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Abstract

This paper presents a new approach to evaluating the special values of the Dirichlet
beta function, β(2k+1), where k is any nonnegative integer. Our approach relies on
some properties of the Euler numbers and polynomials, and uses basic calculus and
telescoping series. By a similar procedure, we also yield an integral representation
of β(2k).

1. Introduction

It is well known that the value of the Riemann ζ-function at a positive even integer

2k can be expressed as

ζ(2k) =

∞∑
n=1

1

n2k
=

(−1)k−122k−1π2k

(2k)!
B2k, (1)

where Bk is the k-th Bernoulli number. One of the classical proofs of this formula is

attributed to Euler, which involves considering the expansion of πz cot(πz) in two

different ways. However, over time, numerous other proofs have been developed

utilizing a variety of techniques and approaches, including notable examples such

as [1], [3]–[9], [11], and [13]–[15]. The multitude of proofs reflects the fundamen-

tal importance of this formula and the richness of the mathematical concepts it

connects.

On the other hand, the Riemann ζ-function has been generalized in many ways,

including the Dirichlet L-functions. In a similar manner to Equation (1), formulas
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for the special values of the Dirichlet L-functions have been established as follows

(for details see, for example, [10, Section 7-2, Corollary 2.10]).

Theorem 1 ([10]). Let χ be a primitive character of conductor N and k be a

positive integer satisfying χ(−1) = (−1)k. Then we have

L(k, χ) = (−1)k−1
τ(χ)

2

(
2πi

N

)k
Bk,χ
k!

, (2)

where Bk,χ is the generalized Bernoulli number associated with the conjugate of the

character χ, and τ(χ) is the Gauss sum of the character defined as

τ(χ) =
N∑
a=1

χ(a)e
2πia
N .

These formulas play a critical role in number theory, particularly in the study of

primes in arithmetic progressions, and have many connections with various math-

ematical objects such as modular forms, automorphic representations, and Galois

representations.

In this paper, we focus on Equation (2) particularly for the L-function associated

with the primitive Dirichlet character χ4 modulo 4, also known as the Dirichlet β-

function

β(s) =

∞∑
m=0

(−1)m

(2m+ 1)s
.

More precisely, it is our aim to present an alternative approach to computing

L(2k + 1, χ4) = β(2k + 1), whose formula can be stated as in the following the-

orem, according to Equation (2).

Theorem 2. Let χ4 be a primitive character of conductor 4 and k be a nonnegative

integer. We have

β(2k + 1) = (−1)k+1
(π

2

)2k+1 B2k+1,χ4

(2k + 1)!
, (3)

where B2k+1,χ4 is the 2k + 1-th generalized Bernoulli number associated with χ4.

To prove the above theorem, we use the techniques analogous to those introduced

in [5]. The method utilizes basic calculus and telescoping series to derive the desired

formula. Applying the same techniques, we also obtain an integral representation

for β(2k), when k is a positive integer.

Theorem 3. For any positive integer k, we have

β(2k) =
(−1)k−1π2k

2(2k − 1)!

∫ 1/2

0

E2k−1(t) sec(πt)dt. (4)
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In the next section, we recall definitions and important properties of Euler poly-

nomials Ek(x), which are crucial to our work. Then Section 3 is devoted to our

proof of Theorem 2, a formula for β(2k + 1). Lastly, we derive Theorem 3, an

integral representation for β(2k), in Section 4.

2. Euler Numbers and Polynomials

In this section, we introduce some useful properties of the Euler numbers and poly-

nomials, which will be used repeatedly in Sections 3 and 4.

Definition 1. The k-th Euler number Ek is defined by the generating function

∞∑
k=0

Ek
tk

k!
=

2et

e2t + 1
. (5)

By expanding the right-hand side of the equation above, the first few Euler

numbers can be observed as

E0 = 1, E1 = 0, E2 = −1, E3 = 0, E4 = 5, . . . .

Definition 2. The k-th Euler polynomial Ek(x) is defined by the generating func-

tion
∞∑
k=0

Ek(x)
tk

k!
=

2ext

et + 1
, where |t| ≤ π, x ∈ R. (6)

Again, by expanding the right-hand side of the above equation, we see that the

first few Euler polynomials are

E0(x) = 1, E1(x) = x− 1

2
, E2(x) = x2 − x, E3 = x3 − 3

2
x2 +

1

4
, . . . .

Using Definitions 1 and 2, we observe the following noteworthy proposition.

Proposition 1. For the Euler polynomials and k ∈ Z≥0, the followings are true:

(1.1) Ek(1− x) = (−1)kEk(x) and, in particular, E2k+1 (1/2) = 0,

(1.2) Ek = 2kEk (1/2) ,

(1.3) Ek(x+ 1) + Ek(x) = 2xk,

(1.4) E2k(1) = E2k(0) = 0,
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(1.5) E′0(x) = 0 and E′k(x) = kEk−1(x) when k ≥ 1,

(1.6) E2k (1/2) = − B2k+1,χ4

(2k + 1)22k−1
, where B2k+1,χ4

is the generalized Bernoulli

number associated with the primitive character modulo 4.

Proof. To prove the first statement, we substitute x with 1−x in Equation (6) and

get
∞∑
k=0

Ek(1− x)
tk

k!
=

2e(1−x)t

et + 1
=

2e−xt

e−t + 1
=

∞∑
k=0

(−1)kEk(x)
tk

k!
.

Comparing the coefficients of tk term on both sides of the equation gives us the

desired result. The second part in (1.1) then follows by evaluating the equation at

x = 1/2 when k is an odd integer. The second and third statements are obtained

similarly, by evaluating Equation (6) at x = 1/2 and at x− 1, respectively.

The statement (1.4) follows from substituting x = 0 to equations in (1.1) and

(1.3), which yields E2k(1) = E2k(0) and E2k(1) + E2k(0) = 0, respectively.

To verify (1.5), we differentiate Equation (6) with respect to x;

∞∑
k=0

E′k(x)
tk

k!
=

d

dx

2ext

et + 1
= t · 2ext

et + 1
.

The right-hand side of the equation is then the product of t and the generating

function of the the Euler polynomials. Therefore, we see that

∞∑
k=0

E′k(x)
tk

k!
=

∞∑
k=0

Ek(x)
tk+1

k!
=

∞∑
k=1

Ek−1(x)
tk

(k − 1)!
, (7)

which means E′k(x) = kE′k−1(x) when k ≥ 1. Since the constant term of the

right-hand side of Equation (7) is 0, we conclude that E′0(x) = 0.

Lastly, for (1.6), we recall the relation between the k-th generalized Bernoulli

number Bk,χ associated with χ and the k-th Bernoulli polynomial Bk(x) given by

Bk,χ = Nk−1
N∑
a=1

χ(a)Bk

( a
N

)
.

Here, N is the conductor of the character χ. See, for example, [2, Section 4.3]. In

particular, when χ = χ4,

Bk,χ4
= 4k−1

(
Bk

(
1

4

)
−Bk

(
3

4

))
. (8)

Likewise, the Euler polynomials can be related to the Bernoulli polynomials as

Ek−1(x) =
2k

k

(
Bk

(
x+ 1

2

)
−Bk

(x
2

))
,
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(see [12] for details). In particular, when x = 1/2, we have

Ek−1

(
1

2

)
=

2k

k

(
Bk

(
3

4

)
−Bk

(
1

4

))
. (9)

Comparing Equations (8) and (9) gives us

Ek−1

(
1

2

)
=

2k

k
· −Bk,χ4

4k−1
= −Bk,χ4

2k−2k
.

A proof is completed by replacing k with 2k + 1.

3. Computing β(2k + 1)

In this section, we prove the formula for β(2k + 1) as stated in Theorem 2.

Proof of Theorem 2. We will use the following auxiliary integral

I(k,m) =

∫ 1/2

0

E2k(t) sin((2m+ 1)πt) dt, (10)

for integers k,m ≥ 0. For clarity, we split the proof into three main steps.

1) Summing auxiliary functions. First, we find the recurrence relation among

the auxiliary functions I(k,m) and derive the closed form solution. We begin with

the simplest case when k = 0. Using the fact that E0(t) = 1 for any real t, we have

that

I(0,m) =

∫ 1/2

0

sin((2m+ 1)πt) dt =
1

(2m+ 1)π
. (11)

For k ≥ 1, we integrate Equation (10) by parts and obtain

I(k,m) = −
[
E2k(t)

cos((2m+ 1)πt)

(2m+ 1)π

]t=1/2

t=0

+

∫ 1/2

0

E′2k(t)
cos((2m+ 1)πt)

(2m+ 1)π
dt

=
1

(2m+ 1)π

∫ 1/2

0

E′2k(t) cos((2m+ 1)πt) dt,

where the last equality follows from (1.4).

Now, applying (1.5) and integrating by parts again, we get

I(k,m) = − 2k(2k − 1)

(2m+ 1)2π2

∫ 1/2

0

E2k−2(t) sin((2m+ 1)πt) dt

=
−2k(2k − 1)

(2m+ 1)2π2
I(k − 1,m).
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Applying this recurrence relation repeatedly, together with the value of I(0,m) from

Equation (11), we obtain the closed form of our auxiliary functions

I(k,m) =
−2k(2k − 1)

(2m+ 1)2π2
· −(2k − 2)(2k − 3)

(2m+ 1)2π2
. . .

−2 · 1
(2m+ 1)2π2

· 1

(2m+ 1)π

=
(−1)k(2k)!

(2m+ 1)2k+1π2k+1
,

for any nonnegative integers k and m. Multiplying each I(k,m) by (−1)m and

summing up over nonnegative integers m relate I(k,m) to β(2k + 1) as

∞∑
m=0

(−1)mI(k,m) =

∞∑
m=0

(−1)m(−1)k(2k)!

(2m+ 1)2k+1π2k+1
=

(−1)k(2k)!

π2k+1
β(2k + 1). (12)

2) Modifying auxiliary functions. We now modify our auxiliary functions

I(k,m) as follows:

I∗(k,m) :=

∫ 1/2

0

E∗2k(t) sin((2m+ 1)πt) dt,

where

E∗2k(t) := E2k(t)− E2k

22k
sin(πt).

This can also be written as

I∗(k,m) =

∫ 1/2

0

(
E2k(t)− E2k

22k
sin(πt)

)
sin((2m+ 1)πt) dt

= I(k,m)−
∫ 1/2

0

E2k

22k
sin(πt) sin((2m+ 1)πt) dt,

and therefore,

I(k,m) = I∗(k,m) +
E2k

22k

∫ 1/2

0

sin(πt) sin((2m+ 1)πt) dt. (13)

Furthermore, applying the following trigonometric identity

sin(α) sin(β) =
cos(α− β)− cos(α+ β)

2

to the integrand in Equation (13) yields that

E2k

22k

∫ 1/2

0

sin(πt) sin((2m+ 1)πt) dt =
E2k

22k

∫ 1/2

0

cos(2mπt)− cos((2m+ 2)πt)

2
dt

=


E2k

22k+2
if m = 0,

0 otherwise.
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We also note that (1.2) and (1.6) give

E2k

22k+2
= −

B2k+1,χ4

(2k + 1)22k+1
.

Hence, Equation (13) can be written as

I(k,m) =

I∗(k,m)−
B2k+1,χ4

(2k + 1)22k+1
, if m = 0,

I∗(k,m), if m ≥ 1.

Thus,

∞∑
m=0

(−1)mI(k,m) =

(
I∗(k, 0)−

B2k+1,χ4

(2k + 1)22k+1

)
+

∞∑
m=1

(−1)mI∗(k,m)

=

∞∑
m=0

(−1)mI∗(k,m)−
B2k+1,χ

(2k + 1)22k+1
. (14)

Comparing this with Equation (12), it boils down to simplify Equation (14) to

obtain the desired result. Indeed, we will show that
∑∞
m=0(−1)mI∗(k,m) = 0 in

the following subsection.

3) Computing telescoping series. We now show that the infinite series∑∞
m=0(−1)mI∗(k,m), which is defined as limN→∞

∑N
m=0(−1)mI∗(k,m), converges

to 0 by using trigonometric identities and telescoping sums. Consider

lim
N→∞

N∑
m=0

(−1)mI∗(k,m)

= lim
N→∞

(
I∗(k, 0)− I∗(k, 1) + · · ·+ (−1)N−1I∗(k,N − 1) + (−1)NI∗(k,N)

)
= lim
N→∞

∫ 1/2

0

(
E∗2k(t) sin(πt)− E∗2k(t) sin(3πt) + · · ·

+ (−1)N−1E∗2k(t) sin((2N − 1)πt) + (−1)NE∗2k(t) sin((2N + 1)πt)
)
dt.

Applying the following trigonometric identity

sin((2m+ 1)x) =
cos((2m− 1)x)− cos((2m+ 3)x)

2 sin(2x)
,
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we obtain the telescoping series

lim
N→∞

∫ 1/2

0

(
E∗2k(t) ·

cos(−πt)− cos(3πt)

2 sin(2πt)
− E∗2k(t) ·

cos(πt)− cos(5πt)

2 sin(2πt)

+ E∗2k(t) ·
cos(3πt)− cos(7πt)

2 sin(2πt)
− E∗2k(t) ·

cos(5πt)− cos(9πt)

2 sin(2πt)
+ · · ·

+ (−1)NE∗2k(t) ·
cos((2N − 1)πt)− cos((2N + 3)πt)

2 sin(2πt)

)
dt. (15)

To cancel out repetitive terms in Equation (15), we need to extend the function

f(t) =
E∗2k(t)

sin(2πt)
, for t ∈ (0, 1/2),

to t = 0 and 1/2.

When t = 0, we note that E∗2k(0) = E2k(0)− E2k

22k
· sin(0) = 0 by (1.4). We then

evaluate the limit of f(t) when t approaches 0 using L’Hôpital’s rule as follows

lim
t→0

E2k(t)−
E2k

22k
sin(πt)

sin(2πt)
=

2kE2k−1(0)−
E2k

22k
π

2π
,

which is some constant.

As for t = 1/2, notice that E∗2k(1/2) = E2k(1/2) − E2k

22k
sin(π/2) = 0 by (1.2).

Then the limit of f(t) as t approaches 1/2 can be evaluated as

lim
t→1/2

E2k(t)−
E2k

22k
sin(πt)

sin(2πt)
=

2k · E2k−1(1/2)−
E2k

22k
π cos(π/2)

2π cos(π)
,

which equals 0 by using (1.1). Thus, f(t) is well-defined on [0, 1/2], and, hence,

most of the terms in Equation (15) get cancelled. Moreover, since the first two

terms f(t) cos(−πt) and f(t) cos(πt) are equal, we are left with

∞∑
m=0

(−1)mI∗(k,m)

= lim
N→∞

(−1)N−1
∫ 1/2

0

E∗2k(t)

2 sin(2πt)
(cos((2N + 1)πt)− cos((2N + 3)πt)) dt

= lim
N→∞

(−1)N−1
∫ 1/2

0

E∗2k(t)

2 sin(2πt)
(−2 sin((2N + 2)πt) sin(−πt)) dt

= lim
N→∞

(−1)N−1
∫ 1/2

0

E∗2k(t)

2 cos(πt)
(sin((2N + 2)πt)) dt. (16)
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To proceed further, we justify that the function
E∗

2k(t)
2 cos(πt) sin((2N + 2)πt) is dif-

ferentiable on [0, 1/2] with continuous derivative. Similar to the case of f(t), we

extend the function

g(t) =
E∗2k(t)

cos(πt)
, for t ∈ [0, 1/2),

to t = 1/2, which can be achieved by applying (1.1) and (1.5):

lim
t→1/2

E2k(t)−
E2k

22k
sin(πt)

2 cos(πt)
= 0.

Therefore, g(t) is differentiable with continuous derivative on [0, 1/2].

We now consider the integral on the right-hand side of the last equation of (16).

Writing (2N + 2)π = R and integrating by parts give∫ 1/2

0

g(t) sin(Rt) dt = −
cos(R/2)

R
g(1/2) +

1

R
g(0) +

∫ 1/2

0

g′(t)
cos(Rt)

R
dt.

The boundedness of g(0), g(1/2) and g′(t) shows that each term in the above sum

approaches zero as R approaches infinity, and therefore

lim
N→∞

N∑
m=0

(−1)mI∗(k,m) = 0.

Thus, Equation (14) is simplified as

∞∑
m=0

(−1)mI(k,m) = −
B2k+1,χ

(2k + 1)22k+1
.

This, together with Equation (12), completes the proof.

4. An Integral Representation of β(2k)

This section is devoted to obtaining the integral representation of β(2k) as stated

in Theorem 3. In this case, we split the proof into two steps.

Proof of Theorem 3. We consider a slightly different auxiliary integrals

J(k,m) =

∫ 1/2

0

E2k+1(t) cos((2m+ 1)πt) dt (17)

with integers k,m ≥ 0.
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1) Summing auxiliary functions. Similar to the case of I(0,m), applying (1.5)

and integrating by parts yield

J(0,m) =
E1

(
1
2

)
sin
(

(2m+1)
2 π

)
− E1(0) sin(0)

(2m+ 1)π
−
∫ 1/2

0

E0(t)
sin((2m+ 1)πt)

(2m+ 1)π
dt.

Then, using (1.1), together with the facts that E0(t) = 1 and sin(0) = 0, we are left

with

J(0,m) = −
∫ 1/2

0

sin((2m+ 1)πt)

(2m+ 1)π
dt = − 1

(2m+ 1)2π2
. (18)

Now we consider Equation (17) when k ≥ 1. Integrating by parts twice, along

with (1.1), (1.4), and (1.5), gives us

J(k,m) = − (2k + 1)(2k)

(2m+ 1)2π2
J(k − 1,m). (19)

Putting Equations (18) and (19) together provides the closed form of J(k,m) as

J(k,m) =
(−1)k+1(2k + 1)!

(2m+ 1)2k+2π2k+2
.

Therefore, we can relate J(k,m) to β(2k) as

∞∑
m=0

(−1)mJ(k − 1,m) =

∞∑
m=0

(−1)m
(−1)k(2k − 1)!

(2m+ 1)2kπ2k
=

(−1)k(2k − 1)!

π2k
β(2k),

for any k ≥ 1, or equivalently,

β(2k) =
(−1)kπ2k

(2k − 1)!

∞∑
m=0

(−1)mJ(k − 1,m). (20)

2) Computing telescoping series. We now simplify the right-hand side of

Equation (20) by exploiting a telescoping series and the trigonometric identity

cos((2m+ 1)πt) =
cos(2mπt) + cos((2m+ 2)πt)

2 cos(πt)
. (21)

Applying Equation (21) in Equation (17), we obtain that

J(k − 1,m) =

∫ 1/2

0

E2k−1(t)
cos(2mπt) + cos((2m+ 2)πt)

2 cos(πt)
dt.
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Multiplying each J(k− 1,m) by (−1)m and summing up over nonnegative integers

m give

∞∑
m=0

(−1)mJ(k − 1,m)

= lim
N→∞

∫ 1/2

0

(
E2k−1(t)

cos(0) + cos(2πt)

2 cos(πt)
− · · ·

+(−1)NE2k−1(t)
cos(2Nπt) + cos((2N + 2)πt)

2 cos(πt)

)
dt.

Then we extend the function

h(t) :=
E2k−1(t)

2 cos(πt)
, t ∈ [0, 1/2),

in each summand, to t = 1/2 by continuity. By applying L’Hôpital’s rule, we obtain

lim
t→1/2

E2k−1(t)

2 cos(πt)
=

(2k − 1)E2k−2(1/2)

−2π
,

which is some constant. Thus, h(t) is differentiable on [0, 1/2] with a continuous

derivative, and, hence, most of the terms in the above integral now get cancelled,

leaving us

∞∑
m=0

(−1)mJ(k − 1,m)

= lim
N→∞

∫ 1/2

0

(
E2k−1(t)

cos(0)

2 cos(πt)
+ (−1)NE2k−1(t)

cos((2N + 2)πt)

2 cos(πt)

)
dt

=

∫ 1/2

0

E2k−1(t) sec(πt)

2
dt+ lim

N→∞
(−1)N

∫ 1/2

0

E2k−1(t)
cos((2N + 2)πt)

2 cos(πt)
dt. (22)

To further simplify the above expression, we will show that, in fact,

lim
N→∞

(−1)N
∫ 1/2

0

E2k−1(t)
cos((2N + 2)πt)

2 cos(πt)
dt

is null. Let R denote (2N + 2)π. The integral above then equals

lim
N→∞

(−1)N
∫ 1/2

0

h(t) cos(Rt)dt

= lim
N→∞

(−1)N

(
h(1/2)

sin(R/2)

R
− h(0)

sin(0)

R
−
∫ 1/2

0

h′(t)
sin(Rt)

R
dt

)
.
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Since h(1/2), h(0), and h′(t) are bounded, each summand approaches 0 as R→∞,

and therefore this limit is indeed 0. Thus, the summation (22) is

∞∑
m=0

(−1)mJ(k − 1,m) =

∫ 1/2

0

E2k−1(t) sec(πt)

2
dt.

Substituting this back into Equation (20) yields

β(2k) =
(−1)k−1π2k

2(2k − 1)!

∫ 1/2

0

E2k−1(t) sec(πt)dt,

for all positive integers k, as desired.
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