in these stages, I offered solutions based 

on the existing knowledge for building the artefact (Dresch et al., 2015). I used collected 

data from a real world virtual team mailing list archives coupled with data from a digital 

survey to eventually evaluate the artefact. The usefulness of the artefact was, to some 

extent, demonstrated by this evaluation. Building and evaluating artefacts are essential 

components of the DSR process (March and Storey, 2008). Lastly, inductive reasoning 

was followed to demonstrate that the building heuristics of the artefact are generalisable 

for similar types of problems. This DSR is accessible to both technology-oriented and 

management-oriented audiences. Together, these stages prove that the type of research 

method chosen was appropriate to address the research questions.  

3.2 Empirical settings 

Data were collected from the archives of the electronic communications of two sources: 

(1) a programming Q&A site; and (2) a FOSS. 
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Sizeable corpora of labelled training data of each class are required for building an 

accurate text classification model. Often, such labelled text data is not readily available. 

The alternative of labelling manually is often difficult to organise, labour-intensive, 

tedious and the labelling is oftentimes of low quality, since the labels are not set in a 

realistic natural task context. Programming Q&A sites have question and answer sections 

containing code snippets and explanations written by programmers that can be used for 

labelling data as being related to a specific programming topic/skill or not, this reduces 

the manual labelling effort. In particular, Stack Overflow is commonly used to ask 

questions related to software development and debugging. These questions usually get 

useful answers thanks to the sizeable user base. 

The Stack Overflow community guidelines define a tag as being a keyword or label that 

classifies a question with other related questions. When a member with the right privilege 

chooses to add a new tag, the topic must be unique. Privileges control what a member 

can do on Stack Overflow. A programmer gains more privileges by increasing their 

reputation (i.e. points received from other users for posting useful questions and 

answers). In this instance, the privilege type required for creating a tag is Creation 

Privilege and is awarded at 1,500 Reputation points. (Stack Overflow, 2017) 

Stack Overflow has an extensive archive of already labelled Q&A, thus making it a 

compelling source for mining labelled data for our training data set. It has 14 million 

questions, 22 million answers and 49 thousand tags as of May 2017 (Stack Exchange, 

2017). Such a large number of labelled data is ideal for accurate learning. Therefore, the 

Stack Overflow community is relevant for this study. 

Developers engage in conversations in a multitude of discussion platforms. These 

platforms typically have diverse ranges of time constraints and facilitate either 

synchronous or asynchronous behaviour or both. Apache Spark community and its Issue 

Tracker which tracks bugs affecting the Spark software (Apache Spark, 2017b) is a good 

illustration of an asynchronous long-established discussion platform. The Issue Tracker 

is a collection Q&A that were created at different times and the conversations were 

archived. 

Apache Spark is a free and open source framework for fast and general-purpose cluster 

computing. Apache Spark goal is to make data analytics fast to run and fast to write. It 

offers high level APIs (for Java, Scala, Python and R) and an optimised engine that backs 
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general execution graphs. It also provides a stack of higher-level tools such as ad hoc 

SQL and structured data processing, machine learning, graph analytics, and streaming 

analytics. (Apache Spark, 2017a) 

(Zaharia, M. and Chowdhury, M., Franklin, M.J., Shenker, S. and Stoica, I, 2010) started 

Spark in 2009 at AMPLab, University of California, Berkeley. Spark was initially a 

research project for machine learning with big data. Spark become open source in early 

2010 under a BSD license. UC Berkley gave away the project to the Apache Software 

Foundation in 2013. Then, Apache Spark became a top-level Apache project in February 

2014 and remains one of the most active projects in Apache Software Foundation. 

As of May 2017, Apache Spark has had more than 39000 commits made by 1445 

contributors representing more than one million lines of code. Over the last year 

however, Apache Spark has experienced a considerable decline in its development 

activity as can be seen in Figure 5. This can indicate many things: it could be a telling 

sign that the developer’s interest in this project is diminishing, or it might be a sign that 

Apache Spark’s code base is mature enough and that it requires fewer bug fixes and 

modifications. (Open HUB, 2017) 

 

 

Figure 5 Apache Spark development activity: Commits per month (Open HUB, 2017) 

 

Apache Spark is mostly written in Scala which makes it possible to have a concise API 

for users (Zaharia, M. and , Chowdhury, M., Franklin, M.J., Shenker, S. and Stoica, I, 

2010). Therefore, proficiency in Scala is needed to understand and modify the core of 

Apache Spark. Java and Python are also used to a lesser extent. 
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Figure 6 Programming languages used to write Apache Spark (Open HUB, 2017) 

 

3.3 Data collection and pre-processing 

Data preparation is an important and time-consuming phase in the data mining process. 

In the real world, data is not usually presented to us in the feature vector representation 

that the majority of data mining procedures take as input. To use most of the available 

machine learning algorithms, either data representation must be engineered to match the 

algorithms’ input representation, or new algorithms are built from scratch to match the 

data’s representation. Leading data scientists use both of these strategies. It is, however, 

in most cases, easier to first attempt to engineer the data to match the existing algorithms, 

since the latter underwent extensive testing and have been shown to work. 

The following section describes the way in which the text of the FOSS mailing list 

archive was extracted, analysed and turned into a form that could be used by the machine 

learning analysis. 

3.3.1 Mining text 

The challenging task was to get enough labelled data as quickly as possible for our 

machine learning algorithm. Usually, the practical way to address this challenge is to 

exploit an ongoing process where data is labelled by humans as part of their regular work 

or routines. In our instance, the process exploited was the labelling of Q&As by the Stack 

Overflow community, this action offer information about the classes used for the training 

data set. To build the database of the training and testing data to run the supervised 

machine learning algorithm on it, I text mined Stack Overflow and Apache Spark Issue 

Tracker.  
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Web scraping is systematically mining data from the Internet. Although web scraping 

can be done manually by a developer, the term normally refers to automated 

implementations done by using a bot or web crawler. 

The legality of web scraping differs from country to country. Overall, web scraping can 

be forbidden by the terms of use (ToS) of some websites, but the enforceability of these 

terms is often ambiguous. Thus, it is necessary to review the website’s ToS and respect 

the robots.txt file prior to initiating any scraping tasks.  

For this research, I chose to use an open source web scraping framework called Scrapy, 

which is written in Python. I used it to extract the data from Stack Overflow with the 

help of selectors based on XPath and Regular Expressions. Scrapy settings help adhering 

to ethical scraping practices by not flooding the website with frequent requests over a 

short period of time. Otherwise, there is a high risk of being blocked from scraping the 

website permanently. 

The scraped data was the body text of Q&A tagged “Scala”, “Java” and “Python” sorted 

by descending order of the number of votes. The output of each crawling job is 

summarised in Table 3. 

 

Table 3 Summary of scraped data from Stack Overflow 

Tag Number of 

scraped tagged 

Q&A 

Word count Stack Overflow 

total tagged Q&A 

Margin of 

error (%) 

* 

Java 1143 584485 1276503 ± 2,9 

Python 1594 579910 771122 ± 2,5 

Scala 1147 369121 67381 ± 2,9 

* 95% confidence level (The level of confidence in whether the true figure for the population lies within 

the confidence interval for the sampling) 

 

Scrapy outputs a .json file for each crawling job, these are transformed into line 

separated .txt files which are in turn concatenated into a .txt file as seen in Figure 7. 
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Figure 7 Workflow of building the training corpus 

 

The concatenated corpus.txt file is given as an input to a python script for data extraction, 

the script takes the input path of the corpus from the user, extracts relevant data and 

writes it into a CSV file named corpus.csv. The output of the said extraction can be seen 

in Figure 8. 

 

Figure 8 Terminal output for the data extraction process 

 

To generate the target variable, raw mbox textual files were downloaded from Apache 

Spark Issue Tracker mailing list archives. Mbox is a generic name for a group of related 

file formats utilised for storing sets of email messages. All these messages are stored in 

concatenated plain text in a single mbox file. 

Given the large number of emails, I sampled 10000 emails, out of a total of 161666 

existing emails (as of May 2017). The emails selected were those posted by the top 50 

most active contributors. This is a suitable sample to obtain the standard confidence level 

of 95% and margin error of ± 0.95%. 
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3.3.2 Data pre-processing 

Text is usually termed “unstructured” data. This denotes the fact that textual data lacks 

the kind of structure that is normally associated with data, namely tables of records (i.e. 

collections of feature vectors) having links between them. Nevertheless, text is amply 

structured, but it is linguistically structured, meaning that it is intended for human 

understanding, not for machines. Text data is somewhat a dirty type of data (Provost, 

2013). In FOSS mailing lists developers tend to type misspelled words, use 

ungrammatical structures, they concatenate words as one word, they use unpredictable 

abbreviations and random punctuations. In the rare cases where they write flawlessly, 

the text can include synonyms and homographs, therefore non-trivial to process.  

In order to use all the mined unstructured texts in machine learning, it needs to be pre-

processed. The first step was to filter out content generated automatically and which did 

not contain any actual natural language. Such content includes automatic confirmation 

emails sent by the web-based version control repository GitHub. These emails consist of 

source code and bug reports originating from other platforms. I manually inspected the 

sampled emails to discern the patterns these automated messages have and then 

proceeded to filter them out using regular expressions. Another issue was the duplicate 

contents inside emails resulting from quoting previous emails in a conversation. Only the 

original emails were kept for consideration and the quoted ones removed. Thus, reducing 

the size of the data to be processed. 

I used a Python script to handle mbox files and convert them into plain text files. This 

script uses regular expressions to search for lines with special characters and keywords 

to filter out irrelevant content (i.e. source code, email headers and stack traces). 

Also, a list of email addresses was retrieved from the processed mbox files. These 

collected emails addresses were used later to distribute the digital survey. 

3.4 Survey 

To validate my algorithm for the detection of the expertise of the team members, I 

conducted a digital survey. As discussed in the literature review, it is possible to reveal 

the development stage of the TMS in a group by using a survey. The web-based survey 

was sent to a total of 50 top contributing developers to assess the level of TMS 
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development within the Apache Spark community. The objective of the survey was to 

quantify the level of awareness each developer had about their peers’ technical skills. 

The measure (see Appendix A for the full set of questions used) was adapted from the 

15-item scale by (Lewis, 2003) measuring the three constituents of TMS: specialisation, 

credibility, and coordination. Participants in the survey responded to each statement 

using a five-point scale (1 = strongly disagree, 5 = strongly agree). 

The survey asks team members about their source of information and how they go about 

assigning responsibility for certain knowledge to other teammates. The survey is used to 

identify the specialist knowledge of the virtual team, the location of important 

information, the way in which the information is found, and the hurdles facing its 

location. 

To quantify the level of development of the TMS in the studied virtual team and by 

following the collective method, TMS was first measured individually and subsequently 

the individual scores were collected into a team-level measure.  
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4 Data analysis and Results 

I will present in this chapter the most relevant results from the empirical research 

according to the main aims stated in the research design. However, I will elaborate more 

on the classification process. The first section (4.1) presents the considerations that were 

followed when choosing the right classification technique for our case. In the next 

sections (4.2 and 4.3), I examine more specifically how the support vector machines and 

text feature extraction were used in our case. In the following section (4.4), the results of 

the data analysis, cross-validation and external validity analysis will be presented and I 

also summarise the whole data analysis in a table form. And finally, the survey report 

will be discussed. 

4.1 Considerations when choosing the right classification 

technique 

4.1.1 Accuracy 

While accuracy is an important indicator of a good prediction, it is not always necessary 

to achieve a high level of it. Often, an approximation is sufficient, this is determined by 

the use case. The approximate method has the advantage of shorter processing times and 

it tends to prevent overfitting (more on overfitting in next section), which is ideal for our 

case. 

4.1.2 Training time 

The time it takes to train a model can vary widely from few minutes to many hours, 

depending on the algorithm used. Accuracy and training time, usually, affect each other. 

Moreover, certain algorithms tend to be oversensitive to the amount of data points more 

than other algorithms. The choice of the algorithm also depends on the time available, 

particularly if the dataset is very large. Our dataset is relatively small; thus, training time 

was not an issue. As a matter of fact, it takes just few seconds with the developed 

algorithm to train and predict on a new testing set. 

4.1.3 Linearity 

Many machine learning algorithms utilise the linearity property (i.e. property of a linear 

function which is graphed as a straight line). For instance, linear classification assumes 

that classes are separable by one or more straight lines or planes. The algorithms that fall 
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into this category include logistic regression and SVMs. The assumption of linearity has 

no negative impact on accuracy in the case of textual inputs in SVMs but they can be 

problematic for certain problems. 

4.1.4 Parameters 

The parameters are the way through which an algorithm can be fine-tuned. They are 

adjustable factors used to specify, for example, the penalty parameter of the error term, 

the loss function and the norm used in the penalisation. The more an algorithm has 

parameters the more it is flexible. Usually, the algorithms with numerous parameters 

need a lot of testing to achieve the best settings for their parameters. Optimal settings, in 

turn, have an impact on the accuracy and training time. In our case the number of 

parameters was low.   

4.1.5 Number of features 

In some instances, the data at hand can contain a huge number of features. In the case of 

textual data, for example, there are as many features as there are terms. This high number 

of features can slow down certain machine learning algorithms and make the training 

time unrealistically long. SVMs are remarkable at handling data with a high number of 

features, making them a suitable candidate for text classification in our case. 

4.1.6 Summary 

The choice of the right machine learning algorithm depends on: first, the data structure 

and the assumptions made regarding it; second, on the results sought. The learning model 

that best fits our textual data is SVM, which has the advantages of good accuracy, short 

training times and a limited number of parameters and is not memory hungry. 

Additionally, SVMs can divide classes faster and avoid overfitting more than most other 

algorithms. The chart in Figure 9 was used to help make this choice. 
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Figure 9 Chart guide for choosing the right machine learning algorithm 
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4.2 Support Vector Machines 

If a sizeable corpus of text is at hand, then choosing any classifier would probably result 

in very similar classification performance and there might be no clear winning classifier 

accuracy-wise. In this case, it advisable that the selection of a classifier be determined 

by its scalability and/or run-time efficiency. Roughly, as the training data doubles in size, 

the classifier’s performance would linearly increase. However, with huge corpus size, 

the increase is sub-linear. I had at hand an acceptable amount of labelled data from Stack 

Overflow, thus I was in the perfect position to use an SVM. 

Choosing which classification technique to use in our case depended also on the kind of 

patterns that I wanted to detect. Since the input data is a textual data with high-

dimensionality (i.e. the number of variables is the number of words), SVM techniques 

are the most adequate in this instance. SVMs are even suitable in instances where the 

number of dimensions is higher than the number of samples. Cortes and Vapnik (1995) 

demonstrated that SVMs outperformed other techniques in handling this kind of data. 

SVMs can be considered as kernel machines. Thus, their behaviour can be adjusted by 

specifying various kernel functions for the decision function, adding to their versatility. 

Very commonly used kernel functions include linear, polynomial, (Gaussian) radial basis 

function, and string kernels. 

Additionally, since textual data is high-dimensional, linearly separating the data becomes 

less difficult. Accordingly, the majority of text classification problems are linearly 

separable (Joachims, 1998). Thus, the most applicable classifier for our type of data is a 

linear kernel. 

scikit-learn offers an implementation of the linear kernel of support vector classification 

inside the sklearn.svm module. This class is called LinearSVC and can perform multi-

class classification on a text dataset. LinearSVC focuses on classifying large amounts of 

documents and variables at a faster run-time than the standard SVC. These capabilities 

allow LinearSVC to be a good choice for text classification. 

4.3 Text feature extraction 

It is not possible to feed machine learning algorithms directly with raw textual data since 

the majority of these algorithms require a matrix of numerical feature vectors that 
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represent the text. The general process of creating this matrix is called text feature 

extraction. 

Scikit-learn provides a module called sklearn.feature_extraction that performs feature 

extraction. When fed with raw text, it outputs a format accepted by machine learning 

algorithms. In order to do so, this module offers useful NLP functionalities, including:  

• Tokenisation, which is the process of converting textual data into words, phrases 

or other significant items referred to as tokens and assigning an identifying 

number to each resulting token. White-space characters and/or punctuations are 

used as token separators to split text into individual elements. 

• Occurrences of each token within every document are counted. Every token 

occurrence frequency is thus considered as a feature. 

• Occurring tokens are normalised and weighted according to their importance in 

the documents. 

By following these steps (i.e. tokenisation, counting and normalisation) I created a matrix 

that represent the text mined from Stack Overflow and Apache Spark. This matrix is 

called a Bag-of-Words, where textual data are represented simply by word frequencies 

regardless of the location of the word inside the document or its syntax. 

A Bag-of-words or Bag of n-grams is a scheme used in NLP as a representation of 

documents as matrix of unigrams occurring in it. An n-gram is a sequence of contiguous 

words. For example, in Figure 10, are unigram, bigram and bag-of-words representations 

of the same sample text. Including features of higher n-grams in the feature vector 

increases the chances of detecting multi-word sentences occurring in the text. 

The class CountVectorizer in the module sklearn.feature_extraction have been used 

in combination with an n-gram range of (1-2) to implement both tokenisation and 

occurrence counting in a single go.  
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Figure 10 Sample text with unigram, bigram and bag-of-words 

 

In sizable corpora of text, certain kind of words will be occurring very frequently (e.g. 

“they”, “an”, “and”, etc…), these stop-words thus are likely offering empirically 

insignificant information that cannot be used to distinguish between different classes of 

documents. Assuming that I fed the classifier directly with raw frequencies of occurrence 

of a token in a given document, those high-frequency tokens would overshadow the 

sparser yet more meaningful tokens that reflect the actual content of the documents. 

To counterbalance the shadowing effect of these stop-words there are two strategies to 

follow, either outright remove them or use TF-IDF transform to reweigh the count data. 

scikit-learn implements this functionality through the class TfidfTransformer, inside the 

module sklearn.feature_extraction. TfidfTransformer transforms a given count data 

to a normalised TF or TF-IDF matrix. The purpose of utilising TF-IDF as a substitute to 

raw count features is to weigh-down the influence of terms that appear frequently in 

documents and which are therefore less descriptive than terms that appear sparsely in the 

training data. 

The class TfidfTransformer, however, computes TF-IDF somewhat differently than the 

standard approach discussed earlier in the literature review. The following equations 

were used by scikit-learn to calculate IDF and TF-IDF:    

Albert Einstein reflected this when he famously said, “I know not with 

what weapons Word War III will be fought, but World War IV will be 

fought with sticks and stones.” 

Albert Einstein reflected this when he famously said , “ I know 

not with what weapons World War II will be fought , but 

World War IV will be fought with sticks and stones . “ 

Albert Einstein  Einstein reflected  This when  when he  he 

famously  famously said  said ,  , “  “   I know  know not  

not with  with what  what weapons  weapons world  world 

War war III  III will  will be be fought  fought ,  , but  but 

World  World War  War IV  IV will   will be  be fought  

fought with  with sticks  sticks and  and stones  stones .  . “ 

Bigram(n=2) Unigram(n=1) 

Raw text 

Bag-of-words 

War:2 fought: 1 be:2 will:2 III:1 Albert:1 

famously:1 sticks:1 world:2 but:1 IV:1 I:1 

weapons:1 when:1 not:1 with:2 stones:1 fought:1 

this:1 Einstein:1 reflected:1 know:1 said:1 
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𝐼𝐷𝐹(𝑡,𝑑) = log (1 + 𝑛𝑑/1 + 𝐷𝐹(𝑑,𝑡)) 

And 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡,𝑑) =  𝑇𝐹(𝑡,𝑑) ×(𝐼𝐷𝐹(𝑡,𝑑) + 1) 

Another difference worth noting is that typically raw count data is normalised before 

ccomputing TF-IDF, TfidfTransformer, however, normalises the TD-IDF directly. 

4.4 Training the Support Vector Machine classifier 

Supervised machine learning is called classification when the data are utilised to predict 

categories. When, predicting two categories the classification is called binomial or two-

class classification. When classifying instances into more than two categories then the 

classification is called multinomial or multiclass classification. The multiclass 

classification assumes that each data point is mapped to a unique label. In our instance, 

given the text documents making up our corpus, a multiclass classification is classifying 

them by labels: Scala, Java or Python. 

Although few classification algorithms naturally allow for instances to be classified into 

three classes or more, the basic support vector machines, however, support only binomial 

classification. Yet, there are variety of strategies to extend binary classification to deal 

with multiclass classifications. The strategy adopted in our case is to reduce our 

multiclass classification problem to several binomial classifications. The methods 

proposed to reduce the multiclass problem into several binomial problems is also referred 

to as problem transformation methods. The problem transformation can be achieved by 

either a One-vs-One or One-vs-Rest schemes. In our instance, it is the latter scheme that 

is chosen because it is the most typically used scheme and is a reasonable default choice. 

The One-vs-Rest is a scheme that fits a single binomial classifier on each individual class. 

Then, for each of these binomial classifiers, another fitting is done, this time the classes 

are assessed against all other classes in the model, as if it was an ordinary binomial 

classification case. Subsequently, predictions are carried out through these individual 

binomial classifiers, and the prediction that achieves maximum confidence score is then 

chosen. 

The advantage of the One-vs-All scheme is that it is computationally efficient, since the 

number of required classifiers is n-classes. Additionally, this scheme is useful for 
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acquiring information about the classes by examining their mapped classifier, since every 

class corresponds to one and only one classifier. Basically, a collection of individual 

binomial classifiers is built and the resulting predictions are then aggregated to build a 

single classifier that predicts all classes as shown by Figure 11. Therefore, any binomial 

classifier can be utilised to create a One-vs-Rest classifier. 

 

Figure 11 One-vs-Rest scheme 

scikit-learn implements One-vs-Rest strategy through the class OneVsRestClassifier, as 

part of the module sklearn.multiclass. This class was used to configure a binomial 

LinearSVC SVM classifier which in turn was fed to the One-vs-Rest classifier. This 

classifier creates the binomial LinearSVC SVM for all the target classes and then runs 

the One-vs-Rest class to merge the resulting predictions for all the classes. 

When training the classifier, one binomial classifier is trained per class. To do so, the 

multiclass labels are converted to binomial labels indicating whether it belongs or not to 

the class. To binarize the labels in a One-vs-Rest way, the class LabelBinarizer from the 

module sklearn.preprocessing is used. LabelBinarizer makes the conversion of labels 

handy with the fit_transform method. Finally, when making predictions, those classes 

whose associated classifier has the highest confidence score are assigned. LabelBinarizer 

implements this process through the inverse_transform method. 

4.4.1 Evaluation of the Classification’s Performance: Cross-validation 

I discussed previously, the steps followed to fit our model to the training dataset so that 

I can reliably extend the predictions made by the machine learning algorithm to new 

unseen data. To do this in practice, the already shuffled data is partitioned into two parts, 
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with each portion containing the same distribution of samples: 80% of the data is 

assigned to train the classifier and the remaining 20% is unseen by the classifier and is 

called a test set.  

80% training set - this is the data for which the algorithm gets acquainted with the labels 

and which is fed to the training process to build the classifier. 

20% testing set - this is the data that is kept hidden from the algorithm until after the 

training process finishes. It is used to compute metrics on the algorithm’s behaviour. For 

each entry in the testing set an attempt to predict its value is made by using the built 

classifier then a comparison is made with the real value. 

While this technique gives satisfactory results, it has twos disadvantages: first the 

classifier is not trained and tested on all the samples in the dataset; second, there is a high 

risk of the model learning erroneous patterns that are valid only within the training set. 

This risk is referred to as overfitting. 

In overfitting, a machine learning algorithm, instead of uncovering the underlying 

structure of the data, it points to the random error or noise within the data. Overfitting 

may occur when an algorithm is very elaborate, like when it has an excessive number of 

parameters compared to the number of data points. In such instance, the generated model 

performs poorly in predictions, because it reacts disproportionately at the slightest 

fluctuation in the training data set.  

To prevent overfitting, while adjusting the classification’s parameters, it is indispensable 

to hold out a portion of the data set for validation besides the training and testing sets. In 

this case, the training set is utilised to train the classifier, the I validate against the 

validation set, and lastly use the test set to get the model’s performance estimations (e.g. 

accuracy, precision, recall and f-score). The validation set works as a hybrid between the 

training and test data sets as it is a training data used as well for testing, yet, it is not 

considered a part of the proper training nor test sets.  

So instead of splitting the data into 2:8 ratio, I used a more advanced technique referred 

to as K-fold cross-validation. This technique splits the data into k portions, holds one and 

combines the remaining portions and use them as a training set while validating against 

the portion held earlier. This process is then repeated k times (i.e. the number of folds) 

as a different fold is held each time.  
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Table 4 Classification performance of different k-fold sizes of the dataset 

Number of 

folds 

% of 

Accuracy 

Precision Recall F1-

score 

Support 

2 87,78 0,91 0,88 0,88 1940 

4 88,96 0,91 0,89 0,89 970 

6 89,93 0,91 0,90 0,90 646 

8 91,33 0,93 0,91 0,91 485 

10 89,43 0,91 0,89 0,90 388 

12 88,54 0,91 0,89 0,89 323 

 

scikit-learn implements k-fold cross-validation though the class 

sklearn.cross_validation.KFold. This class was used to split the dataset into various 

values of k folds and cross-validate against them. The k value with the highest accuracy 

was chosen, which is in this case 8 folds as can be seen in Table 4. The KFold fold class 

generates k pairs of bitmasks–vectors of Booleans that are utilised to choose randomised 

parts of the dataset for the training and validation sets. Then the performance scores for 

every portion are averaged to obtain a fairly accurate approximation of the algorithm’s 

overall performance. 

4.4.2 External Validity: Classification Performance in an Independent Test Set 

The challenge in creating new predictive models is to build a model that is performing 

very well at predicting classes on completely new and unseen dataset. Thus, it is very 

crucial to utilise robust methods for training and evaluating the classifier on the existing 

training data set. As the reliability of the model’s performance estimation increases, the 

confidence in the improved performance of the model increases as well. This in turn has 

a positive effect on the operational use of the built algorithm.  

The ultimate test of the accuracy of the predictions made by the LinearSVC SVM 

classifier I built is how it performs on an independent test set which remained unseen by 

the algorithm so far. This set must be from a similar domain on which the algorithm has 

been trained, namely Stack Overflow Q&A body of text. 
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In essence, a classification’s accuracy is the ratio of the number of correctly predicted 

classes to all predictions it made. This is the most commonly used evaluation metric for 

classifications. However, it is only appropriate to use when the number of data points in 

each class is approximately the same and that all the predictions made and the related 

prediction errors are equally significant, which is the case in our data set. 

In practice, the accuracy of this classifier was calculated by using the class 

sklearn.metrics.accuracy_score. In the case of multiclass classification, the accuracy 

score is the same as the Jaccard similarity coefficient score. The Jaccard index assesses 

the similarity between two or more label sets. It is referred to as Intersection over Union 

since it is measured by the size of the intersection divided by the size of the union of two 

or more sample sets. It is useful when comparing a set of actual labels to their mapped 

set of predicted labels. For our LinearSVC SVM algorithm the achieved accuracy was 

91,33%. 

Accuracy should be considered just an initial assessment of the predictive power of the 

algorithm, as well as an intuitive measure for prediction. However, an algorithm can have 

a good accuracy but still be of no use due to the accuracy paradox. 

In the field of predictive analytics, the accuracy paradox refers to the phenomenon by 

which a classifier with a given degree of accuracy can make better predictions than a 

classifier with greater accuracy. To further insure the high quality of the predictive power 

of our model, other metrics were computed such as precision, recall, F1-score and 

support. 

scikit-learn offers a practical way to compute the aforementioned metrics all at once 

through the class sklearn.metrics.precision_recall_fscore_support which computes 

precision, recall, F1-score and support for each class. 

The precision, also referred to as the positive predictive value, is the ratio of true positives 

to the total number of true positives and false positives. It indicates, intuitively, how the 

algorithm is good at not labelling a negative sample as being positive. In our case, it is 

the sum of the positive predictions made divided by the sum of positive label values 

predicted. The model I built achieved a precision of 93%. If it would have been a low 

precision it would have indicated that there is an excessive number of false positives. 
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The following metric to compute was the recall. The recall, also referred to as true 

positive rate, is defined as the ratio of true positives to the total number of true positives 

and false negatives. It gives the intuition of how good is the algorithm at finding all the 

positive samples. In the case of our classifier, it is the total sum of the positive predictions 

made divided by the sum of label values in the testing data set. The LinearSVC SVM 

classifier achieved a recall of 91%. If it were a low recall value it would have indicated 

an excessive number of false negatives. 

The final metric measured was the F1 score. This metric takes into account both the 

precision and recall, discussed above, to calculate the measure. The F1 score can be 

considered as a weighted average of the precision and recall. Traditionally, it is the 

harmonic mean of precision and recall and calculated as follows: 

 

The F1 score can range from 0 (worst) to 1 (best). The classifier I built has an F1 score of 

0,91. 

The classification report, as shown in Figure 12, was outputted at the end of the training 

and in it figure al the aforementioned measures. 

 

Figure 12 Terminal output for the classification 
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Also indicated in the classification report is the support, which is the number of 

occurrences of each class in the actual labels. 

Using the classification accuracy and no other complementary measures may be 

misleading when the number of data points differs from class to class or when the 

classification problem is a multiclass case. To address this issue a confusion matrix was 

computed to show which predications the classifier got right and which were wrong. The 

confusion matrix is a convenient representation of the predictive powers of a multiclass 

classifier. It is also referred to as an error matrix, which has a table layout that summarises 

the correct and incorrect predictions of a supervised machine learning algorithm by class 

and with either count or percentage values. It is named a confusion matrix because it 

easily shows the ways in which the system confuses classes and labelling one as another 

when making predictions. 

The class sklearn.metrics.confusion_matrix computes the confusion matrix for our 

classifier to evaluate its accuracy. Figure 13 shows a heatmap of predicted classes on the 

x-axis and actual classes on the y-axis. 

 

 

Figure 13 Heatmap of the confusion matrix (percentage) 
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4.4.3 Summary 

The following pipeline, shown in Table 5, was implemented in order to build the 

supervised LinearSVC multiclass classifier model for our computational framework. 

Table 5 Pipeline implemented for classification 

Step Description of the Method scikit-learn module 

Pre-processing Tokenising and removal of stopwords 

are handled by a high-level module 

that can build a dictionary of features 

and transform documents to feature 

vectors 

CountVectorizer 

Feature extraction Transform a count matrix to a 

normalized TF-IDF representation 

TfidfTransformer 

Label 

transformation 

Label Binarization LabelBinarizer 

Training the 

classifier 

Train a classifier to make multiclass 

predications of the class of a document 

OneVsRestClassifier

(LinearSVC()) 

Building a pipeline a module that acts like a compound 

classifier is provided to make 

(vectorizer=>transformer=>classifier) 

easier to work with 

pipeline 

Cross-validation Cross-Validation KFold 

Evaluation metrics precision, recall f1-score and support precision_recall_fs

core_support 

accuracy accuracy_score 

Confusion matrix confusion_matrix 
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4.5 Survey report 

A digital survey was conducted at the end of the first phase of this research, and after 

collecting the relevant data about the Apache Spark virtual community members (i.e. 

username, email address and body of conversations). The digital survey was distributed 

to top contributing developers to assess issues related to the community’s TMS. The 

survey has three objectives, the first one was to get results that would suggest a 

correlation between the results of our classifier’s predictions and the actual skillsets of 

the participants. The second objective was to get feedback from participants on the 

usefulness of the computational framework developed by this research. The final 

objective was to assess the level of development of TMS in the Apache Spark virtual 

community. 

Out of the 1687 contributing developers to the Apache Spark Issues Tracker 1068 had 

more than 2 emails from which 312 had more than 10 emails which in turn had only 60 

contributors that had more than 50 emails. The survey was sent to these 60 top 

contributors, 47 emails made it to the final recipients from which only 4 responded. 

Making a corpus from each contributor’s emails is labour intensive and time consuming 

endeavour, it involves cleaning the data manually and matching the names of the authors 

with their email addresses. Due to time constraint, I couldn’t go down the list and do this 

process to include more contributors. 

Even though the response rate to the survey was low, here are highlights of the findings:  

Members were asked to tell whether it would be valuable for them to be able to 

automatically identify the members with expertise in any given technology within their 

team. 

 

Figure 14 Answers to the question “Q4 - It would be valuable for me to be able to automatically identify 

the members with expertise in a given technology.” 
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According to the information collected through the questionnaire (See Appendix B for 

the full measure) most of the participants thought that a tool that helps with locating 

expertise within their virtual team would be valuable. However, this inference must be 

taken with caution and should be verified by future research in a more active community 

with members that are more willing to respond to surveys. 

Next, the participants were asked to rate their expertise on top three programming 

languages that are used to write Apache Spark; namely, Scala, Java and Python. Half of 

the respondents said that they were experts in both Scala and Java, the other half said 

that they were either beginners or advanced in these technologies (Figure 15). The goal 

of this question was to find a correlation between the classifier’s predications and the 

actual skills of the members of the virtual team. The results of the survey however are 

inconclusive. Moreover, for future research the case of a member being expert in more 

than one technology should be taken into consideration. 

 

Figure 15 "Q2 - How would you rate your expertise in the following technologies?" 

 

Individual scores were collected with Lewis' (2003) scale (Appendix B) according to the 

collective method, discussed in the literature review, which requires, first, that individual 

measures be gathered and then combined into a team-level measure (Cooke et al., 2000). 

Thus, after calculating individual scores the following step was to aggregate them to the 

group level. Aggregated team scores are presented in Table 6. Knowledge specialisation 

was, according to the scale, very high. However, coordination was poor between team 

members.  
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Table 6 Team scores on three dimensions of TMS according to the scale adapted from Lewis 

Dimension Team aggregated score 

Specialisation 4,25/5 

Credibility 3,91/5 

Coordination 1,5/5 

 

The aggregated scores specify the level of TMS development on three dimensions on a 

scale from 1 to 5. Since these dimensions are equally important for a well-developed 

TMS, it was concluded that TMS of the Apache Spark virtual team was not well 

developed. However, this deduction must be taken with caution and should be further 

verified by future research.  
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5  Discussion 

In this section, the findings of this study will be discussed and put into their theoretical 

perspective. Moreover, the analytical process presented here could benefit an 

organisation in uncovering, describing and evaluating the quality of their TMS. It offers 

indications of the order of events in the development of TMS in virtual teams and 

functions as a tool from which the a more in-depth implementation of sociotechnical 

frameworks that support and improve organisational TMS could be derived. 

5.1 Effects of virtualness on TMS 

This research started with the proposition that a developed TMS is an essential 

microfoundation to dynamic capabilities that are important for an organisation to grow 

and sustain its competitive advantage. By offering support for TMS I intended to create 

awareness among team members regarding who knows what in their team. 

The first research question asked: How TMS manifests itself in virtually distributed 

teams and how can we locate who knows what within these teams? This question was 

brought to my mind by the not so well understood assumed effect of distributed work 

arrangements on TMS development. It is more difficult for a virtual team to build its 

TMS than a traditional face-to-face team because of the diminished or even absent real 

interaction opportunities and the lack of contextual work information and physical 

colocation. Moreover, virtual teams’ members cannot train collectively and this has a 

negative impact on the development of TMS (R. Moreland, L. Myaskovsky, 2000).Also, 

these members rely on a less rich media for their communication, such as email and chat 

which have less power to catch teammates’ attention like would other visual cues do (i.e. 

gender, age, etc…). The lack of these real-world indicators results in difficulties in 

coordination between teammates since information about who knows what is “less 

visible”. The absence of past collaboration between team members and lack of diversity 

in their expertise also limits the development of TMS in virtual teams.  

Furthermore, the characteristics of dynamic structure and cultural diversity are having a 

negative impact on TMS in Apache Spark virtual community. Hollingshead (1998) notes 

that there is a negative correlation between the duration a team has spent together and 

the ability of a member of that team to locate the expertise of other teammates. 
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Repeating work-related exchanges between teammates have been proven by Lewis et al. 

(2005) to positively influence the development of TMS and the related knowledge 

transfer. TMS development depends, consequently, on a stable team composition. A 

virtual team like the one studied here tends to have varying team members through time 

which could lead to the disruption of the encoded knowledge, misallocation of where it 

is stored and non-coordinated retrieval. 

Cultural diversity, like the one seen in the Apache Spark community has most probably 

an influence on the development of its TMS. Indeed, miscommunication and conflicts 

can arise from different cultural identities that may result in considerable loss in 

processes related to TMS development. 

From all the above issues put together, the following is proposed: 

Proposition 1: Teams operating in an environment subject to virtualness (i.e. 

geographically and temporally distant, computer mediated communication, 

changing membership and culturally diverse) will see the development of their 

TMS hindered. 

5.2 Effects of the developed framework on TMS in virtual teams 

Although I have founded my research based on the hypothesis that augmenting TMS 

artificially could benefit its development in virtual teams, thus far I have not examined 

the possibility of using externally derived expertise location to actually support TMS in 

this type of teams. To know who knows what and making this information easily 

accessible to anyone who needs it would possibly spawn substantial spike in performance 

for members of a virtual team. These members would then focus solely on other tasks 

instead of constantly trying to update the information about their needed external 

expertise sources.  

R. Moreland, L. Myaskovsky (2000) set up an experimental examination of teams who 

were offered generated assessments of teammates' levels of performance that were 

derived externally. They showed through their experimentation that these teams were 

capable to achieve tasks as efficiently as teams who did train collectively to perform the 

task. This can be considered as strong indication that TMS can be artificially formed 

through technological means that would generate the building blocks of TMS. Indeed, 

Griffith et al. (2003) indicated that poor TMS development in virtual teams can be 



56 

 

 

mitigated to the degree to which information technology or organisational systems are 

utilised to support TMS development. 

Consequently, the following proposition is suggested: 

Proposition 2: The anticipated negative effect of virtualness on the development of 

TMS can be mitigated with a technological tool that assists virtual team members in 

knowing what others in their team know. 

To achieve this objective, data were collected and analysed through machine learning 

and NLP techniques. I have predicted different classes of skills solely through the 

developers’ contributions in the Apache Spark mailing lists. The results presented in 

Chapter 4 support the hypothesis that skillsets of members of a virtual team can be 

extracted and mapped.  

To validate my algorithm, I conducted a digital survey. The survey has three objectives, 

the first one was to get results that would suggest a correlation between the results of my 

classifier’s predictions and the actual skillsets of the developers. The second objective 

was to get feedback from the developers on the usefulness of an information technology 

tool that would assist them in locating expertise within their team. The final objective 

was to assess the level of development of TMS in the Apache Spark virtual community. 

However, the data from the survey is inconclusive due to very low response rate. 

Finally, the findings of my research have also implications to managers. The ultimate 

goal of this research is to give tools to managers for detecting early signs of anomalies 

affecting TMS in a distributed work arrangement. Thanks to this computational 

framework, they could address those issues in a timely manner, before they affect the 

collaboration and productivity within their teams and consequently hinder one of the 

dynamic capabilities in their organisation. 
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6 Conclusion 

Altogether, research on TMS in distributed work arrangements is at its development 

stage. This thesis represents research in the broad area of leveraging big data to benefit 

organisations. Specifically, it sheds light on innovative ways to use machine learning and 

NLP techniques to augment TMS in virtual teams by improving knowledge location. 

This study developed a computational framework and a survey that use both mined text 

and, to a certain degree, answers from responding developers to uncover underlying 

patterns that can be employed to assist individual members in finding who knows what 

within their teams. This research designed and built algorithms that were used to extract 

data from open source communities and use them to identify and locate members’ 

skillsets. In an organisational setting, this framework can improve employees’ 

collaboration and productivity by supporting the search for experts within the 

organisation. 

The main contribution of this research, however, lies chiefly in the development of a 

machine learning artefact that classifies textual data and labels them, and the use of that 

model to provide intelligent support for TMS. 

The present chapter offers a summary of the outcomes of this study. First, I will discuss 

what was achieved. Second, I will reflect on the limitations and difficulties encountered 

throughout this research journey. Last, I will suggest research directions for the short and 

long term. 

6.1 Summary of the accomplished work 

The current study made the proposition and implementation of a computational 

framework for determining the skillset of individual members in virtual teams that use 

FOSS mailing lists as a mean for interaction. The application of this framework allowed 

me to offer intelligent support for the development of TMS through a novel algorithmic 

approach. 

In the introduction of this thesis I stated three research questions, they were addressed as 

follows: 
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RQ1: How TMS manifests itself in virtually distributed teams and how can we locate 

who knows what within these teams? 

I have (a) reviewed the literature about TMS in general and TMS in virtual teams then I 

focused on supporting one of the components of TMS which expertise location in virtual 

teams. (b) Skillsets have been chosen to inform a better tailored support adapted for 

expertise location in the Apache Spark community. I have formalised the input 

information to catch important data about team members and their conversations; 

 

RQ2: How can we map the skillset of the individual members of a virtually 

distributed team? And how can we extract the information that represent these 

skillsets? 

I have (b) developed algorithms that mine Stack Overflow Q&As for labelled data and 

(c) Apache Spark archived mailing lists for unlabelled data and (d) I developed a 

supervised machine learning algorithm to analyse and classify the unlabelled data based 

on the labelled data and NLP techniques. A total of 3100 labelled Q&As from Stack 

Overflow and 800 unlabelled text documents from Apache Spark Issues Tracker were 

used in this research. The results show that the approach adopted in the research classifies 

conversations with high accuracy, and that it is effective at indicating members’ skillsets 

based on their conversation history. 

 

RQ3: How would the developed computational framework support the development 

of TMS within virtually distributed teams? 

I run a digital survey (e) among the members of the Apache Spark virtual team based on 

Lewis’s field scale. Although the response rate was low, the partial results show that 

pinpointing who knows what can be beneficial for the development of TMS in virtually 

distributed teams. 

6.2 Evaluation of the research and its limitations 

The skillsets extracted were based on the mailing list archived data. This method let me 

capture a member’s skill based only on the conversations between members of the 

virtually distributed team. Subsequently, I succeeded to predict a member’s 
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programming skills that other members were not aware of. While using archived data 

from mailing lists in this way can have its benefits as we have seen, notably economy in 

time and labour, there are also limitations. For instance, all the data mined from the 

mailing list archives captured only the virtual interplay between members of the team. 

However, all the data about the real-world team members’ interactions were totally 

missing from the mailing list. For example, there was offline team work when the Spark 

project has been created and transferred to Apache. Moreover, when new members join 

the team, there are no data relevant to these members’ skillset in the archived mailing 

list. Therefore, skillset of that member would not be captured. Filling these gaps was one 

of the main reasons for using a survey at the end of the study. 

A validation of the predictive powers of the computational framework have been made. 

To achieve this, I have employed a huge corpus of authentic data from Stack Overflow. 

Using already available authentic archival data is a common practice for validating 

supervised machine learning algorithms. 

Another limitation of using archived data, which became apparent only after 

administering the survey, was the low response rate. Over the last year, Apache Spark 

has experienced a considerable decline in its development activity. This could be a telling 

sign that the developer’s interest in this project is diminishing, or it might be a sign that 

Apache Spark’s code base is mature enough and that it requires fewer bug fixes and 

modifications. I could not make any correlation with the results achieved by the 

algorithm since members of the virtual team were not responding. Choosing a more 

active project than Apache Spark would have been more judicious. 

One more weakness of the digital survey is how the questions in the questionnaire (see 

Appendix B) were formulated. Team members were required to choose answers from a 

list as their reply to each question. A more suitable approach would have been to place 

checkboxes next to a member’s identifier and let members choose the skill or skills they 

think were associated with that person. 

I would also, point to the fact that Austin (2003) provides a survey setup for capturing 

TMS in teams, but unlike Lewis’s scale, it measures the construct indirectly by 

comparing team members' assessments of competence areas. Actually, it is usually better 

to measure constructs indirectly rather than directly asking team members to assess their 

ability, knowledge, or behaviours. 
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6.3 Improvements and Recommendation for future research 

The current research showed promising results in using NLP and machine learning 

techniques to support the development of TMS in virtually distributed teams. However, 

there are improvements to make to the current computational framework and the 

companion digital survey. The following directions for future studies are suggested: 

6.3.1 Short-term research direction 

6.3.1.1 Changing skills of the members of the virtually distributed team  

Even though the current research can pinpoint a member’s programming skills by 

classifying their conversation into classes, the current computational framework does not 

consider the changing nature of a member’s skillset through time. There are modelling 

technologies that can detect how expertise evolve in time. For instance Song et al. (2005) 

developed such a tool that dynamically describes and updates a member’s expertise 

profile. But instead of using keyword extraction they used relational and evolutionary 

graph models that are used to mine, retrieve and visualise experts. 

Similarly, in our case, functionality can be added to the supervised machine learning 

algorithm to describe the evolution of members’ skillsets and the timestamps associated 

with these changes. 

6.3.1.2 Add multi-labelling capability to the algorithm 

The algorithms developed for labelling the conversation’s body of text can assign only 

one label per class, and this could be a problem. For example, when the member has 

many programming skills the algorithm can predict only one of those skills. A possible 

way to solve this issue is to consider using multiclass multilabel classification technique. 

In this way, a set of a member’s skills will be described. A different approach would be 

to add to the current algorithm a functionality that shows all the labels with their 

prediction probabilities. This is possible by using predict_proba method from scikit-

learn. 

6.3.1.3 Increasing the sizes of the corpora and adding more classes 

In this research, for each of the three classes, an average of 1000 Q&A were used for 

training and another 200 were used for testing in the 8-fold cross-validation. Even though 

the relatively medium sizes of the training and testing sets, they are considered suitable 
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for supervised machine learning.  Usually, the bigger the data the better. By utilising 

more Q&As for training and testing we would capture more data which would increase 

the classifiers’ predictive powers. To address this issue, we need to asses by how much 

the classifier’s performance metrics improve as the size of the corpus of Q&As for the 

training and test increases. It is very probable that there is a limit beyond which 

increasing the number of Q&As would not have any further positive impact on the 

performance of the classifier. Once that limit is reached I can rest assured that the 

predictions made by the algorithm reflect the actual skills of the members of the Apache 

Spark virtual team with very high confidence. 

Additionally, it is important to add more classes for more programming skills, to make 

the results more generalisable and reflect the common real-world scenario where a 

developer masters many programming languages at once. 

6.3.1.4 Build an integrated expertise detection application 

The last part of the short-term research direction would be to compile the presently 

discrete components of the source code into a fully integrated and automated application. 

These components comprise the algorithms that mine Stack Overflow and Apache Spark 

mailing list archives to generate raw text from the Q&As and emails and also, the 

algorithm that performs the classification per se. This integrated application can be user 

friendly and provide the user with a graphical user interface (GUI) with options to filter 

members with a certain skill or a combination of skills. 

6.3.2 Long-term research direction 

6.3.2.1 Continuous monitoring of TMS 

As an extension of the approach adopted in this research, we can consider real time 

continuous monitoring of the virtually distributed teams for indicators of TMS by mining 

both unvarying and changing patterns that would permit the early detection of evetual 

expertise location anomalies with respect to TMS. This will inform the initiation of 

appropriate corrective measures. Moreover, it will be of interest to examine the phases 

through which a TMS in a virtually distributed team goes. 

6.3.2.2 Application in a different type of virtual teams 

To be able to apply the approach of this research in diverse types of distributed work 

arrangement is an interesting extension of this work. A community of researchers is one 
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potential applications of the present framework. Communities of practice are, also, an 

appealing possible use of this framework. It would be of interest also to consider whether 

this approach could assist communities of practice members and expand their practice. 

Particularly, when these members are geographically distant, it would be thought-

provoking to study what benefits (if any) this framework could have on the TMS in such 

communities. 

6.3.2.3 Including the other two components of TMS 

Lastly, the experimental design can be improved further to include all the dimensions of 

TMS, namely: Group knowledge stock; Consensus about knowledge sources; 

Specialisation of expertise and accuracy of knowledge identification. 

6.4 Concluding remarks 

I had begun this research journey with the understanding that by offering support for 

TMS in a distributed work arrangement, I would be supporting a microfoundation of 

dynamic capability. Thus, assisting organisations in sustaining their competitive 

advantage. I have argued that by augmenting the TMS through machine learning 

algorithms and NLP techniques I would be facilitating expertise location and improve 

the experience of virtual teams’ members by being aware of who knows what in their 

environment. Eventually, the goal of this type of research is to give tools to managers for 

detecting early signs of anomalies affecting TMS in a project. Thus, they could address 

those issues in a timely manner, before they affect the collaboration and productivity 

within their teams. 

This research only scratched the surface of TMS analysis in FOSS archived mailing lists, 

therefore further research is necessary on other types of systems and tools used to 

facilitate the interaction of the members of a virtually distributed team. I am assured that 

future research on TMS would profit from the work presented in this thesis. This work 

proved that the approach presented can be deemed a valuable addition to the TMS 

research field. The range and variety of the aspects I researched and the knowledge I 

have acquired through examining numerous theoretical and technical areas resulted in a 

truly challenging and stimulating research journey. 
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Appendix A: Transactive Memory Systems Survey 

Based on the scale developed by Lewis (2003) 

General questions: 

1. How would you rate your expertise in the following technologies: Python, Scala, Java? 

(scale: Beginner, Advanced, Expert) 

2. It would be valuable for me to be able to automatically identify the members with 

expertise in a given technology. 

Specialisation questions: 

1. Team members have specialised knowledge in specific aspects of the project. 

2. I have knowledge about a specific aspect of the project that other team members don't 

have. 

3. Different team members are responsible for expertise in different areas. 

4. The specialised knowledge of many team members was needed to complete project 

related tasks. 

5. I know which team members have expertise in specific areas. 

Credibility questions: 

6. I was comfortable accepting suggestions from other team members. 

7. I trusted that other members’ knowledge was credible. 

8. I was confidently relying on the information that other team members provided. 

9. When other team members gave some information, I wanted to double-check it for 

myself. 

10. I had a lot of faith in other team members’ expertise. 

Coordination questions: 

11. Our team worked together in a well-coordinated way. 

12. The team members had very few misunderstandings when completing tasks. 

13. The team members usually completed the tasks on the first attempt. 

14. The team accomplished tasks smoothly and efficiently. 

15. There was not much confusion about how we would accomplish the task. 

NB: All items in this survey use a 5-point disagree-agree response (1=Strongly agree, 2=Somewhat agree, 3=Neither 

agree nor disagree, 4=Somewhat disagree, 5=Strongly disagree). 


