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Abstract
Recently, singular learning theory has been analyzed using algebraic geometry as its basis.
It is essential to determine the normal crossing divisors of learning machine singularities
through a blowing-up process to observe the behaviors of state probability functions in
learning theory. In this paper, we investigate learning coefficients for multi-layered neu-
ral networks with linear units, especially when dealing with a large number of layers in
Bayesian estimation. We make use of the valuable results obtained in the paper [9], which
provide the main terms for Bayesian generalization error and the average stochastic com-
plexity (free energy). These terms are widely employed in numerical experiments, such as
in information criteria.

Key Words: Resolution of singularities, learning coefficients, singular models, linear neu-
ral networks

1 Introduction

Let q(x, y) be a true probability density function of variables, x, y, and let (x, y)n :=
{(xi, yi)}ni=1 be n training samples selected independently and identically from q(x, y).
Consider a learning model that is written in probabilistic form as p(x, y|w), where w ∈
W ⊂ Rd is a parameter.

Suppose that the purpose of the learning system is to estimate an unknown true density
function q(x, y) from (x, y)n using p(x, y|w) in Bayesian estimation. Let ψ(w) be an a
priori probability density function on a parameter set W and p(w|(x, y)n) be the a posteri-
ori probability density function,

p(w|(x, y)n) = 1

Zn(β)
ψ(w)

n∏
i=1

p(xi, yi|w)β ,
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where

Zn(β) =

∫
W
ψ(w)

n∏
i=1

p(xi, yi|w)βdw,

for an inverse temperature β; we typically set β = 1.

Define the average the average log loss function L(w) by L(w) = −Ex,y[log p(x, y|w)]
and the set of optimal parameters W0 by

W0 = {w ∈W |L(w) = min
w′∈W

L(w′)}.

Assume that its log likelihood function has relatively finite variance,

Ex,y[log
p(x, y|w0)

p(x, y|w)
] ≥ cEx,y[(log

p(x, y|w0)

p(x, y|w)
)2], w0 ∈W0, w ∈W,

for a constant c > 0. Then, we have a unique probability density function p0(x, y) =
p(x, y|w0) for all w0 ∈W0.

Define

Eβ
w[g(w)] =

∫
dwg(w)ψ(w)

∏n
i=1 p(xi, yi|w)β∫

dwψ(w)
∏n

i=1 p(xi, yi|w)β
,

and
V β
w [g(w)] = Eβ

w[g(w)
2]− Eβ

w[g(w)]
2.

We then have the predictive density function p(x, y|(x, y)n) = Eβ
w[p(x, y|w)], which is the

average inference of the Bayesian density function. Let

f(x, y|w) = log
p0(x, y)

p(x, y|w)

from which the Kullback function is defined as

K(w) = Ex,y[f(x, y|w)].

Applying Hironaka’s Theorem [15] to the function K(w), we obtain the proper analytic
map π from manifold Y to neighborhood W ,

K(π(u)) = u2k11 u2k22 · · ·u2kdd ,

where (u1, · · · , ud) is a local analytic coordinate system on U ⊂ Y . Additionally, there
exist analytic functions a(x, y|u) and b(u) ̸= 0 such that

f(x, y|π(u)) = uk11 u
k2
2 · · ·ukdd a(x, y|u),

and
π′(u)ψ(π(u)) = uh1

1 u
h2
2 · · ·uhd

d b(u).



Let

ξn(u) =
1√
n

n∑
i=1

{uk11 u
k2
2 · · ·ukdd − a(xi, yi|π(u))},

then, we have an empirical process Kn(π(u)) such that

nKn(π(u)) =
n∑

i=1

f(xi, yi|π(u))

= nu2k11 u2k22 · · ·u2kdd −
√
nuk11 u

k2
2 · · ·ukdd ξn(u).

We introduce learning coefficients

λ = min
u

min
1≤j≤d

hj + 1

2kj
,

and its order
θ = max

u
Card({j : hj + 1

2kj
= λ}),

where Card(S) denotes the cardinality of a set S.

Without loss of generality, we can assume that

λ =
h1 + 1

2k1
=
h2 + 1

2k2
= · · · = hθ + 1

2kθ
<
hj + 1

2kj
(θ + 1 ≤ j ≤ d).

Let

Ω(w)dw =
ψ(w)

∏n
i=1 p(xi, yi|w)β∏n

i=1 p0(xi, yi)
β

dw.

Then, we have

Ω(w)dw =
(log n)θ−1

nλ

∫ ∞

0
dt tλ−1 exp(−t+

√
βtξn(u))du

∗

+op

(
(log n)θ−1

nλ

)
,

where µj = −2λkj + hj ,

du∗ =

∏θ
i=1 δ(ui)

∏d
j=θ+1 u

µj

j

(θ − 1)!
∏θ

i=1(2ki)
b(u)du,

and δ(u) is Dirac’s delta function.

Let ν be a singular fluctuation,

ν =
1

2
Eξ

[∫∞
0 dt

∫
du∗ξ(u)tλ−1/2 exp(−βt+ β

√
tξ(u))∫∞

0 dt
∫
du∗tλ−1 exp(−βt+ β

√
tξ(u))

]
,



where ξ(u) is a convergence in distribution for ξn(u) and a random variable of a Gaus-
sian process with mean zero, and Eξ[ξ(w)ξ(u)] = Ex,y[a(x, y|w)a(x, y|u)] denotes the
covariance.

Let Gn be the Bayes generalization loss,

Gn = −
∫
q(x, y) log p(x, y|(x, y)n)dx,

and Tn the Bayes training loss,

Tn = − 1

n

n∑
i=1

log p(xi, yi|(x, y)n).

Watanabe [23, 24, 27, 29] proved the following relations,

E[Gn] = L(w0) +
1

n

(
λ− ν

β
+ ν

)
+ o(

1

n
),

E[Tn] = L(w0) +
1

n

(
λ− ν

β
− ν

)
+ o(

1

n
).

Using the above, we have in the Bayesian estimation approach model selection methods
such as the widely-applicable information criterion (WAIC) [1, 23, 24, 25, 26, 27, 29] and
cross-validation.

(1) WAIC [26]

Wn = Tn +
β

n

n∑
i=1

{Eβ
w[(log p(xi, yi|w))2]− Eβ

w[log p(xi, yi|w)]2},

(2) Cross-validation

Cn = − 1

n

n∑
i=1

log p(xi, yi|(x, y)n\(xi, yi)) (n ≥ 2),

where

(x, y)n\(xi, yi) = {(x1, y1), · · · , (xi−1, yi−1), (xi+1, yi+1), · · · , (xn, yn)}.

Then, we have

E[Wn] = E[Gn] + o(
1

n
), E[Cn] = E[Gn] + o(

1

n
),

by using

β
n∑

i=1

{Eβ
w[(log p(xi, yi|w))2]− Eβ

w[log p(xi, yi|w)]2} → 2ν.



These relations show that the WAIC and cross-validation can estimate the Bayesian gener-
alization loss Gn from data (x, y)n and learning model p(x, y|w) without any knowledge
of the true probability density function.

In addition, based on the free energy,

Fn(β) = − 1

β
log

∫ n∏
i=1

p(xi, yi|w)βψ(w)dw

= nLn(w0) +
λ

β
log(n)− θ − 1

β
log log(n) + op(1)

which was shown by Watanabe [26], we have the two model-selection methods, namely, the
“widely applicable Bayesian information criterion” (WBIC) [28] and “singular Bayesian
information criterion” (sBIC) [12]. sBIC uses the learning coefficients very effectively with
a fix point equation system of marginal likelihoods, whereas in practice WAIC, the cross-
validation, and WBIC do not need these coefficients.

The learning coefficients are known as log canonical thresholds in algebraic geometry. The-
oretically, their values are obtained using Hironaka’s Theorem. However, these thresholds
are studied mainly over the complex field or algebraically closed fields in algebraic geom-
etry and algebraic analysis [17, 19, 16]. There are many differences for real and complex
fields. For example, log canonical thresholds over the complex field are less than one,
whereas those over the real field are not necessarily so. Obtaining these thresholds for
learning models is difficult for several reasons, such as degeneration with respect to their
Newton polyhedra and non-isolation of their singularities [14]. Therefore, it is of interest
in various fields, even in mathematics, to obtain these thresholds.

Our purpose in this paper is to obtain λ and θ for deep-layered linear neural networks.

In recent studies, we obtained exact values or bounded values of the learning coefficients
for Vandermonde matrix-type singularities, which are related to the three-layered neural
networks and normal mixture models, among others [10, 2, 5, 7, 8]. We have also exact
values for the restricted Boltzmann machine [6]. Additionally, Rusakov and Geiger [21,
22] and Zwiernik [30], respectively, obtained the learning coefficients for naive Bayesian
networks and directed tree models with hidden variables. Drton et al. [13] considered these
coefficients for the Gaussian latent tree and forest models.

2 Log canonical threshold

We denote constants by superscript ∗, for example, a∗, b∗, and w∗.

Definition 1 Let f be an analytic function in neighborhood U of w∗, and ψ be a C∞

function on U that is also analytic in a neighborhood of w∗ with compact support. Define
the log canonical threshold

cw∗(f, ψ) = sup{c : |f |−c is locally L2 in a neighborhood of w∗}



over the complex field C and

cw∗(f, ψ) = sup{c : |f |−c is locally L1 in a neighborhood of w∗}

over the real field R. The value cw∗(f, ψ) is equal to the largest pole of the zeta function∫
U |f |kzψ(w)dw for z ∈ C, where k = 2 over the complex field and k = 1 over the real

field. Let θw∗(f, ψ) be its order.

If ψ(w∗) ̸= 0, then denote cw∗(f) = cw∗(f, ψ) and θw∗(f) = θw∗(f, ψ) because the log
canonical threshold and its order are independent of ψ.

For ideal I , generated by real analytic functions f1, · · · , fm in a neighborhood ofw∗, define
cw∗(I) = cw∗(f21 + · · ·+ f2m).

Here, cw∗(I) for ideal I is well-defined by Lemma 1.

Lemma 1 ([3, 4, 18]) Let U be a neighborhood of w∗ ∈ Rd. Consider the ring of analytic
functions on U . Let J be the ideal generated by f1, . . . , fn, which are analytic functions
defined on U . (1) If g21 + . . .+ g2m ≤ f21 + · · ·+ f2n, then cw∗(g21 + · · ·+ g2m) ≤ cw∗(f21 +
· · ·+ f2n).

(2) If g1, . . . , gm ∈ J , then cw∗(g21 + · · · + g2m) ≤ cw∗(f21 + · · · + f2n). In particular, if
g1, . . . , gm generate ideal J , then cw∗(f21 + · · ·+ f2n) = cw∗(g21 + · · ·+ g2m).

The following lemma is also used in the proofs.

Lemma 2 ([6]) Let J ,J ′ be the ideals generated by f1(w), . . ., fn(w) and g1(w′), . . .,
gm(w′), respectively. If w and w′ are different variables, then

c(w∗,w′∗)(f
2
1 + · · ·+ f2n + g21 + · · ·+ g2m) = cw∗(f21 + · · ·+ f2n) + cw′∗(g21 + · · ·+ g2m).

The learning coefficient λ is the log canonical threshold of the Kullback function (relative
entropy) over the real field.

Define the norm of a matrix C = (cij) as ||C|| =
√∑

i,j |cij |2.

Definition 2 For a matrix C, let ⟨C⟩ be the ideal generated by all elements of C.

3 Multiple-layered linear neural networks

In the paper [9], the learning coefficients for multiple-layered neural networks with linear
units were obtained.



Define matrices A(s) of size H(s) ×H(s+1) for s = 1, . . . , L,

A(s) = (a
(s)
ij ), (1 ≤ i ≤ H(s), 1 ≤ j ≤ H(s+1)).

Let W be the set of parameters

W = {w = {A(s)}1≤s≤L | A(s) is an H(s) ×H(s+1) matrix }.

Denote the input value by x ∈ RH(L+1)
with probability density function q(x) and output

value y ∈ RH(1)
for the multiple-layered neural network with linear units, which is given

by

y =
L∏

s=1

A(s)x+ (noise),

with Gaussian noise. Consider the statistical model

p(y|x,w) = 1

(
√
2π)H

(1)
exp(−1

2
||y −

L∏
s=1

A(s)x||2), p(x, y|w) = p(y|x,w)q(x).

The model has H(1) input units, H(L+1) output units, and H(s) hidden units in each hidden
layer. Let

w∗ = {A∗(s)}1≤s≤L,

be the true parameter. Assume that the true density function

q(y|x) = 1

(
√
2π)H

(1)
exp(−1

2
||y −

L∏
s=1

A∗(s)x||2), q(x, y) = q(y|x)q(x),

which is included in the learning model. Moreover, assume that the a priori probability
density function φ(w) is a C∞− function with compact support W , satisfying φ(w∗) > 0.
Then, λ and θ for the model corresponding to the log canonical threshold λw∗(||

∏L
s=1A

(s)−∏L
s=1A

∗(s)||2) and its order θ are as follows.

Definition 3 Let r be the rank of
∏L

s=1A
∗(s) and M (s) = H(s) − r for s = 1, . . . , L + 1.

Define M ⊂ {1, . . . , L+ 1} such that

ℓ = Card(M)− 1,

M = {S1, . . . , Sℓ+1},
M (Sj) < M (s) for Sj ∈ M and s ̸∈ M,

ℓ+1∑
k=1

M (Sk) ≥ ℓM (s) for s ∈ M

ℓ+1∑
k=1

M (Sk) < (ℓ− 1)M (s) for s ̸∈ M.



Let M be the integer such that

M − 1 <

∑ℓ+1
k=1M

(Sk)

ℓ
≤M,

and

a =
ℓ+1∑
k=1

M (Sk) − (M − 1)ℓ.

Theorem 1 ([9]) We have

λ =
−r2 + r(H(1) +H(L+1))

2
+
a(ℓ− a)

4ℓ

−ℓ(ℓ− 1)

4
(

∑ℓ+1
j=1M

(Sj)

ℓ
)2 +

1

2

∑
1≤i<j≤ℓ+1

M (Si)M (Sj)

=
−r2 + r(H(1) +H(L+1))

2
+
a(ℓ− a)

4ℓ

+
1

4ℓ
(
ℓ+1∑
j=1

M (Sj))2 − 1

4

ℓ+1∑
j=1

(M (Sj))2

=
−r2 + r(H(1) +H(L+1))

2
+
Ma+ (M − 1)

∑ℓ+1
j=1M

(Sj)

4

−1

4

ℓ+1∑
j=1

(M (Sj))2

and
θ = a(ℓ− a) + 1.

Note that λ is a decreasing sequence with ℓ from the proof of Theorem [9].

Lemma 3 Let M̃ be the integer such that M̃ ≤
∑ℓ+1

k=1
M(Sk)

ℓ+1 < M̃ + 1. Fix M̃ and if ℓ is
large enough to satisfy∑ℓ+1

k=1M
(Sk)

ℓ+ 1
+

∑ℓ+1
k=1M

(Sk)

ℓ(ℓ+ 1)
=

∑ℓ+1
k=1M

(Sk)

ℓ
< M̃ + 1,

then
M (Sj) = min

1≤s≤L+1
M (s) for all Sj ∈ M

and M̃ =M (S1) = · · · =M (Sℓ+1).

(Proof)



Since M (Sj) ≤
∑ℓ+1

k=1
M(Sk)

ℓ < M̃ + 1, we have

M (Sj) ≤ M̃ ≤
∑ℓ+1

k=1M
(Sk)

ℓ+ 1
.

Therefore, ∑ℓ+1
k=1M

(Sk)

ℓ+ 1
≤ M̃ ≤

∑ℓ+1
k=1M

(Sk)

ℓ+ 1
.

That is, we have

M (Sj) =

∑ℓ+1
k=1M

(Sk)

ℓ+ 1
= M̃.

The end of Proof

By Lemma 3, we have the followings.

Theorem 2 Let Mmin = min1≤s≤L+1M
(s). Assume that M (S1) = M (S2) = · · · =

M (Sℓ+1) =Mmin and ℓ > Mmin. then we have a =Mmin,

λ =
−r2 + r(H(1) +H(L+1))

2
+
M2

min +Mmin

4

and
θ =Mmin(ℓ−Mmin) + 1.

4 Conclusions

In the paper [9], we have determined the precise values for the learning coefficients of
multi-layered linear neural networks, thereby extending the results presented in the paper
[11]. Utilizing these coefficients, we establish Theorem 2 for cases involving a large number
of layers. This theorem demonstrates that the learning coefficient λ is exactly equal to

−r2 + r(H(1) +H(L+1))

2
+

(Hmin − r)2 +Hmin − r

4
,

where H(s) represents the number of perceptrons in each layer, r is the rank of its true
probability density function, and Hmin is the minimum among the values of H(s) for 1 ≤
s ≤ L + 1. Furthermore, this theorem reveals that when the number of layers exceeds
Hmin − r, the value of λ remains constant and attains its minimum for a smaller number of
layers thanHmin−r. This seems to explain phenomena like double descent [20] in machine
learning.
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