

Accelerometry-Guided Inter-Beat-Interval Assessment from Wrist Photoplethysmography

Peter H. Charlton^{1,2}, Joachim A. Behar³, Marton Aron Goda³, Jonathan Mant¹, Panicos A. Kyriacou²

¹ University of Cambridge

² City, University of London

³ The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel

Aim:

To investigate whether accelerometry signals could be used to predict whether or not IBIs could be accurately measured from simultaneous PPG signals at the wrist.

Objectives:

- 1. Assess the classification performance of such an approach
- 2. Identify an optimal classification threshold
- 3. Assess performance across different activities

Methods

Datasets

- Wrist PPG (from Empatica E4)
- Reference chest ECG

Dataset	Phases	No. Subjects
WESAD	Stress protocol: Baseline, Meditation, Amusement, Stress	15
PPG-DaLiA	Activities of daily living: Sitting, Working, Lunch break, Car driving, Cycling, Table soccer, Walking, Stair climbing	15

Inter-beat interval estimation from PPG

- Open-source 'MSPTD' beat detector from ppg-beats: https://ppg-beats.readthedocs.io/
- Middle-amplitude points

Assessing level of movement

Mean absolute deviation (MAD)

Inter-beat interval estimation from ECG

- Two beat detection algorithms
- For each 20 s period: deemed to be high quality if beat detectors agree

Charlton P.H. *et al.*, **Detecting beats in the photoplethysmogram: benchmarking open-source algorithms**, *Phys* Meas, 2022: https://doi.org/10.1088/1361-6579/ac826d

Results

Dataset Characteristics

Classification Performance

Dataset	Area under receiver operatory curve (AUROC)	Area under precision- recall curve (AUPRC)
Combined dataset	0.78	0.82

Identifying an Optimal Threshold

Identifying an Optimal Threshold

Activity	MAD, measured using ActiGraph at wrist (mg) Mean (standard error)	
Sedentary behaviours: lying, sitting	6.7 (0.5)	
Standing still	7.5 (1.1)	Threshold:
Washing pots	100.2 (8.3)	12.9 mg
Walking	151.5 (6.2)	

AF Detection Study	Approach
Apple Heart Study	"while participants were at rest"
FitBit Heart Study	"participants were stationary (as determined by device accelerometers)"

Performance for Different Activities

Accelerometry-based approach performed well during physical activities, but not during mental stress.

Discussion

Why does it work (or not work)?

It works when noise is due to movement:

6

6

8

8

10

10

MAD:

357.6 mg

Why does it work (or not work)?

It does not work when noise is not associated with movement:

With thanks to...

Panicos Kyriacou

University of Cambridge

Jonathan Mant

Technion-IIT

Joachim Behar

Marton Aron Goda

British Heart Foundation

A threshold of 12.9 milli-gravitational units corresponds to a cutoff between sedentary and low-intensity activities.

Combining accelerometry and PPG-based assessments may provide improved performance compared to using either approach on its own.

Accelerometry-Guided Inter-Beat-Interval Assessment from Wrist Photoplethysmography

Dr Peter H. Charlton

https://peterhcharlton.github.io

pc657@cam.ac.uk

Slides available at: https://doi.org/10.5281/zenodo.8403222

