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Abstract— ENCRYPT is an EU funded research initiative, 

working towards the development of a scalable, practical, 
adaptable privacy-preserving framework, allowing researchers 
and developers to process data stored in federated cross-border 
data spaces in a GDPR-compliant way. ENCRYPT proposes an 
intelligent and user-centric platform for the confidential 
processing of privacy-sensitive data via configurable, optimizable, 
and verifiable privacy-preserving techniques. Hence, ENCRYPT 
builds on top of cutting-edge technologies such as Fully 
Homomorphic Encryption, Secure Multi-Party Computation, 
Differential Privacy, Trusted Execution Environment, GPU 
acceleration, knowledge graphs, and AI-based recommendation 
systems, making them configurable in terms of security and, most 
importantly, performance. The ENCRYPT framework is being 
designed taking into consideration the needs and preferences of 
relevant actors and will be validated in realistic use cases provided 
by consortium partners in three sectors, namely healthcare 
(oncology domain), fintech, and cyber threat intelligence domain. 
This position paper provides an overview of ENCRYPT by 
presenting project objectives, use cases, and technology pillars. 

Keywords— Differential Privacy, Fully Homomorphic 
Encryption, Trusted Execution Environment 

I. INTRODUCTION 
Several technologies and tools exist in literature to allow for 

privacy-preserving data processing. However, they are not 
largely used yet in application domains due to some limitations 

and constraints. Fully homomorphic encryption, for example, 
despite being versatile in allowing various computations over 
federated sets of encrypted data, it suffers from a significant 
performance degradation as the amount of data to be processed 
increases, while complex calculations in large-scale 
deployments take a significant toll when multi-party 
computation methods are used. Another reason for the lack of 
uptake of such technologies is related to their user-friendliness, 
both for researchers and service providers, as well as for data 
owners. The type and configuration of the privacy-preserving 
technology to be used, as well as the level of privacy required 
for a given dataset and a given output, is often unclear to all 
parties involved. This is further exacerbated by the fact that not 
all relevant actors are aware of the legal and technical terms used 
in guidelines related to the privacy requirements of certain types 
of data. 

In this paper we present how the ENCRYPT research project 
aims at addressing the challenge of maximizing the exploitation 
of big data available in several sectors, such as health, 
communication, finance, while preserving privacy, since those 
data could contain sensitive information and are subject to 
several data protection laws. 

II. RATIONALE AND CONTRIBUTION 
Existing privacy-preserving technologies, such as 

Homomorphic Encryption (HE), Secure Multi-Party-
Computation (SMPC), Trusted Execution Environment (TEE) 
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or Differential Privacy (DP) even if promising at a small-scale 
level still need to overcome several limitations in order to 
become mainstream security solutions. Moreover, none of the 
aforementioned privacy-preserving techniques can be used as a 
single standalone security mechanism. In most cases a 
combination of them has to be deployed to cover the full 
spectrum of possible cyber-threats, while taking into account the 
regulations needed by the end-users and the established 
infrastructures. On the other hand, a large amount of big data is 
available nowadays to be used for addressing new challenges 
and developing better research and digital services. However, 
the major impediment in the processing of these data, that 
usually contain sensitive or personal information, lies in the risk 
of cyber-security attacks and/or in data breaches and misuses. 
The regulations on data protection and the EU’s high norms and 
laws on personal data, such as the General Data Protection 
Regulation [2], pose additional obligations and safeguards to be 
taken into consideration while storing and processing personal 
data. In order to address the above issues, the advanced privacy-
preserving computation technologies, such as FHE, SMPC or 
DP can provide valid GDPR-compliant solutions once they 
become more scalable and reliable - i.e., ready for realistic 
scenarios. 

In the following we illustrate the main limitations affecting 
different privacy-preserving methods and describe how the 
project intends to go beyond the state-of-the-art to make them 
applicable in real-world use cases involving a high volume of 
sensitive data. Both the FHE and SMPC solutions for privacy-
preserving of data in use have scalability issues when dealing 
with a lot of data. While FHE has a high computational overhead 
to treat the encrypted data, SMPC requires a high 
communication cost for the secret sharing. Another common 
limitation is that their integration with the existing networking 
infrastructure and security protocols is a neglected aspect of the 
ongoing research. The DP technique requires a predefined 
privacy budget that linearly depends on a fixed number of 
queries. This can impact its utility in practice, thereby making it 
complex to apply DP in adaptive settings. Finally, SGX-based 
TEE provides secure computing, but for small workloads. This 
weakness can make TEE difficult to apply to large-scale 
aggregated computations that involve the input of many users 
(large overhead due to the limited paging). 

The ENCRYPT project goes beyond the state-of-the-art to 
overcome the limitations of these privacy-preserving 
technologies in several aspects. First of all, it addresses the 
scalability issue by going beyond the single-key FHE paradigm 
and explore the application and the practicability of new multi-
key and threshold FHE schemes especially in a federated 
context. Second, to address the drawbacks of each technology in 
terms of the covered cybersecurity threats and performance, 
ENCRYPT investigates the combinations of several of these 
privacy-preserving methods. Third, ENCRYPT addresses the 
slow computation times associated with the existing solutions 
for privacy-preserving technologies based on HE or SMPC, by 
providing hardware acceleration in a user-friendly way. Fourth, 
ENCRYPT looks at the necessary methods in order to make 
these advanced privacy-preserving data processing technologies 
more suitable to interoperate with existing infrastructures and 
traditional security mechanisms. In particular, it will investigate 

the use and the application of the transciphering method for the 
FHE, allowing to switch from “traditional” symmetric 
encryption to a homomorphic one, without the need to decrypt 
the sensitive data. This powerful method will permit not only to 
keep standard symmetric cryptography on the clients’ terminals, 
but also to reduce the bandwidth requirements for exchanging 
encrypted data, thus ultimately addressing scalability issues. 
Since a major impediment in the adoption of these privacy-
preserving data processing technologies is the lack of “user-
friendliness”, ENCRYPT also provides (a) a privacy risk 
assessment methodology supporting adopters in evaluating 
privacy risks, and to link them to cyber vulnerabilities they often 
depends on; (b) an AI-based recommendation system allowing 
to choose one or a combination of those technologies and to 
configure them in order to meet system requirements and the 
identified needs in terms of protection of the users’ and personal 
data and of performance. Finally, the proposed solutions are 
being developed and will be validated in several settings and 
real-world use cases including the challenging cross-border 
federated processing of large datasets. 

III. ENCRYPT USE CASES 

A. Medical Use Case 
Cooperative oncology involves different specialists from 

different medical disciplines evaluating and analyzing the same 
patient from different perspectives. This leads to large amounts 
of medical data being shared in real time and across different 
hospitals, leading to data protection and privacy preservation 
issues. 

Patients are registered to the hospital system, clinical data are 
collected and imaging procedures are performed. Once the 
images and the clinical data have been evaluated, the physician 
compiles a report. The physician might need a consultation with 
a colleague for a second opinion, or a consultation among 
different specialists might be useful to determine the best 
therapeutic option for the patient. The different professional 
figures involved may not be in the same hospital/institution. 
Similarly, in Radiotherapy Unit, different professional figures 
have access to patient data and imaging files. Constant data 
exchange is essential to plan the treatment and verify that the 
scheduled treatment is appropriately delivered. 

Personal and sensitive data are currently accessible to all the 
health-care professionals and researchers involved. At the state 
of the art, data protection measures include removing sensitive 
data by implementing a non-standardized anonymization 
procedure. Moreover, currently the only available option to 
share patients’ data and images is data transfer, considering that 
hospital systems are not accessible by external subjects. 

The ENCRYPT platform will allow radiologists to protect 
data communication between different health care professionals 
in other departments/hospitals, while also preserving data 
integrity and patient privacy. The ENCRYPT framework is 
expected to enable the processing of the data prior to the sharing 
with different parties, ensuring the preservation of data 
confidentiality and integrity, and compliance with data 
protection law. This will permit the use of the data in the 
subsequent steps of the diagnostic/therapeutic pathway and 
during patient’s follow-up consultations. In the Radiotherapy 



setting, using the ENCRYPT platform, the integrity of 
treatment planning data and images metadata will be ensured. 
Moreover, all the data shared to any other stakeholder through 
this service/tool will comply with GDPR, without the risk that 
such data can lead to the actual identification of a real patient. 

B. Fintech Use case 
Just like any other emerging technological domains, data 

security and privacy preservation mechanisms ensuring the 
anonymity of the sensitive data are of paramount importance to 
the Fintech domain as well. In the ENCRYPT’s Fintech use 
case, two main challenges will be tackled during the project’s 
pilot activities, implemented in two different sub-use cases.  

Sub-use case 1 – Security and Impact Assessment of data 
owned by financial institutions: The first Fintech sub-use case 
tackles the need of the financial institutions and banks to be sure 
about the security and privacy levels required to ensure the 
anonymity of their clients not only internally to their 
organization, but also when they share their data to potential 3rd 
parties to perform data analysis and/or to deliver tailored 
software solutions for the bank’s activities. More specifically, in 
the majority small scale financial institutions and banks, there is 
a need to assess the security and privacy levels of the data they 
own with respect to their clients. These data comprise among 
others: a) personal data of the client itself including sensitive 
data (name, ID, social security address, income, bank accounts, 
etc.), b) history of actions made by the client (transactions, calls, 
payments, timings in payments, etc.), c) actions made by the 
bank towards the client (phone call history, transactions, etc.) 
and d) specific services packages tailored to each client. All of 
these data tend to increase over time and more attributes linked 
to each client are added so that more sophisticated product 
services are offered to the clients by the bank. Especially for 
small size financial institutions it is of a paramount importance 
their Data Protection Officers (DPOs) to be able to assess the 
current security and privacy level of the data they own in order 
to perform an assessment of potential risks and impact to the 
organization itself in case of an incident that might compromise 
the security and anonymity of the clients’ sensitive data. 
Moreover, in case these data are either processed internally or 
shared to external 3rd parties for further processing, compliance 
only to GDPR currently applied in these organizations is not 
enough, since information linked with a client might potentially 
lead to the actual identification of person or/and sensitive 
information linked with that person. In this scenario the DPO of 
EPIBANK will exploit the functionalities of the ENCRYPT 
recommendation system, where it will be informed about the 
type of data owned by its organization and their level of security 
and privacy. The DPO will be also informed about the potential 
security impact it might occur to its organization in case there is 
a security issue on its owned data. Additionally, the ENCRYPT 
recommendation system will inform the DPO about the 
available privacy-preserving technologies that can be applied to 
its use case presenting also the potential trade-offs in terms of 
system’s performance. Finally, the overall ENCRYPT platform 
will provide the option to select one of the ENCRYPT’s privacy-
preserving method to be applied to the EPIBANK’s data to be 
shared with external 3rd party entities so that they can perform 
data processing and deliver to the EPIBANK tailored software 
solutions that will help the bank on its dept collection policies. 

Sub-use case 2 – Training of tailored-made AI models with 
data shared by financial organization to 3rd parties: The second 
sub-use case describes the situation when the 3rd party/entity 
receives these data from the financial institutions/banks and 
wishes to perform AI-driven data analysis in order to deliver 
tailored software solutions serving the strategies and policies of 
the bank in specific business portfolios. More specifically, in the 
ENCRYPT project EXUS, as an AI-software house delivering 
solutions to financial organizations to manage their debt 
collection portfolio, will develop tailored AI-models using the 
EPIBANK’s clients data in order to perform among others client 
stratification, behaviour forecasting and overall scoring of the 
bank agents responsible for handling each client. Since these 
functionalities are tailored specifically to the needs of 
EPIBANK, clients’ historical data over a long period of 0.5-1 
year have to be delivered to EXUS, so that EXUS will be able to 
develop and train its AI-models.  

To ensure that there is not a possibility that the actual identity 
of the person or sensitive data related to this person could lead 
to its actual identification and since simple pseudonymization 
techniques as mentioned above are not sufficient, EPIBANK 
will deliver the data needed, after one of the ENCRYPT’s 
privacy-preserving methods will be applied to the data. Since the 
privacy-preserving method selected will have a direct impact on 
the AI model’s development and training phases as well as to the 
performance/accuracy of the models developed, all 
ENCRYPT’s privacy-preserving methods have to be tested and 
validated so that the optimum solution will be opted. 

C. Cybersecurity Use Case 
Over time, cybercriminals are constantly improving their 

techniques and strategies for launching cyber-attacks, becoming 
more advanced and sophisticated. In addition, it is well known 
that the ever-evolving cyber-attack landscape leads to an array 
of new and varied attacks. To defend against such threats, 
organizations rely solely on their data (e.g internal logs), which 
may not be sufficient in detecting and responding to diverse 
cyber threats on time. Cyber Threat Intelligence (CTI) can gather 
information about these attacks and sharing this knowledge can 
improve the understanding of potential threats and strengthen 
defence strategies for individuals and organizations. However, 
organizations are reluctant to share information due to concerns 
about exposing confidential data. To this extent, the CTI use case 
will tackle the above objectives and concerns. A CTI gathering, 
extraction and sharing tool will be used to collect, combine, and 
correlate data from various internal (i.e., data from ENCRYPTs’ 
end-users) and external sources, such as social media platforms 
and vulnerability databases. During the use case, different 
techniques will be used such as extraction of Indicators of 
Compromise (IoCs), correlation using the MISP (Malware 
Information Sharing Platform) correlation engine [1] (simple 
correlation), Exploratory Data Analysis (EDA) and Machine 
Learning analysis for advanced correlation (using internal and 
external data). Thanks to the CTI tool, personal information such 
is automatically rectified during data gathering. The CTI 
Extraction component minimizes and anonymizes the data, 
while the CTI correlation component pseudonymizes the data 
from ENCRYPT's data providers and external sources. The CTI 
sharing component provides a secure platform for sharing 
information with interested parties while maintaining data owner 



privacy. However, regarding the previous techniques, there is 
still a risk of data privacy violation during the data gathering and 
CTI sharing processes. Nevertheless, implementing strong 
privacy-preserving techniques can address these concerns by 
securing the privacy of data holders. During the CTI use case 
scenario, data providers will use ENCRYPT's privacy-
preserving techniques to anonymize their data before sending it 
to the data processor for the extraction of CTI. 

IV. LEGAL CONSIDERATIONS 
ENCRYPT delivers a privacy-preserving framework, which 

aims at incorporating an ethically and legally aware design. Data 
protection by design is a legal obligation - Art. 25 GDPR [2], 
which entails that organizations and entities implement 
technical and organizational measures to integrate data 
protection principles, such as data minimization and purpose 
limitation, in the manipulation and processing of personal data. 
In addition, security by design is a key component of the new 
proposed law, the Cyber Resilience Act (CRA). Both design 
obligations contribute to enhancing trust and security, allowing 
for the processing of data, while respecting privacy and data 
protection. The ENCRYPT user-centric framework allows data 
owners to comply with those obligations, by processing data, 
without sharing sensitive or other information to unauthorized 
parties. ENCRYPT offers a scalable privacy solution by 
allowing the users to determine the purposes of the processing 
and their needs, which is in line with Art. 5(2) GDPR and the 
accountability principle. In addition, the ENCRYPT 
framework, and its recommendation engine will integrate by 
default legal and ethical risks, alongside risks of technical 
nature, allowing for a warning system providing the trade-offs 
between privacy and data exploitation, when envisaged uses of 
the data, are not meeting the thresholds and requirements 
imposed by the GDPR. 

V. FRAMEWORK ARCHITECTURE 
ENCRYPT proposes an intelligent and user-centric 

framework (Fig. 1) for the confidential processing of privacy-
sensitive data via configurable, optimizable, and verifiable 
privacy- preserving techniques and its overall architecture is 
given in the figure below. 

 
Fig. 1: The ENCRYPT framework architecture 

ENCRYPT leverages, improves, and complements 
technologies and cryptographic schemes that represent the 
current state-of-the-art in the field of data-in-use protection, that 
is: Fully Homomorphic Encryption, Secure Multi-Party 

Computation, Differential Privacy, Trusted Execution 
Environment. ENCRYPT builds on top of these techniques 
making them configurable in terms of security and performance. 
It intelligently uses them by also combining their intrinsic 
security mechanisms to mitigate limitations and take advantage 
of their benefits. Since in most cases, performance represents the 
Achilles' heel of solutions for privacy-preserving computing, 
ENCRYPT provides a transparent to the user GPU-based 
acceleration service that is capable of being used in conjunction 
with each technology or cryptographic scheme that can exploit 
parallel processing of confidential data. 

The platform also encloses intelligent units to adjust itself to 
users’ and data requirements. More specifically, it comes with 
an AI-based recommendation system, which provides data 
owners with recommendations on the privacy level necessitated 
for their data, and data processors with suggestions on the 
deployment and configuration of privacy-preserving 
technologies based on the type of data they want to process. 
Taking into account the lack of familiarization with privacy-
preserving technologies, the ENCRYPT recommendation 
system will provide intelligible suggestions tailored to the needs 
of different types of users. ENCRYPT also provides data owners 
with a prototype that streamlines the continuous assessment of 
privacy risks for a given personal data processing. 

The knowledge graph building tool assists data owners and 
data stewards in standardising their datasets, so that their 
processing is performed in a GDPR-compliant way, based on the 
assessment of the ENCRYPT recommendation system. On the 
data processors side, a privacy quantification tool assists data 
processors in identifying the level of privacy offered by specific 
configurations of privacy-preserving technologies, as well as the 
level of privacy required for the data they want to process. As a 
result, the recommendation system will match specific privacy 
requirements imposed by the types of data to be processed, with 
a specific deployment and configuration plan for the type of 
processing the data processor wants to perform.  

For the optimised deployment of privacy-preserving 
technologies, a data pre-processing module developed within 
ENCRYPT will process data and configure datasets in a way that 
facilitates the execution of the privacy-preserving technology 
selected. Automation of this process will ease the burden of 
configuration from the data owners or data stewards. For the HE 
case, this component will analyse the data/features to identify 
which contribute more to the objective of a given analysis and 
encrypt only those. This will allow users to experience less 
computational overhead, improving scalability. Similarly, for 
the case of DP, a privacy budget optimiser will analyse data to 
identify the privacy protection – data utility curve for each 
specific dataset. This will allow data owners and stewards to 
make an informed decision on the level of noise added in their 
datasets to ensure adequate levels of privacy, while minimising 
detrimental effects to data utility. Similarly, on the data 
processor side, and in order to facilitate the deployment of 
privacy-preserving technologies, ENCRYPT will develop a 
lightweight data post-processing module in order to allow the 
easier recuperation and exploitation of the results of execution 
for the selected privacy-preserving technologies. In an indicative 
ENCRYPT user journey, the data owner or data steward 
provides the recommendation system with information about the 



data they have, with the support of the Knowledge Graph tool 
that supports interoperability between different data types. The 
recommendation system responds with suggestions on the level 
of privacy needed, and technologies supporting this level of 
privacy. The service provider/data processor provides other 
requirements on the expected performance and functionality. 
This information is sent via dedicated ENCRYPT UIs to the AI-
based recommendation system, which selects the most 
appropriate technology (or combination of technologies), as well 
as the configuration of privacy parameters. The Microservice 
orchestrator (the project will consider Kubernetes and 
OpenStack for the orchestration) – based on the inputs coming 
from the recommendation system – deploys the hosting 
machines with related microservices to support the selected 
ENCRYPT solutions, and to meet possible constraints posed by 
the data owner and data processor. On the data owner side, the 
ENCRYPT data pre-processing service is executed to format 
and configure data appropriately for the selected privacy-
preserving technology to be used. When DP is selected as the 
privacy-preserving technology to be deployed for a given 
application, the privacy budget optimiser is responsible for 
configuring the noise levels, as calculated by the AI-based 
recommendation engine. Similarly, for SMPC, this service splits 
data in pieces to be stored in distributed servers, and in FHE it 
homomorphically encrypts only the necessary data. During 
runtime, the orchestrator monitors performance metrics, and 
spawns new services to ensure that the Service Level 
Agreements (SLAs) with regard to delay are met. The data post-
processing service, deployed on the side of the entities interested 
by the outputs of the selected privacy-preserving technologies 
(either researchers, service providers or data processors) helps 
them recuperate the results in an easily understandable and 
readable form (e.g., if FHE was selected, a decryption and 
decoding of the result is needed; for SMPC a reconstruction of 
the final result is required, etc.) 

VI. TECHNOLOGY PILLARS 
This section provides an overview of the ENCRYPT 

privacy-preserving technologies. 

A. Virtual Secure Enclave 
Trusted Execution Environment and Homomorphic 

Encryption are widely accepted technologies for privacy-
preserving data computing. However, they present some 
drawbacks. The capability of HE to perform operations on 
encrypted data does not come for free. Not only HE results in 
an increase of the execution time, but it is also affected by the 
Ciphertext Expansion (CTE) phenomenon, which is not 
negligible. Another drawback of HE is its poor scalability with 
respect to the multiplicative depth of the circuit being evaluated. 
We call this problem the noise explosion problem. As the 
number of successive multiplications over the same ciphertext 
grows, so does a noise inside the ciphertext that was introduced 
at encryption time for security purposes. When this noise 
increases beyond a certain point, the ciphertext is 
undecipherable. This forces the client to use higher parameters 

 
1 https://github.com/openfheorg/ 
2 https://github.com/microsoft/SEAL 

which in turn have a non-linear, negative impact on 
performance. As far as TEE is concerned, the limited memory 
space available in secure enclaves (e.g., 128MB for Intel SGX). 
The Limited Memory Size (LMS) issue might result in a serious 
limitation for the data processing requirements of many 
memory-intensive applications. ENCRYPT proposes the 
concept of Virtual Secure Enclave that combines TEE and HE 
in an effective way, providing protection from privileged-user 
memory-access violations, while also limiting (i.e., as 
compared to their use in isolation) the inherent drawbacks of 
the two techniques [3] [4]. In this approach, the computing 
activity to implement HE is moved from the customer’s local 
host to the TEE of the cloud provider: the server’s TEE receives 
data from the field –no more affected by CTE– only after a 
TLS-secured channel is created. Virtual Secure Enclave 
leverages remote attestation features of TEEs to establish a 
trusted communication channel from the client to the host of the 
server farm acting as an Ingress node to the hosting platform. 
Once data arrives at the trusted host, it is homomorphically 
encrypted. Then, it is moved outside the TEE for further 
processing. This faces the LMS issue since processing of 
homomorphically encrypted data is performed on off-premises 
machines with no TEE and with full memory resources 
available. Finally, since the HE key is kept secret within the 
TEE, we can refresh the noise of homomorphic ciphertexts 
within the TEE of the attested server. In order to protect the data 
that is decrypted by the TEE, the server can add a random mask 
to the data before sending it over to the TEE for processing. 
This mask can then be removed homomorphically afterward. 
The advantage of such a solution is twofold: i) it allows to 
refresh ciphertext noise within the TEE of the attested server, 
thus mitigating the HE noise explosion problem due to frequent 
client-assisted decryptions; and ii) it allows to manage the TEE 
limited memory size since HE data processing is performed on 
the untrusted platform with no TEE and with full memory 
resources available. 

B. Homomorphic Encryption 
Homomorphic encryption has been longtime considered the 

Holy Grail of modern cryptography since it allows performing 
computation directly over encrypted data. Nowadays, the 
research field has become more mature and we dispose of 
several stable homomorphic schemes (BGV [5], BFV [6], 
CKKS [7], TFHE [8]) each one with its strengths and 
weaknesses, a theoretical framework (Chimera [9]) to switch 
between these cryptosystems, different available open-source 
libraries (e.g. OpenFHE 1 , SEAL 2 ) as well as dedicated 
optimization techniques and compilers (e.g. Cingulata 3 ). 
However, in order to take it a step longer and deploy the 
homomorphic encryption as a complete security solution for 
real-work application, there is a need to further research for 
better scalability and performances. In parallel with the 
investigation of the combination of the homomorphic 
encryption with TEE, one of the objectives of ENCRYPT 
project is to conceive and implement protocols for federated 

3 https://github.com/CEA-LIST/Cingulata 



data processing based on homomorphic encryption with support 
for multi-users (e.g. threshold homomorphic encryption). 
Another step forward to the deployment of HE at a larger scale 
requires efficient ways of transciphering, i.e. combine 
homomorphic computation with exiting, lighter symmetric 
encryption. This will be another direction which will be 
investigated by ENCRYPT team, since this allows to improve 
the scalability of the overall system by diminishing the memory 
required for the encryption and the transmission of the private, 
sensitive data to the processing server. Another line of research 
consists in increasing the performances of non-linear 
homomorphic operators by using the functional bootstrapping, 
an interesting method offered by TFHE cryptosystem. 

C. Differential Privacy 
Differential Privacy [10] has several properties that make it 

particularly useful in applications such as those envisioned by 
the ENCRYPT project: composability, group privacy, and 
robustness to auxiliary information. Composability enables 
modular design of mechanisms: if all the components of a 
mechanism are differentially private, then the same holds for 
their composition. Group privacy implies graceful degradation 
of privacy guarantees if datasets contain correlated inputs, such 
as the ones contributed by the same individual, while robustness 
to auxiliary information means that privacy guarantees are not 
affected by any side information available to the adversary. In 
principle, during the iterative method for optimizing the 
objective functions in AI systems, this methodology averages 
together multiple updates induced by training data examples, 
clips each of these updates, and adds some kind of noise (e.g., 
Gaussian) to the final average. Based on the above, ENCRYPT 
will offer the expansion of privacy-preserving libraries for Deep 
Learning with additional guarantees that can usefully 
strengthen the protections offered by other privacy techniques. 
ENCRYPT will offer to the user a tool for the optimization and 
tuning of the “privacy budget” parameter, which comes in 
differential privacy techniques to quantitatively dial up or down 
the privacy guarantee [11]. Additionally, ENCRYPT will make 
good use of the “strength” that differential privacy is 
parametric: privacy does not come for free. Asking for more 
privacy will have the cost of either diminished data utility or the 
need to collect more data. 
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