
Gossip-based Service Monitoring Platform for
Wireless Edge Cloud Computing

Nuno Apolónia∗, Felix Freitag∗, Leandro Navarro∗, Sarunas Girdzijauskas†, Vladimir Vlassov†
∗Universitat Politècnica de Catalunya. Barcelona, Spain

{apolonia, felix, leandro}@ac.upc.edu
†KTH Royal Institute of Technology. Stockholm, Sweden

{sarunasg, vladv}@kth.se

Abstract—Edge cloud computing proposes to support shared
services, by using the infrastructure at the network’s edge.
An important problem is the monitoring and management of
services across the edge environment. Therefore, dissemination
and gathering of data is not straightforward, differing from
the classic cloud infrastructure. In this paper, we consider the
environment of community networks for edge cloud computing,
in which the monitoring of cloud services is required. We propose
a monitoring platform to collect near real-time data about the
services offered in the community network using a gossip-enabled
network. We analyze and apply this gossip-enabled network to
perform service discovery and information sharing, enabling
data dissemination among the community. We implemented
our solution as a prototype and used it for collecting service
monitoring data from the real operational community network
cloud, as a feasible deployment of our solution. By means of
emulation and simulation we analyze in different scenarios, the
behavior of the gossip overlay solution, and obtain average results
regarding information propagation and consistency needs, i.e. in
high latency situations, data convergence occurs within minutes.

Keywords: monitoring, community networks, cloud services,
computing constrained-devices, gossip overlay

I. INTRODUCTION

The edge environment we introduce in this paper is based
on community network (CN) environments. CNs are large-scale,
self-organised and decentralized communication infrastructures
built and operated by the community itself. Hundreds of CNs
are operating, and are geographically distributed in different
parts of the world, without relying on any specific social or
economic reasons. The larger networks have from 500 to 40,000
nodes, such as Guifi.net1, Freifunk, or AWMN.

Participants in CNs can also share local cloud computing
resources and provide local cloud services. In this way, the
community creates its own edge cloud computing environment
without relying on classic clouds from outside the network. In
our case, Cloudy2 is used to manage the edge cloud computing
and services such as Peerstreamer [1], [2], an open source
P2P Media streaming, or Tahoe-LAFS [3], an open source
decentralized cloud storage system.

Current solutions for monitoring services under classic cloud
systems support and are tailored towards the use of data centers,
which disregards the unique properties that an edge cloud
environment has, such as the high latencies between nodes,
changes in network (nodes churn rate), and most importantly
the use of low-capacity devices.

Furthermore, an issue found in the edge cloud computing
(such as community network clouds) is the lack of a suitable

1http://guifi.net, https://freifunk.net/, http://www.awmn.gr
2http://cloudy.community

mechanism for logging, monitoring of resources and services,
and dissemination of information. Thus, our work is intended to
bring the best features of monitoring services from classic cloud
environments, towards the edge cloud computing. Also, by
understanding the properties of community edge environments,
we can tailor monitoring service to better suit the community
requirements. And in part, granting knowledge of the cloud
infrastructure to the community.

We developed the monitoring platform for Cloudy, in order
to give community network clouds an efficient monitoring
service. The platform considers the way to handle the dissemi-
nation of data, by using a gossip overlay to intercommunicate
with the nodes. Also, the platform gathers distributed data, by
using the gossip-enabled network through which it disseminates
data. The gossiping properties are aligned towards its use on
edge cloud computing, since it provides eventual consistency
of the data without relying on a single entity, and can still
be used when node churn is evident. Other methods, such as
flooding, direct communication does not deal gracefully with
the issues that arise from these types of environments.

The main goal of our work is to bring an efficient way of
monitoring services on wireless community network clouds, as
a study case of edge cloud computing, using gossip-enabled
networks to achieve efficient data dissemination and sharing.

The main contributions of this work are summarized as:
a) The characterization and implementation of a monitoring
platform for edge cloud computing in a wireless mesh network
environment over a gossip overlay; b) The understanding of
service, resource and network properties that relate to the
functionality of monitoring with the use of a gossip overlay
for data dissemination.

Our work leverages a gossip overlay in wireless mesh
networks to disseminate monitoring information in a fast
and efficient manner. Gossiping protocols allow for rapid
transmission of information across the network, i.e. each
node only needs to contact a subset of neighboring nodes,
instead of the whole network. The gossiping mechanisms gives
guarantees (such as resilience to node failures, eventual data
consistency) towards its optimal application when instability of
the network is constant, with high node churn or high latencies.
Furthermore, we integrate the monitoring platform into the
already deployed technologies (e.g. Cloudy distribution) that
are part of community network clouds and its services. The
monitoring platform in Cloudy is also designed to become a
Software-As-a-Service for users to install on their own devices,
to support users in monitoring usage.

The rest of the paper is organized as follows. Section II
describes background knowledge on wireless mesh networks,



CNs clouds and gossip-enabled networks. Section III describes
the monitoring platform. Section IV refers to the monitoring
prototype as feasibility study. Section V presents the results
done with emulation of nodes and simulation of network. Sec-
tion VI presents the discussion on the monitoring platform. The
related work is described and summarized in section VII. The
last section concludes and specifies the direction of future work.

II. BACKGROUND

A. Wireless mesh networks
Wireless mesh networks have emerged as a specific modality

in networking. The use of wireless mesh networks started to
generate new concepts and paradigms towards mobility in
devices, such as the case of vehicular networks [4]. Our case
study for wireless mesh networks is CNs, which is explained
below in more detail.

CNs are a communication infrastructure model, in which
local communities of citizens build, operate and own their own
part of the network. CNs often originated to provide Internet
access to the population of areas which are unattended by
commercial telecommunication operators.

Guifi.net, with more than 32,000 nodes (2017), can be
considered one of the largest CNs worldwide. The case we
analyze is a real deployment of cloud computing infrastructure
and services in Guifi.net: a subset of devices located around
Barcelona in Spain. The resources available in the CNs cloud
infrastructure are low-capacity devices shared by citizens.

CNs have characteristic properties, such as, varied latencies
between nodes [5], dynamic routing changes and low-capacity
devices used for node interconnection. Also, node connectivity
is based on mesh routing protocols [6].

Resource sharing within CNs refer, in practice, to the sharing
of network capacity from each device to route traffic through
routers to its destination. The sharing of services, such as video
streaming, storage, VoIP, a common practice in the Internet
thanks to cloud computing, has slowly began to expand in
CNs. Therefore, a community cloud model could accommodate
services and/or resource sharing among community members
without relying on the Internet or the major cloud providers.

Furthermore, by understanding services and resources prop-
erties, and how users interact, we can improve the organization
of the CNs cloud. The monitoring platform can help gather
information on the network, services and its users to improve
the edge cloud performance.

B. Edge Cloud Computing
Edge cloud computing is a case of cloud computing, moving

computation to the resources at the network edge. Thus, fully
utilizing the edge resources and relying less on the Internet
cloud resources. In this way, edge cloud computing works to
share its own services and resources without having to go out-
side of the local network (i.e. Internet) to utilize cloud services.

There are significant differences between classic cloud
environments and edge clouds. An important characteristic is
the use of distributed low-capacity devices instead of centralized
data centers with powerful computing devices. Additionally,
the network between devices has higher variance in latency
and bandwidth between devices than in traditional data centers.

Our case study of edge cloud computing in CNs is based on
Cloudy. Cloudy is a distribution based on Debian GNU/Linux,
intended to be used by common users. Therefore, Cloudy’s
development was driven by important aspects, such as the

ease of usage, deployment in low-capacity devices, automated
service discovery and services pre-configuration.

Furthermore, community services are included in the
distribution, in order to facilitate the process for edge cloud com-
puting, e.g. Peerstreamer as a peer-to-peer based live streaming,
Tahoe-LAFS as a decentralized storage service, Syncthing3 as
a data synchronization between various storage nodes, among
others. Also, the shared services within Cloudy are expected
to be announced to the network (published/unpublished) in an
automated way, when initiated by the users.

In Cloudy, the discovery service makes use of an overlay
network created through existing technology, such as Serf and
AVAHI4, in order to specifically cluster nodes and manage
service availability in the CNs clouds. The available shared
services are then known to the other users by means of the GUI
webpage, which informs about the situation of the services, and
gives the ability to connect to the presented shared services.

C. Gossip-Enabled Networks
Gossip protocols rely on disseminating information by

utilizing a small subset of neighboring nodes to pass on data
towards the whole network, instead of flooding the network
or using a single server. Thus, each neighbor is required to
disseminate the messages only to its direct neighbors, forming
a directed graph over the current networks to achieve quick
and efficient dissemination.

The purpose of having gossip overlays over networks is
to overcome the issues of node discovery, detection or data
dissemination [7]. In addition, gossip-enabled networks can
scale with the network, since each node is only required to
perform a fixed set of operations for dissemination; the network
becomes resilient to node failures, node failure has little impact
on the dissemination of data; avoids overloading the network
with data, while ensuring all nodes eventually learn about shared
information. Moreover, gossiping protocols rely on eventual con-
sistency, where all nodes will have the data within a time-frame.
Therefore, an issue on the gossip approach is that not all points
of the network have the same information at the same time.

In CNs clouds, the use of gossip overlay is an efficient
way for service discovery, publicizing shared services to the
network members. Furthermore, users can utilize and announce
shared services without relying on discussion forums or “word
of mouth” knowledge.

Our case study for gossip-enabled networks is Serf, a system
that creates a gossip overlay between different members of
a network [8]. Each node has a local agent that sends and
receives messages from the other nodes. Each agent publishes
its information to the members of the network, e.g. includes
the nodes’ name, number of members known, events queued
to be processed and other tags with custom information. Thus,
additional information can be shared between members, apart
from the default information from Serf, by using custom tags.
Furthermore, each interconnected node through Serf spreads
the information to their neighbor nodes (Tfanout), 3 nodes by
default. The gossip interval (Tgossip) to send data is also ad-
justable as a configuration option, with a default of 0.2 seconds.

III. MONITORING PLATFORM FOR EDGE CLOUDS

We extended the Cloud distribution with a monitoring
platform, towards enhancing the information gathered from

3https://www.syncthing.net/
4http://avahi.org



edge cloud services. The platform aims to gather raw data from
the shared devices, and disseminate the relevant information to
the community.

The platform requires to have shared data among the
network members; to be able to access information about
services and resources at each of the shared nodes; and, to
have enough resources to process the raw data and store the
processed data. Therefore, making use of the available devices
and services, and support the knowledge of their usage to the
community.

The CN environment creates its own challenges, differing
from classic cloud environments, which need to be addressed,
such as low-capacity devices used, network changes (node
churn rate), low bandwidth and high latencies between nodes
and user related privacy concerns. In our work, we address
these challenges by using eventual consistency and gossiping
methods on the shared data, while also making sure that, by
means of Serf, that each node can join or leave the network
without affecting the overall information within the network.

The type of information monitored are the resources,
services and social aspects of the community. For our work,
one of the main reasons to gather knowledge on the community
cloud system, is to understand social behavior on the network
and the usage of services and resources. Also, the monitoring
data can be extended with additional types of information,
such as service configuration, resource configuration and usage.
Nevertheless, the boundaries for such information sharing, need
to meet the security issues that can arise from contributing
users’ privacy related aspects, out of the scope for this paper.

The monitoring platform is split in three stages: 1) Logging
of raw data from services, resources and user interaction shared
by the member nodes; 2) processing of the raw data, into a
format that is user readable and can be shared among the
community, such as a time-line of service usage; 3) showing
the results to the users in the community, through the user
interface, which is an additional service in Cloudy. These
stages represent the major objectives on which we focus our
attention, tailoring them towards an efficient monitoring service
on the edge community cloud.

Figure 1 presents an overview of the modules in the
monitoring platform integrated in Cloudy. The integration of the
monitoring part is done in the middle layer, where a service is
added to enable users to install and see the results of monitoring
across the network. Additionally, the resource and service
monitoring module is added in the communication path with
other nodes and services, to gather the necessary information
from the services and to disseminate it to other nodes using
the gossip overlay. The monitoring module utilizes the already
existing gossip overlay, created through Serf, to disseminate the
relevant information to the other nodes. Meanwhile, the module
also uses the same overlay to retrieve information from other
nodes. Data dissemination and convergence in nodes happens at
Serf level, since data is retrieved from the local Serf instance.

The reason for integrating the monitoring platform in
Cloudy, as explained above, is because logging of services
is required to occur during service initialization. The use of a
monitor UI as a service is done to simplify the view of shared
data from the users perspective, in this way, users have access
to relevant information from their services and the usage of
services across the network. Also, the implementation involves
both low-capacity devices and edge cloud computing paradigms.

Additionally, the information gathered from the monitoring

Fig. 1. Overview of Cloudy modules, showing the monitoring components
and the integration with the gossip overlay.

service has two functions: presented to the users to motivate
them on how services are being deployed and used on their
community network; as well as, for management purposes,
the information gathered can give an current picture on how
the network, service utilization and allocation is done across
the network, e.g. hotspots of utilization, time-frames where
resources may be overused, among other examples.

IV. MONITORING PLATFORM PROTOTYPE

The prototype for the monitoring platform was developed
using the available low-capacity devices and connected to the
community network (Guifi.net). The devices used are equivalent
to those deployed by the Clommunity project5 in the community
network at users’ homes.

The prototype shows the feasibility for monitoring services
and resources under edge cloud computing. Therefore, services
were started and terminated at certain intervals of time in the
available nodes, in order to gather service usage information.
The information for each service is sent to Serf when a service
is published. The information is updated in Serf when the
service terminates. Thus, all nodes can gather the logs of
services within the data coming from Serf members (nodes
interconnected in the gossip overlay).

In our prototype, we gather information and process it on
one node, to be shown as a time-line graph of service usage, as
seen in Fig. 2. The figure depicts the time of actions across three
nodes, such as publishing and unpublishing of services, where
each bar represents time-wise the service usage for a given node.
Moreover, information relevant to the users, that comes directly
from the nodes in the network, can be displayed in the GUI.
Furthermore, since data travels through the gossip overlay, the
whole network information (services from all nodes) becomes
more accurate over time, when all nodes’ data converges, as

5http://clommunity-project.eu/



Fig. 2. GUI of the prototype for the monitoring of Cloudy services, using
three devices interconnected.

low as one second in Serf6.
From the prototype monitoring platform, we could observe

that using a gossip overlay to disseminate information is as
a good option for non-critical analysis of the overall network.
The shared information can be gathered at any of the nodes that
are members of the gossip overlay, within certain conditions
such as the time delay for the eventual consistency of the
data, and the amount of data that is updated to each node.
Moreover, the size of the data sent to other nodes appears small
enough (in the range of kilobytes) to not affect significantly
the available network bandwidth. However, it is foreseen that
clearing and storing past data is required so that nodes can
efficiently exchange information between each other.

V. EXPERIMENTAL RESULTS

We conduct an evaluation by emulation of the monitoring
platform, as the means to understand the characteristics and
properties relevant to a real deployment. The simulation of
network data gathered gives us insight on the best practices for
an efficient way of dealing with dissemination of data across
a wireless mesh network. Whereas, the emulation of nodes
provides details about the scalability of the monitoring platform
for edge cloud computing. In this way, we can understand the
properties and issues that arise when dealing with higher number
of nodes, higher latencies and the use of low-capacity devices.

The characteristics of the monitoring platform come into
evidence when we analyse the results of data dissemination
and convergence, scalability of the platform and the tuning of
Serf properties. Data convergence gives us the amount of data
that a node receives across time, from the total disseminated
data. This means that a certain amount of time passes until a
node gathers the total data (or convergence time). The time
elapsed between disseminating and convergence of data is then
important to understand how reliable the system is when using
a gossip overlay.

For our evaluation, we emulate nodes and simulate the net-
work, giving us the average of time for dissemination and con-
vergence data rates, while also being able to tune certain aspects
(such as gossip interval, gossip fan-out) of the overlay created
through Serf. Therefore, we used the Mininet simulator [9],
merged with Mininet-Wifi [10] and Mininet ContainerNet7.
Mininet-Wifi adds to Mininet the ability of simulating wireless
links. The capability of simulating wireless links is then more
attuned with the environment created with community network
clouds. The ContainerNet project enables each of the emulated
nodes to run as Docker containers, guaranteeing execution
isolation for each of the emulated nodes. Furthermore, we are

6https://www.Serfdom.io/docs/internals/simulator.html
7https://github.com/mpeuster/containernet

able to run different executions of the same applications, such
as Serf, without interference among each emulated node.

In the experiments done, we used as network topology a
random geo-positioning of the nodes, where each of the nodes
positions itself within a maximum range of 100 meters of
another node. The characteristics of the topology are drawn
from the CNs, where each person connects to their nearest
neighbors to join the network. Therefore, each experiment run
uses a randomly created topology, in an attempt to not be
influenced by a given network topology.

Moreover, the positioning of the nodes influence the
overall latencies in the network. The nodes average latencies
can be as high as 800 milliseconds. Also noting that the
simulated network shows as a worst case scenario, in fact
other experiments done on CNs [11] tend to experience, on
average, lower latencies and higher bandwidth between nodes,
on normal usage of the network. However, our evaluation
comprises the worst cases, to infer on the monitoring activity
when high latencies are dominant in the network.

The evaluation is performed with several runs (around 10)
and their results are averaged. The average on these runs
are enough to point out the characteristics that determine the
efficiency of the monitoring platform. Each experiment has 40
virtual nodes (Docker containers), interconnected through a
virtual mesh network and randomly positioned in the network.

For each of the experiments the services are started (Publish
action) and terminated (Unpublish action) within a time-frame
of 10 minutes in each of the nodes. The two actions are
propagated to other nodes where each of them will publish
the information of the service and update it afterwards. Noting
that the first action happens before the gossip overlay is fully
known (nodes require to know about other nodes in the network
to send data to a subset of known neighbors). The expected
time elapsed for each action across the network is under the
time-frame given. Also, the actions monitored are the same
as in the real world situation, where users start sharing their
services and terminate them.

Furthermore, the monitoring process will gather the shared
information through the gossip overlay, over the time-frame.
In our results we show the data convergence on nodes to
understand how much time it takes for nodes to have the same
view of the shared data.

For a scalability evaluation, we performed several emu-
lations with different number of emulated nodes, with the
same conditions as previously mentioned. The conditions are
maintained to be similar to the environment created on CNs
(high latencies, low-capacity nodes). In this way, we can
understand the issues on deploying the monitoring platform
across bigger networks, and address the requirements for edge
cloud computing.

Furthermore, we extend our findings by tuning the properties
of the gossip overlay to be used under wireless mesh networks.
Thus, we changed the profile for the Serf gossip properties,
adjusting the gossip interval, gossip fan-out and overall timeouts,
to gossip less frequently, but to an additional node. These
changes are made to improve the performance of dissemination
and convergence of data, therefore enhancing the monitoring
data exchange between wireless nodes.

The reason for the number of nodes used in the experi-
ments, is because a virtual environment was used to deploy
Mininet. Therefore, the virtual machine was constrained and
the deployment of an higher number of nodes would lead to



be unable to reflecting realistic conditions of resource usage.

Fig. 3. Averaged data convergence in the time elapsed for the actions of
publishing and unpublishing services.

Fig. 4. Scalability results, between number of nodes and time elapsed until
service is unpublished.

Results: We can observe the rate of data convergence
across the simulated network and infer on the data dissemination
that occurs with our solution.

Fig. 3 shows the percentage for average monitoring data
convergence for all nodes, after the services were published
(dashed line) and unpublished (continuous line), averaged from
all the experiments done. The actions are not immediately
propagated to the network, therefore the dissemination occurs
some time after starting. Also, we can see that the convergence
of data in both actions happens within 1 minutes in high latency
conditions. In this figure we observe the convergence is done
faster for the unpublish action than for publish, this is because
the nodes already know about others in the network, and thus it
only requires to update the current information. The figure also
demonstrates for each action the data convergence on all nodes,
on average, is 130 and 80 seconds in each action respectively.

Fig. 4 demonstrates the scalability of having the monitoring
data exchange with a gossip overlay. The figure shows the time
elapsed of the combined actions for starting and stopping a
service and the fully convergence of information within a node.
Furthermore, we can say that the results obtained imply a linear
evolution of the time elapsed when adding more nodes to the
network with high latency connections, taking into account the
overall latency (edge to edge) increase when adding more nodes.
The results show that in the community network scenario and
with the high latency conditions, the nodes can still gather
information quickly enough to have the knowledge of the
network without issues.

Fig. 5. Average data convergence in time elapsed for the actions of publish
and unpublish services, using the tuned gossip properties for wireless devices.

Fig. 5 depicts the same actions (Publish and Unpublish
of services) as previously, however the gossip properties
(Gossip interval and Gossip fan-out) were adjusted for wireless
environments. The figure shows that the optimization done
has an effect on the data dissemination and convergence on
the nodes. Furthermore, the figure also demonstrates that the
convergence of data for the nodes, on average, is 87 and 38
seconds in each action respectively. Therefore, each of the
actions shown, on average, are faster (around 25%) than with
the previous gossip properties.

VI. DISCUSSION

The evaluation provides relevant characteristics of moni-
toring in community network clouds. Therefore, we discuss
about the usage of a gossip overlay to disseminate information,
and monitoring non-critical information (information that is not
necessary in real-time). However, we can also be assured that
the dissemination is done quickly (within 1 minute under high
latency situations), depending on other factors such as number
of services running, size of shared information, bandwidth to
each node, offline nodes or failures in the network.

The usage of a gossip overlay for communication between
nodes can have its own drawbacks, such as delayed dissemina-
tion of data. However, the case of community network clouds
information gathering is an optimal solution, since the system
does not need real-time knowledge of the network. The usage
of a non-gossip overlay would require prior knowledge of
the nodes in the network, or when using other techniques
(e.g. one to all nodes) the network could become flooded and
unsustainable for communication.

In our work, a real usage evaluation scenario can give
us insight on how monitoring should behave. However with
emulated nodes and a simulated network we can understand
the trends that monitoring systems can have on community
network clouds, such as the high number of updates that may
occur for the dissemination of data. We can also understand
the properties that gossip-enabled networks have and customize
them for wireless mesh networks, such as varying the number
of neighbors to disseminate data and the gossiping time interval.

We can also say that by tuning the gossip overlay properties
(gossiping fan-out, gossiping interval and overall timeouts) we
can improve the data dissemination, and therefore monitoring
data can be exchanged faster between wireless nodes. Thus,
gossiping fan-out and interval can be modified in accordance
with the number of nodes there are in the network, and
the characteristics of the network, in order to enhance the
performance to data dissemination for CNs. The gossip overlay



properties are then required to be tuned according to the position
of the nodes in the network and its wireless capabilities.

Furthermore, the option to have a centralized monitoring
system, while gathering decentralized logging is an approach
that can be successful within CNs and low-capacity devices.
However, further study on decentralizing the monitoring system
(including processing and storage) is required to pursue an opti-
mal solution in respect to sharing network knowledge, such as
hierarchically, grouped or cluster gathering and storing of data.

VII. RELATED WORK

Cluster monitoring and management, in the work of [12],
is done through a hierarchical overlay network of the available
resources. This work focuses on monitoring resources for
management of clusters, and does not account for the actual
information shared or the amount exchanged. The dissemination
of data is done in a hierarchical manner, between nodes and
masters. Also, the information sharing is done as a push based
system in order for the masters to obtain the monitoring data
from the nodes.

In [13] monitoring tools are used for workstations in clusters.
Information sharing is done through a communication interface
between nodes and monitoring proxies. An important lesson
learned is that the behavior of monitoring clusters needs to
be open environments, flexible and scalable. The behavior of
the current monitoring tools only account for the system they
are based on, and may not be flexible enough for handling
different loads or resource types. This work uses workstations
as clusters, and the inter-connectivity in the infrastructure is
intended to be as the Internet infrastructure, which does not
account for issues from wireless connectivity.

Monitoring Large-Scale Cloud Systems with Layered Gos-
sip Protocols [14] presents an alternative to monitoring services
through additional infrastructures in cloud systems. Their work
is focused on the gossiping communication for data collection
and monitoring on large scale cloud systems, aggregating data
from the virtual machines deployed with the services, for a
self monitoring process among the grouped virtual machines.

In summary, the works about monitoring tools and systems
are focused on either grid and clusters or cloud environments.
Thus, they do not account for changes in the network, as part
of the infrastructure itself, and only node failures are detected.
The bandwidth and latencies between nodes are not given as
requirements for environments such as clusters or current cloud
systems. The gossip-enabled solutions enhance communication
towards handling information across several nodes, despite the
network characteristics are not accounted.

VIII. CONCLUSION AND FUTURE WORK

This paper analyses the monitoring provisioning that is
required for edge cloud computing environments and envisions
a monitoring platform to be used for edge cloud computing.
Data dissemination was done with the introduction of gossip-
enabled network, interconnecting the nodes of the wireless
mesh network, as is the case of CNs. The monitoring data is
then gathered through the gossip-enabled network to be shared
across the entire network. This is done to give users knowledge
about their services, and the community cloud environment,
while expanding the knowledge on how management of such
clouds is possible.

In our experiments with node emulation and network
simulation we show that the dissemination of data over a
gossip-enabled network is done quickly within minutes of the
start, and is optimal for non-critical shared information. We

also observe that under high latency situations and with low-
capacity devices the use of a gossip-enabled network is a best
practice to overcome the harsh conditions, while removing the
need to flood the network with information, or to know the
structure of the whole infrastructure.

The directions for our future research include considering
the levels of information that is disseminated, which can include
social, service, resource and network aspects. Also, to improve
the monitoring system with the addition of a decentralized
solution through community detection and partitioning of the
network. Furthermore, by deploying the monitoring platform in
real usage scenarios we can enhance the knowledge and appli-
cability of monitoring services on community network clouds.

ACKNOWLEDGEMENT

This work was supported by the European H2020 frame-
work programme projects netCommons (H2020-688768) and
LightKone (H2020-732505), and by the Spanish government
under contract TIN2016-77836-C2-2-R.

REFERENCES
[1] L. Baldesi, L. Maccari, and R. Lo Cigno, “Improving P2P Streaming in

Community-Lab Through Local Strategies,” in 10th IEEE Int. Conference
on Wireless and Mobile Computing, Networking and Communications,
Larnaca, Cyprus, October 2014, pp. 33–39.

[2] R. Birke et al., “Architecture of a network-aware p2p-tv application:
The napa-wine approach,” IEEE Communications Magazine, vol. 49, pp.
154–163, 06/2011 2011.

[3] M. Selimi et al., “Cloud services in the guifi.net community network,”
Computer Networks, vol. 93, Part 2, pp. 373 – 388, 2015, community
Networks.

[4] F. A. Silva et al., “Vehicular networks: A new challenge for content-
delivery-based applications,” ACM Comput. Surv., vol. 49, no. 1, pp.
11:1–11:29, Jun. 2016.

[5] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, and
L. Navarro, “A technological overview of the guifi.net community
network,” Computer Networks, vol. 93, Part 2, pp. 260–278, Dec. 2015.

[6] A. Neumann, E. López, and L. Navarro, “Evaluation of mesh routing
protocols for wireless community networks,” Computer Networks, vol.
93, Part 2, no. P2, pp. 308–323, Dec. 2015.

[7] R. Friedman et al., “Gossiping on manets: the beauty and the beast,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 5, pp. 67–74,
2007.

[8] R. Baig, F. Freitag, and L. Navarro, “On the sustainability of community
clouds in guifi.net,” in Economics of Grids, Clouds, Systems, and
Services, ser. Lecture Notes in Computer Science, J. Altmann, G. C.
Silaghi, and O. F. Rana, Eds. Springer International Publishing, 15 Sep.
2015, pp. 265–278.

[9] B. Lantz et al., “A network in a laptop: rapid prototyping for software-
defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. ACM, 2010, p. 19.

[10] R. R. Fontes et al., “Mininet-wifi: Emulating software-defined wireless
networks,” in Network and Service Management (CNSM), 2015 11th
International Conference on. IEEE, 2015, pp. 384–389.

[11] M. Selimi, N. Apolonia et al., “Integration of assisted p2p live streaming
service in community network clouds,” in Proceedings of the IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom 2015). IEEE, Nov. 2015.

[12] D. Park, S.-M. Lee, and C. Lee, “The cluster monitoring & controlling
method with scalable communication framework,” in Proceedings of the
Eighth International Conference on High-Performance Computing in
Asia-Pacific Region, ser. HPCASIA ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 387–.

[13] Z. Liang et al., “Clusterprobe: An open, flexible and scalable cluster
monitoring tool,” in Proceedings of the 1st IEEE Computer Society Inter-
national Workshop on Cluster Computing, ser. IWCC ’99. Washington,
DC, USA: IEEE Computer Society, 1999, pp. 261–.

[14] J. S. Ward and A. Barker, “Monitoring Large-Scale Cloud Systems with
Layered Gossip Protocols,” ArXiv e-prints, May 2013.


