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Unidentified devices in a network can result in devastating consequences. It is, therefore, necessary to finger-

print and identify IoT devices connected to private or critical networks. With the proliferation of massive but

heterogeneous IoT devices, it is getting challenging to detect vulnerable devices connected to networks. Cur-

rent machine learning-based techniques for fingerprinting and identifying devices necessitate a significant

amount of data gathered from IoT networks that must be transmitted to a central cloud. Nevertheless, private

IoT data cannot be shared with the central cloud in numerous sensitive scenarios. Federated learning (FL) has

been regarded as a promising paradigm for decentralized learning and has been applied in many different use

cases. It enables machine learning models to be trained in a privacy-preserving way. In this article, we pro-

pose a privacy-preserved IoT device fingerprinting and identification mechanisms using FL; we call it FL4IoT.

FL4IoT is a two-phased system combining unsupervised-learning-based device fingerprinting and supervised-

learning-based device identification. FL4IoT shows its practicality in different performance metrics in a feder-

ated and centralized setup. For instance, in the best cases, empirical results show that FL4IoT achieves ∼99%

accuracy and F1-Score in identifying IoT devices using a federated setup without exposing any private data

to a centralized cloud entity. In addition, FL4IoT can detect spoofed devices with over 99% accuracy.
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1 INTRODUCTION

With the introduction of massive IoT, consisting of billions of connected devices with heteroge-

neous features from a variety of vendors, it is getting harder to detect unauthorized connected

devices. This gets even more sensitive if such unauthorized devices are present in critical

This research has been partly supported by the EU H2020 projects ARCADIAN-IoT (GA 101020259) and VEDLIoT (GA

957197); Horizon Europe project HARPOCRATES (GA 10048312); and initiated by the RISE Cybersecurity KP.

Authors’ addresses: H. Wang, D. Eklund, and S. Raza, RISE Research Institutes of Sweden AB, Isafjordsgatan 22, 164 40

Kista; emails: {han.wang, david.eklund, shahid.raza}@ri.se; A. Oprea, Northeastern University, 440 Huntington Avenue,

202 West Village H, Boston, MA 02115.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2577-6207/2023/07-ART17

https://doi.org/10.1145/3603257

ACM Transactions on Internet of Things, Vol. 4, No. 3, Article 17. Publication date: July 2023.

https://orcid.org/0000-0002-2772-4661
https://orcid.org/0000-0002-1954-760X
https://orcid.org/0000-0002-4979-5292
https://orcid.org/0000-0001-8192-0893
https://doi.org/10.1145/3603257
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3603257
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603257&domain=pdf&date_stamp=2023-07-25


17:2 H. Wang et al.

infrastructure and can disrupt operations. For instance, in a recent NASA system hack [23],

unidentified IoT devices resulted in an advanced persistent threat, where an undisclosed and

unauthorized Raspberry Pi device connected to the Jet Propulsion Laboratory was the source

of a hack of NASA servers where hackers were able to gain access to one of NASA’s major

mission systems. Unauthorized IoT devices with weak security can become a source of attacks

on the global Internet [1]. It is, therefore, necessary to identify connected devices and remove

unauthorized devices from the networks. Appropriate and well-designed device fingerprinting

and identification can help network administrators to manage the network efficiently, ensuring

the connections among devices are in order.

Motivation and Rationale: Due to IoT’s heterogeneous ecosystem, device fingerprinting and

identification are challenging tasks. Many approaches have been proposed along the growth of

IoT networks, from the early traditional cryptographic authentication to the current machine-

learning-based solutions. Existing ML-based works define the fingerprint of the devices as the

set of features extracted either from the physical layer, mainly the radio frequency waveform, or

the network traffic, usually the packet or flow patterns. Physical layer data are more sensitive

to environmental factors and limited to individual wireless technologies. In comparison, network

traffic data are more flexible but, at the same time, more complex. ML-based approaches usually

involve various techniques such as data engineering for feature extraction and selection [2, 7, 21],

signal processing [25], and natural language processing for the analysis of packet payload [29].

These kinds of device fingerprinting approaches usually require a deep study of the data, and are

hence data-oriented and task-oriented, which makes these approaches not generic to the different

use cases.

However, deep learning (DL) has recently emerged and become a trend in many domains, in-

cluding device fingerprinting and identification. Rather than complex data engineering and data

preprocessing, DL-based approaches are usually probabilistic models that learn the distributions

or representations from the original data. Ortiz et al. [24] propose an LSTM-embedded autoen-

coder to learn the distribution from the packet payload content and compare the distributions

of unknown devices with those known. However, they use a sniffer to analyze the packet infor-

mation, which is infeasible when the packet is encrypted, and it raises privacy concerns. Other

works [12, 36] use statistical methods to extract features as fingerprints and apply DL to train a

neural network to identify the devices. DL-based device identification models are able to achieve

better accuracy performance, but the way of producing fingerprints proposed in these works is

the feature-extraction-based method, which is static, not dynamic. It might miss the potentially

important factors possessed by the data.

Training a satisfactory DL-based model requires powerful computational resources; thus, it is

common to push data to the cloud using its service. However, this creates vulnerabilities such as

information leakage and abuse of data. New privacy laws such as the ePrivacy Directive and GDPR

in the EU encourage (and, in some cases, mandate) sharing only minimal amounts of data, which

enforces privacy-by-default and by-design. Bringing ML to the edge of the IoT network, where

actual collection and/or actuation takes place, is becoming a new trend. Its advantages include

efficient resource utilization, reducing latency, and so on. Federated Learning (FL) emerges as

a promising paradigm for its decentralized and privacy-preserving ecosystem [9, 17]. It is a dis-

tributed approach that enables IoT edge devices to collaboratively train models in a decentralized

way and keep the private data on the devices at the same time. In Section 2.2, we describe Federated

Learning in more detail.

Goal: In this article, we introduce FL4IoT, a two-phased approach to device fingerprinting and

identification, which can be applied in both centralized and federated settings. We build an
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unsupervised-learning-based model to generate the vectorized fingerprints by analyzing the de-

vice’s traffic behavior. Since the generated fingerprints are vectorized, they are relatively light-

weight to be stored on edge devices for further use. We then propose a supervised-learning-based

model for device identification, where the generated fingerprints are involved in the training pro-

cess. We finally evaluate FL4IoT on three real-world datasets to show the feasibility of applying

our approach to FL, and we compare the overall performance between FL and centralized training.

The main contributions of this article are listed as follows:

• We propose FL4IoT, a two-phased approach including generating lightweight 1D finger-

prints offline and identifying new traffics with generated fingerprints online. FL4IoT is ap-

plicable in both the centralized and federated settings.

• We evaluate our method FL4IoT with three real-world datasets and compare with three base-

lines in a centralized setup and two baselines in a FL setup. The identification performance

can reach ∼99% of accuracy.

• We evaluate FL4IoT from different aspects with experiments including detection of spoofed

devices and multiple clients in FL setup. FL4IoT reaches over 99% precision in detecting

spoofed devices.

• To the best of our knowledge, FL4IoT is the first work focusing on applying FL to network-

traffic-based device fingerprinting and identification tasks.

The remainder of the article is organized as follows: Section 2 summarizes related work. Sec-

tion 3 defines the problem and the threat model. Section 4 introduces the proposed approach and

the design of FL workflow used in this article. Section 5 summarizes the experiments from different

setups and contains corresponding discussions. In Section 6, we analyze the security issues and

challenges. Finally, Section 7 draws the conclusions and the future work.

2 RELATED WORK AND BACKGROUND

In this section, we survey the literature that closely relates to device fingerprinting and identifica-

tion by using machine learning techniques, and we provide the background knowledge of federated

learning.

2.1 Device Fingerprinting and Identification

Device identification and fingerprinting techniques have been used over the years in network se-

curity for device authentication, which is the process of determining whether a device is what

it claims to be. Machine learning is increasingly employed to solve the problem. Existing ML ap-

proaches can be divided into two focuses: the physical-hardware-based method and the network-

traffic-based method. Physical hardware-based fingerprinting is widely used in the domain of

Wireless Local Area Networks (WLANs). There are many studies on observing the physical

information of the device, such as configuration [4, 13, 26], or investigating the radio frequency

(RF) from the physical layer of the network [10, 14, 15, 27, 28, 38, 39]. In this article, we mainly

focus on the network-traffic-based fingerprinting methods that study the network behavior of the

IoT devices by extracting features from the packets or exploring the statistical information of the

traffic flow [2, 7, 12, 19–22, 24, 25, 29, 33, 36].

Table 1 summarizes the existing works on network-traffic-based device fingerprinting and iden-

tification. We divide these works into two categories based on the type of ML method: Traditional

ML or DL. From the table, we observe that there are two types of features: Packet features that look

into the information contained in the packet header and payload, and network-flow features that

consist of statistical information on traffic flow (such as mean and standard deviation of the pack-

ets transmission time). Moreover, we notice that most works define device fingerprint as the set of

ACM Transactions on Internet of Things, Vol. 4, No. 3, Article 17. Publication date: July 2023.



17:4 H. Wang et al.

Table 1. Existing Works on Network-traffic-based Device Fingerprinting and Identification

Category Authors Features type ML Model Key Contribution

Traditional machine

learning

Miettinen et al. [21] Packet features

(Protocols in different

layers, Packet Content,

IP address...)

Random Forest Propose a representation of

device fingerprint that is a 23

by n matrix consisting of 23

features extracted by n

packets.

Hamad et al. [7] Mixed features (Packet

features and flow

features)

Adaptive Boosting,

LDA, K-Nearest

Neighbors, Decision

Tree, Nave Bayesian,

SVM, Random Forest

The fingerprint comprises 67

features extracted from the

packet header, payload, and

statistical information of the

traffic flow. Examine several

different machine learning

methods to choose the best

model for the task.

Bezawada et al. [2] Packet features (Header

features and payload

features)

K-Nearest Neighbors,

Decision Tree, Gradient

Boosting

Generate a behavioral profile

considering both packet

header and payload. Utilize

Miettinen et al.’s method to

extract features from the

header and propose three

important payload features.

Meidan et al. [20] Flow features Random Forest Train a classifier on the set of

whitelisted IoT devices and

apply the inferred classifier

to distinguish unauthorized

devices.

Meidan et al. [19] Packet features (IP

address, port numbers...)

Gradient Boosting,

Random Forest,

XGBoost

Propose a single-session

binary classifier. Determine

the optimal threshold for

each classifier. Utilize

majority voting on whether

the session is generated by

the device.

Sivanathan

et al. [29]

Mixed features (Flow

features, domain names,

port number, TLS

handshake messages)

Ensemble learning Statistically characterize

network traffic in different

terms by using bag-of-word,

and text classification

techniques. Propose a

multi-stage ML framework

to identify the IoT devices.

Marchal et al. [25] Flow features

(Transform into

periodic data)

K Nearest Neighbors Analyze network flow and

utilize Fourier transform to

transform the time-series

data into the signal format

and extract fingerprint

features by using signal

processing methods.

Msadek et al. [22] Flow features

(Availability time,

inter-arrival time,

packet size...)

K Nearest Neighbors,

SVM, Random Forest,

AdaBoost, Extra-Trees

Extract features of the

fingerprint from the

sequence of the packet

header with the technique of

sliding window.

Deep learning

Ortiz et al. [24] Packet features

(Sequence of Payload)

Ensemble learning Propose LSTM-embedded

autoencoder to learn the

distribution over TCP flow,

and use Bayesian model to

compare distributions.

Kumar et al. [12] Flow features

(Transmission time,

inter-arrival time)

Neural network Construct fingerprint by

using statistical method.

Train a neural network with

generated fingerprints.

(Continued)
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Table 1. Continued

Category Authors Features type ML Model Key Contribution

Yang et al. [36] Packet features

(Protocols in different

layers, packet payload...)

Neural network, LSTM Propose the way of

extracting features for

fingerprinting from the

application layer, transport

layer, and network layer.

Propose a three-level

classifier for type, vendor,

and product.

Thom et al. [33] Packet features (raw

Pcap files)

Neural network Convert Pcap files into

Nilsimsa hash (Locality

Sensitive Hasges) to generate

fingerprint.

features extracted from the data and labeled with the corresponding device [2, 7, 20–22, 29, 36].

They train the ML models with these fingerprints to classify or identify previously unseen traffic.

The key contribution of these works is mainly data engineering to parse and extract important

features from the raw data. Some of the other works propose methods to transform the original

data into another representation, such as periodic signal [25] or hash [33], or to learn the distribu-

tion [24] or representation [12] by using a neural network.

Traditional ML-based approaches to feature extraction for device fingerprinting seem promis-

ing, because they learn the raw data well. However, they require complex data pre-processing

steps and are usually designed for specific data. For example, Miettinen et al. [21] propose a set

of features that represent the device fingerprint, which covers 23 features, including protocols

used in 4 different layers, such as ARP/LLC in the link layer, TCP/UDP in the transport layer, and

other 8 specific protocols used for the application layer. Nevertheless, because of the fast growth of

IoT, various protocols are released. Their approach could not cover all the protocols, for example,

CoAP and MQTT for the application layer or DTLS for the transport layer. Sivanathan et al. [29]

create a testbed to monitor and collect traffic among 28 IoT devices, and they utilize bag-of-word, a

natural-language-processing method, to analyze the domain names and the content of the packet.

This approach is designed delicately but is infeasible when the traffic is encrypted, which is a

common drawback for the approaches that consider the content of the packet.

DL-based approaches, in contrast, do not require feature extraction based on one’s domain

knowledge. These works focus on designing generalized models to learn the representations or dis-

tributions that could represent the device as the fingerprint. For example, Ortiz et al. [24] propose

an unsupervised-learning-based model, LSTM-embedded autoencoder, to learn the distribution

from the content of the packet payload and compare the distributions of unknown devices with

those that are known. However, to obtain the payload sequences to feed into the autoencoder, they

use a sniffer to analyze the packet information, which is, again, infeasible if the packet is encrypted,

and it also raises privacy concerns. However, Kumar et al. [12] first utilize the transmission time

of a frame and inter-arrival time to construct a histogram for each frame type and assign a weight

to each frame type. They treat the histogram and weight combination as the device’s fingerprint

and train a neural network with these generated fingerprints to be further used for device identi-

fication. One strength of their work is that they only exploit two main features to construct the

fingerprint without looking into the content of the packet. Nevertheless, their way of fingerprint

construction is static but not dynamic, which means it is possible to miss the potential factors

possessed by the data. Nevertheless, these works serve as valuable references for us to preserve

their merits and address their shortcomings. We build an unsupervised-learning-based model to

learn vectorized fingerprints for each device based on their flow features instead of packet features.

Our model is dynamic and capable of fingerprinting the device even if its traffic is encrypted. In

addition, deep learning methods are adaptive and applicable in the federated learning setup.
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Fig. 1. Overview of federated learning setup: (1) The deployment of global model to clients, (2) Local training

with private dataset on the clients, and (3) Model aggregation of the global model.

2.2 Federated Learning

Federated Learning has become a trend because of increasing data security and user privacy aware-

ness, especially in IoT networks [37]. FL allows multiple entities to train a global model collabo-

ratively without sharing their private data, assisted by a central node (or aggregator) that orches-

trates the learning process without accessing the participants’ datasets. The preliminary concept

of FL emerged in 2015. Konecný et al. [8, 9] first introduced the prototype of federated learning,

called federated optimization at that time. In 2017, Bonawitz et al. [3] designed a secure protocol,

and McMahan et al. [17] improved the communication efficiency by introducing Federated Aver-

aging (FedAvg), which is now a state-of-the-art approach for the step of data aggregation in the

FL process.

Figure 1 demonstrates the overview of FL setup. The training of an FL algorithm follows these

steps: First, the participants receive some parameters from the central node and, with them, train

the local model for a few epochs using their datasets. Then, the participants send the updated

parameters after the training to the central node. Finally, the central node combines the parameters

the participants sent using some aggregation rule, such as FedAvg, and sends back the aggregated

model to the participants. This process is repeated until some level of convergence is attained or

a maximum number of training rounds is reached [8].

FL has been applied in different domains, including IoT networks. However, applying FL to IoT

device fingerprinting and identification is less discussed. Wu et al. [35] propose an FL-based RF

fingerprinting and identification for IoT devices. They train a convolutional neural network

(CNN) on the original signals collected from various IoT devices for fingerprint recognition. And

they use a dynamic sample selection algorithm to accelerate the convergence of the learning

progress. In their assumption, the RF signals are already the fingerprints of the devices, and their

work is to learn to recognize them. Their work is only the existing work on applying FL on device

fingerprinting and identification, so they do not compare their method to the other RF fingerprint-

ing and identification techniques. Even so, they demonstrate the feasibility of FL applying to this

specific task. To the best of our knowledge, our proposed work is the first to investigate network-

traffic-based fingerprinting and identification with FL.

3 PROBLEM FORMULATION AND THREAT MODEL

3.1 Problem Formulation

This article considers the use case in IoT networks comprising different kinds of IoT devices and

edge devices. However, the proposed algorithm can be applied in different contexts where device

fingerprinting and identification are needed. Our system is general and is not limited to specific

types of devices. It can be applied in different use cases, such as smart homes, smart buildings,

ACM Transactions on Internet of Things, Vol. 4, No. 3, Article 17. Publication date: July 2023.
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and industrial IoT. For instance, various interconnected devices in industrial IoT systems create a

highly complex environment where it is difficult to manage and monitor the behavior of sensors or

instruments. Therefore, our system is able to help the central controller, usually employed on the

edge device, to automatically identify the IoT devices with their detailed profiles. The edge devices,

in the scenario we consider, are usually the gateways that monitor traffic flow and authenticate or

authorize the devices. Therefore, the edge device can be seen as the client in FL setup. We assume

there are n clients that own data, denoted asCl = {cl1, . . . , cln }. Each client has its on-device traffic

dataset Dk = {x j ,yj } |Dk |
j=1 , where |Dk | is the total number of data samples in the dataset on client

k , x j indicates the jth sample, and yj is the corresponding label. In general, the objective in FL task

can be formulated as minimizing the loss function of the global modelMG (WG ):

MG
(WG

)
=

1

N

N∑

k=1

Mk (Wk ;Dk ) , (1)

whereW denotes the parameters of the model, and N indicates the total number of the clients.

3.2 Threat Model

Our target is a general IoT network deployed in smart homes and smart buildings. It typically

comprises various IoT devices and one edge device. The edge device is usually a wireless or wired

gateway router with IP-enabled devices in the network. Therefore, we assume that all the commu-

nication links among IoT devices and the channel between the edge device and the cloud are secure.

Moreover, we assume when all IoT devices are initially connected to the network, they may pos-

sess vulnerabilities but are considered harmless, indicating that they have not been compromised

by adversaries.

We take privacy issues into consideration with the help of FL. The sensitive data or messages

collected on one device will not be shared with anyone. One of the adversaries to our approach

is the unauthorized devices that are already compromised and try to perform reconnaissance be-

havior. FL4IoT is able to identify them in the first place by means of device identification. Another

adversary can be the spoofed device trying to hide its identity within the IoT network. FL4IoT also

is able to distinguish it from its original traffic. Therefore, in this article, rather than introducing a

new authentication method or an intrusion detection system, we propose an approach to generate

a lightweight fingerprint with a privacy-preserving method to prevent adversaries from compro-

mising the vulnerable device and further exploiting it to launch advanced attacks. Our approach

is agnostic to the characteristics of data in the network traffic as well as the type of protocols.

4 APPROACH

4.1 System Design

Figure 2 briefly depicts the architecture of the proposed system, named FL4IoT, with its position

in the FL setup. There are two modules of FL4IoT: Device fingerprinting (DF) and device

identification (DI). DF is the module that fingerprints the traffic flow data and produces a set

of vectorized fingerprints representing every authorized device; DI is the online module that

identifies the devices from the newly observed records with the help of stored fingerprints. The

module of DF is first trained offline with the traffic flows of authorized devices to generate the

fingerprints, and each vectorized fingerprint can represent one device. DI is trained with another

set of traffic flow of authorized devices and their generated fingerprints. The module of DI can

be used during the inference phase to predict the new-observed traffic. DI is not needed to be

retrained even if the fingerprint is updated. Moreover, each module has its own model aggregator

implemented on the central node or cloud.

ACM Transactions on Internet of Things, Vol. 4, No. 3, Article 17. Publication date: July 2023.
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Fig. 2. An overview of FL4IoT architecture.

4.2 Device Fingerprinting

The goal of device fingerprinting is to build a reconstructed representation of a device. This rep-

resentation is seen as the fingerprint that should be concise and unique. A fingerprint represents

a specific device with only limited information. IoT network generates a huge amount of traffic

traces, and also, they are usually high-dimensional data. Therefore, we proposed a generic unsu-

pervised approach. Our method is flexible regarding the size of the dataset and the dimension of

feature space and is adaptable to the IoT edge device.

We design an unsupervised learning algorithm to generate the vectorized device fingerprint. As

depicted in Figure 3, we observe the traffic flow comprising of sets of packets as the input dataset

denoted as P = {p1,p2, . . . ,pn }. We first apply Principal component analysis (PCA), the green

part in the figure, to denoise the dataset and reduce the feature dimensions of the raw input. PCA is

a linear transformation method for dimension reduction that can find the directions (components)

and variables that explain the most variance in the data. We regard PCA as data pre-processing

to facilitate the training steps. The output from PCA is fed into the encoder part of autoencoder,

which is the yellow part in the figure. It is to reconstruct the features into a lower dimensional

space as in the code layer. Finally, the reconstructed set of codes P ′ is clustered by the K-means

algorithm to find the centroid of each cluster, denoted as f , as the representation of the devices.

4.2.1 Autoencoder. An autoencoder is employed to protect the generated fingerprint from be-

ing traced back to raw data. At the same time, the feature dimension of fingerprints is reduced to

the appropriate size for communication and storage.

An autoencoder is a neural-network-based data compression algorithm that finds a compressed

representation of the data together with a reconstruction function. The objective is known as

reconstruction, and an autoencoder generally consists of an encoder and a decoder.
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Fig. 3. The architecture of device fingerprinting includes three phases: PCA is used for denoising and feature

dimension reduction, Encoder is used to generate the representation code of the input data, and K-means is

applied to cluster the code and find the centroid as the fingerprint of the device.

(a) An encoder learns the data representation in lower-dimensional space, i.e., extracting the most

salient features of the data. The encoder can mathematically be described as:

p ′ = he (p), (2)

where p ′ is the learned code by the encoder he from input data point p.

(b) A decoder learns to reconstruct the original data based on the learned code by the encoder.

Mathematically, it can be represented as:

p̂ = hd (p ′), (3)

where p̂ is the reconstructed data by the decoder hd based on the learned representation code

p ′.

The loss function L to the autoencoder is defined as follows:

L (p, p̂) =
1

N

N∑

i=1

�
�pi − p̂i

�
�

2 , (4)

where N is the number of training samples, p = (p1, . . . ,pN ) are the input data points, and p̂ =
(p̂1, . . . , p̂N ) are the reconstructed data points by the decoder.

In this article, we extend and apply the idea from Song et al. [31] to generate fingerprints com-

bining an autoencoder and the K-means clustering algorithm. The benefit is that it helps every

newly constructed code to get close to its cluster center, which means the fingerprints are distilled

more precisely. The output codes from the encoder are taken as the input to the K-means model.

K-means works iteratively and aims to assign each data sample to one cluster minimizing the dis-

tance between the cluster centroid and every point within the cluster. The centroid c∗i ∈ RN can

be formulated as follows:

c∗i = arg min
c t−1

j

�
�
�
p ′i − ct−1

j
�
�
�

2
, (5)
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ALGORITHM 1: Algorithm of Device Fingerprinting

Input : Dataset: P = {p1, . . . ,pn }, Hyper-parameters: Number of components: com, Number of clusters:

k , Learning rate: η, Number of epochs: E.

Output : Set of centroids: C
1 C = {c1, . . . , ck } /* Initialize each cluster centroid */

2 Ppca = PCA(P , com)

3 e = 0

4 repeat

5 Update the mapping network by minimizing Equation (5) with stochastic gradient descent and get

p′i as in Equation (1).

6 for j ∈ {1, . . . ,k } do

7 Let c j be the mean of the jth cluster.

8 end

9 Partition P ′ = {p′1, . . . ,p
′
n } into k clusters and update the sample assignment c j via Equation (4).

10 e = e + 1

11 until e ≥ E;

where p ′i indicates the code generated by autoencoder and ct−1
j represents the centroid of the jth

cluster in the t −1th iteration. In our case, the clusters represent different devices, and the centroid

from each cluster is regarded as the fingerprint for each device.

According to Reference [31], the low dimensionality of the code produced from the encoder

resolves the drawback of the clustering algorithm. Most of these algorithms work effectively in

a large-scale dataset but would lose their effectiveness on high-dimensional data [5]. Therefore,

the loss function of the autoencoder is combined with the K-means model, which results in the

following objective:

min
W ,b

γ ·
N∑

i=1

�
�p
′
i − c∗i ��

2
+

1

N

N∑

i=1

�
�pi − p̂i

�
�

2 , (6)

where γ indicates the tradeoff importance between the encoder and K-means. This objective func-

tion ensures that the data representations from the encoder are close to their corresponding cen-

troids in the cluster, and meanwhile, the reconstruction error is small. Note that Reference [31]

contains a typo in the form of a sign error in the objective function (6).

Our method for device fingerprinting is explained in Algorithm 1. The input to the algorithm

consists of the dataset P and several hyper-parameters including the number of components for

PCA, the number of clusters k for K-means, the learning rate η, the tradeoff parameter λ, and the

number of epochs E. The output will be the fingerprints, which are the set of centroids C of the

devices. The centroids are initialized randomly, and PCA is applied to the input P picking out

the first com principal components as shown in lines 1 and 2. Subsequently, the training starts

with the objective function of minimizing the loss (line 5). In each round, the set of codes, P ′, is

clustered to find the centroid c j in line 7. Then, in line 9, we reassign the p ′ ∈ P ′ into a new cluster.

The training process stops after all the epochs are completed.

4.3 Device Identification

Regarding to device identification, we apply a feed-forward neural network in supervised learning

to identify the devices in IoT network. We illustrate our method in Figure 4. A new set of labeled

trafficX andY are fed into the network. To evaluate the effectiveness of the generated fingerprints,

we use them in the training process. The objective of the network is to maximize the similarity
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Fig. 4. The model design for device identification uses generated fingerprints. We take input (X ,Y ) to obtain

x∗i . We calculate the distance between x∗i and fingerprints. We get ti from the output layer to calculate the

Mean Squared Error (MSE) with labels yi .

between the data samples and the fingerprint fj of the corresponding device generated from the

proposed method. In other words, the model learns to minimize the distance between data and the

class centroid. The loss function is defined as:

DI_loss (X ,Y ) = min
W ,b

λ ·
N∑

i=1

�
�
�
x∗i − fj

�
�
�

2
+

1 − λ
N

N∑

i=1

�
�ti − yi

�
�

2 , (7)

where x∗i is the ith output from the second last layer in the neural network, fj denotes the finger-

print of the jth device, ti denotes the output target, andyi is the ground truth. Also, λ is the control

factor for the impact caused by the generated fingerprint.

4.4 FL4IoT in Federated Learning

By taking advantage of FL, we propose to implement the model on the security gateway where the

data from the devices are aggregated and the whole IoT network is monitored. Therefore, we uti-

lized the FL approach to implement the distributed learning of models from several clients. As the

workflows of FL show in Figure 5(a) and (b), we have different strategies for device fingerprinting

and identification.

4.4.1 Device Fingerprinting in FL. Regarding device fingerprinting, we assume that the input

data to the proposed model are unlabeled, which is close to the real-world setup. Thus, our pro-

posed model is trained in an unsupervised manner. However, the research topic of clustering in

FL has yet to be explored deeply because of the heterogeneity in behavior and hardware of the IoT

device. The decentralized data can be expected to be skewed and imbalanced due to the various

clients. It makes the averaging of the centroid for clustering more difficult. Soliman et al. [30] first

proposed an adaptive K-means clustering method for the FL setup.

Let n be the number of clients that own data, and letCl = {cl1, . . . , cln } be the set of clients. The

global model is denoted by Mд . As illustrated in Figure 5(a), the process of device fingerprinting in

FL can be divided into five steps: (1) An initial model Mд from the central node is first deployed to

each client inCl that has joined FL. (2) A modelMcl is trained locally with an on-device datasetDcl ,

and a set of fingerprints Fcl = { f1, . . . , fn } is generated. The set of fingerprints is the representation
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Fig. 5. The workflow of (a) Device fingerprinting and (b) Device identification in FL setup.

ALGORITHM 2: Algorithm of Federated K-means

Input : The union Cu of all fingerprints from all the clients. Number of clusters: K = {k1, . . . ,kN }
from clients 1 through N .

Output : Updated Centroids: Cn,u for 1 ≤ n ≤ N
1 for k ∈ K do

2 Cn_u = Kmeans (Cu ,k )

3 end

of a set of centroids for n devices. (3) When the central node calls for the aggregation, the clients

send back the set of centroids Fcl to the central node. (4) After collecting the centroids from the

clients, Federated-Kmeans as illustrated in Algorithm 2 is performed on the central node to find the

updated centroids, denoted asCcl_u for each client cl . (5) Finally, the algorithm returns k centroids

back to the corresponding client, and a new round of training starts.

4.4.2 Device Identification in FL. Compared to device fingerprinting, device identification is

much simpler in the FL setup, since we adapt supervised learning to build a feed-forward neu-

ral network. As depicted in Figure 5(b), the main steps are similar between the two approaches.

However, in this phase, the clients return the weights w instead of centroids to the cloud. Then,

we apply the FedAvg algorithm for the aggregation. FedAvg simply computes the average of the
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weightsWд integrated from clients Cl . It can be formulated as follows:

Wд =
1

N

N∑

n=1

wn . (8)

Finally, the models Mcl on the clients are updated by the global weightsWд .

4.4.3 Computational Complexity. The complexity of computing device fingerprinting and de-

vice identification should be discussed independently. Regarding device fingerprinting, in every lo-

cal training round, FL4IoT executes an autoencoder and K-means to generate and group the codes

in P ′. Therefore, the computational complexity of the device fingerprinting is the summation of

the two phases, that is, O (e (w + kd )), where w is the number of parameters of the model, k is the

number of the clusters, d is the time for computing distance between the codes, and e is the num-

ber of the training epoch. Regarding to FL setup, the overall complexity takes the additional model

aggregation phase into account, so it becomes O (д(wup +cd + e (w +kd ))), where д represents the

global communication epoch, wup indicates the model updates, and c is the number of centroids.

In contrast, the computational complexity of device identification is simpler, that is, O (e (w + k )).
The complexity correlates with the size of the neural network, the number of fingerprints involved,

and the number of training epochs. When putting device identification in FL setup, the complex-

ity takes the number of global epochs additionally into account. So the complexity becomes to

O (д(e (w + k ))).

5 IMPLEMENTATION AND EVALUATION

We implement FL4IoT in Python. We utilize PyTorch, which is an ML library, especially for deep

learning. With the help of PyTorch, we implement the autoencoder embedded with K-means and

the neural network from scratch. We use Scikit-learn tools to build PCA and split the dataset.

Regarding applying FL, we implement our aggregation algorithm by utilizing PySyft library that is

based on the PyTorch framework. PySyft provides a toolkit for FL with several additional features.

5.1 Experiment Setup

5.1.1 Setup. We conduct experiments on a Kubernetes cluster equipped with Nvidia-Gtx-2080ti

GPU and 10 GB CUDA memory on the cloud service provided by RISE ICE cloud service. The eval-

uation consists of four sets of experiments: the quality of device fingerprinting in the centralized

and FL settings and the performance of device identification in centralized training and FL setups.

5.1.2 Dataset. In this article, we evaluate FL4IoT with three open datasets: N-BaIoT dataset [18],

IoTSentinel [21], and UNSW BoT-IoT [29]. The denotations of each device are listed in Table 2. N-

BaIoT dataset consists of real-world network traffic flow from nine commercial IoT devices. Please

check Reference [18] for more details on these nine devices. It includes security cameras (Provi-

sion PT 838 Security Camera, Provision PT737E Security Camera, SimpleHome XCS7 1002 WHT

Security Camera and SimpleHome XCS7 1003 WHT Security Camera), two doorbells (Danmini

and Ennio), an Ecobee thermostat, a Philips B120N/10 baby monitor, and a Samsung SNH 1011

N webcam. There are 23 incremental statistical features, such as the mean and the variance of

the packet size, and the amount of time between packet arrivals. The features are extracted from

five different time windows (100 ms, 500 ms, 1.5 sec, 10 sec, and 1 min). This dataset is originally

collected for IoT Botnet detection. It captures both benign and malicious traffic carried by two

botnets (Mirai, BASHLITE). We mainly consider the benign traffic to represent device behavior in

the network, and different devices will be selected in different experiment sets.
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Table 2. Notation for the Chosen Devices in Experiments

N-BaIoT

PT1: PT2: DB: XC1: XC2:

Provision PT-838

Security Camera

Provision PT-737E

Security Camera

Danmini

Doorbell

SimpleHome

XCS7-1002-WHT

Security Camera

SimpleHome

XCS7-1003-WHT

Security Camera

UNSW BoT-IoT

BM: AE: NW: MS:

Withings Smart

Baby Monitor
Amazon Echo

Netatmo

Welcome Camera
Belkin WeMo motion sensor

IoTSentinel

DT: WL: HS: WS:

D-Link Switch WeMo Link Hue Switch WeMo Insight Switch

The IoTSentinel dataset consists of network traffic traces captured from 31 IoT devices with four

types of connection technology, such as WiFi, ZigBee, and Z-Ware. The dataset covers common

device classes related to smart lighting, home automation, security cameras, and so on. The traffic

is collected on a security gateway. Miettinen et al. [21] propose a method to extract 23 features as

a representation for each packet. Out of the 23 features, 16 are binary, which are indicators of the

chosen protocols. These 16 protocols are typically used over WiFi. Other features include packet

size, IP address, and so on. The features form an n by 23 matrices recording n packets received at a

device. In Reference [21] this matrix is used as the device fingerprint. In contrast, we regard these

features as the input to our device fingerprinting model.

The UNSW BoT-IoT is a real-world dataset published by University of New South Wales. The

dataset consists of the network traffic captured by Sivanathan et al. [29] from setting up a smart

environment infrastructure with campus facilities, including 28 IoT devices such as cameras from

different vendors, switches, motion sensors, and so on. These devices communicate with Internet

servers via a gateway. They start logging traffic from 1-Oct-2016 to 13-Apr-2017 for 26 weeks.

The traffic is stored as a PCAP file containing packet header and payload information. We use

Miettinen et al.’s [21] method to extract features from the raw data to make sure that the features

have the same structure as the second dataset.

5.1.3 Models. First, we configure the device fingerprinting of FL4IoT to be a three-hidden-layer

autoencoder (symmetric setting in both encoder and decoder) combined with a K-means algorithm.

Some fixed hyper-parameters for the model are set. For example, the tradeoff γ between recon-

struction error and cluster error defined in Equation (6) is set to 0.4, and the number of training

epochs E is set to 100. Regarding the number of clusters k and the learning rate η, we have different

setups for each experiment set. Second, we configure the device identification of FL4IoT to be a

feed-forward neural network with 3 hidden layers. We choose ReLU to be the activation function

for the first 3 layers and Sigmoid activation for the last one. We consistently use Adam optimizer

for both models. The control factor λ defined in Equation (7) is set to 0.4. Besides, the setting for

FL setup is 5 local training epochs and 50 global communication epochs.

5.2 Results and Discussion

To have an overall evaluation to FL4IoT, we conduct three main experiment sets, including (i)

Quality of Device Fingerprinting, (ii) FL4IoT in centralized learning, and (iii) FL4IoT in federated

learning. When we evaluate the performance of FL4IoT in centralized learning, we measure the

performance in three scenarios: (1) different device types, (2) different vendors but the same device
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Table 3. Performance Comparison between FL4IoT and Baselines in Centralized Learning

Experiments DF DI Base_RF [20, 21] Base_KNN [22, 25] Base_NN [12]

Purity
Test

Accuracy

F1

Score
Accuracy

F1

Score
Accuracy

F1

Score
Accuracy

F1

Score

N-BaIoT

PT/DB 65.63% 99.68% 0.9953 99.97% 1.0 99.78% 1.0 99.38% 0.9907

PT/XC 83.32% 99.86% 0.9978 99.99% 1.0 99.95% 1.0 99.85% 0.9963

PT1/PT2 50.80% 95.57% 0.9429 98.28% 0.9838 93.45% 0.9322 93.02% 0.9126

UNSW BoT-IoT

BM/AE 64.98% 94.57% 0.9555 97.06% 0.9611 94.95% 0.9525 94.01% 0.9515

BM/NW 80.02% 99.93% 0.9992 99.95% 1.0 99.83% 1.0 99.79% 0.9976

BM/MS 67.71% 95.28% 0.9668 97.28% 0.9632 95.97% 0.9613 94.47% 0.9576

IoTSentinel

DT/WL 69.93% 94.93% 0.9452 98.51% 0.9818 97.41% 0.9731 90.06% 0.9029

DT/WS 67.33% 93.31% 0.9481 97.30% 0.9671 96.14% 0.9603 91.29% 0.8802

DT/HS 75.18% 99.23% 0.9948 99.58% 0.9923 99.43% 0.9911 99.06% 0.9937

types, and (3) different modules from the same vendor. These three scenarios are binary classifica-

tion problems. We also evaluate a hybrid comparison in a centralized setting, which is a multi-class

classification problem discussed in Section 5.2.3. Furthermore, we demonstrate FL4IoT is capable

to detect spoofed devices, which is shown in Section 5.2.4. When we evaluate the performance

of FL4IoT in federated learning, except for the general model performance, we also observe the

impact caused by the number of clients, which is discussed in Section 5.2.7.

5.2.1 Quality of Device Fingerprinting. We first evaluate the quality of our approach to device

fingerprinting in both centralized and federated settings. Note that the goal of this experiment is

mainly to evaluate the quality of the clustering. Therefore, in this experiment, we are not com-

paring with any other baselines; we rather demonstrate the strength of the fingerprints generated

by the proposed method by showing its utility in device identification, which will be discussed

in the following sections. The overall performance is shown in Table 3. We measure the output

instances from clusters with the corresponding labels and compute a purity value. Purity is the

ratio between the dominant class in the cluster and the size of cluster. High purity means that the

clusters are so pure that each cluster only contains data from one class. It can be formulated as:

purity =
1

N

∑

k

max
j
|ωk ∩ c j |, (9)

where N denotes the number of data samples, k is the number of clusters, ωk indicates the data in

cluster k , and c j is the ground truth of class j.
As shown in Table 3, we conduct three experiments per dataset. In every experiment, we pick

two devices according to their device type, vendor, and model. The notation for each device is

listed in Table 2. We take N-BaIoT dataset as an example. PT/DB indicates the experiment con-

ducted with two devices that have different device type, where PT is a security camera and DB is a

doorbell; PT/XC represents the experiment conducted with two security cameras produced by two

different vendors; PT1/PT2 indicates the experiment conducted with two security cameras from

the same vendor but different product modules. Note that there are no devices that are produced

by the same vendor but different product modules in UNSW BoT-IoT and IoTSentinel, so we do not

include experiments for this scenario in these two datasets. We set the hyper-parameters such as

the various learning rates η in three different datasets (1e − 4 for N-BaIoT and IoTSentinel, 1e − 3

for UNSW BoT-IoT ), and the cluster number k for K-means is set to 2.
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Fig. 6. The purity performance in device fingerprinting.

According to Table 3, Table 4, and Figure 6, we find the performance of purity of clusters are over

60% both in centralized and federated manner except for the case of N-BaIoT PT1/PT2. This phenom-

enon is expected, because two devices from the same vendor but different modules behave much

similarly compared to the other devices. It is much more difficult to be clustered. Even so, Table 3

shows that although the model for device fingerprinting gets only 50% in purity in N-BaIoT PT1/PT2

group, the generated fingerprint can help FL4IoT achieve over 95% accuracy in the same case.

5.2.2 Centralized Device Identification. In every experiment, we have a new set of data different

from the one used in device fingerprinting and a set of fingerprints that were generated from the

previous experiments. We split the dataset into the training set and the testing set. The training

set is used to train a model with the loss function described in Equation (7). In the following

experiments, we adopt accuracy and F1-score to evaluate our model. Accuracy is defined as:

Accuracy =
TP +TN

TP +TN + FP + FN
, (10)

where TP denotes the number of true positives, TN denotes the number of true negatives, FP
denotes the number of false positives, and FN denotes the number of false negatives. The F1-score

is defined as:

F1 = 2 ∗ precision ∗ recall

precision + recall
, (11)

where

precision =
TP

TP + FP
, (12)

recall =
TP

TP + FN
. (13)

F1-score conveys the balance between the precision and the recall. It shows how exact and

complete the model performs.

We compare FL4IoT with three baselines of device identification. One is Random Forest used

in Reference [21], denoted as Base_RF, one is K-nearest Neighbors, which is used in References

[22, 25], denoted as Base_KNN, and a feed-forward neural network consisting of three layers

(1 input layer, 1 hidden layer, and 1 output layer) that has been utilized by Reference [12], denoted

as Base_NN.

An overall centralized performance of FL4IoT is shown in Table 3. Figures 7(a) and 7(b) show the

comparison of accuracy and F1-score among FL4IoT, Base_RF, Base_KNN, and Base_NN on three

datasets. From Table 3, we can observe both accuracy in training and testing are over 93% in every
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Fig. 7. Performance comparison of FL4IoT in centralized learning on three datasets: (a) Accuracy performed

in device identification (b) The F1-Score performed in device identification.

case. Especially, FL4IoT can achieve over 99% accuracy in some cases, such as N-BaIoT PT/DB, N-

BaIoT PT/XC, UNSW BoT-IoT BM/NW, and IoTSentinel DT/WS. From this experiment, the results of

purity of the clusters and the performance of identification accuracy are positive correlation. It is

expected, since the more the data distributions of the two devices are deviated, the better result of

accuracy it performs. It also reflects that it is easier to identify devices that are different types or

produced by the different vendors than the same device type and produced by the same vendors

but they are different modules.

Observing from Figures 7(a) and 7(b), we find Base_RF and Base_KNN are two competitive base-

lines that work slightly better than FL4IoT. It is expected, because Random Forest and K-nearest

neighbors, which are traditional ML methods, typically work well on the small datasets. On the

contrary, DL-based method perform better on the big dataset. Overall, FL4IoT works comprehen-

sively better than Base_NN. However, the traditional ML-based methods such as Random Forest

and K-nearest are very difficult to be applied in federated manner. Adapting traditional ML models

to FL is a rather interesting and challenging research area that can be explored further in the fu-

ture study. Therefore, we highlight that one of contributions of this article is we propose a device

fingerprinting and identification scheme that can be applied in both settings.

5.2.3 Hybrid Comparison. In this experiment, we measure how FL4IoT performs on mixed-

typed devices. We use all devices from N-BaIoT, listed in Table 2, to conduct an experiment. There

are totally five devices: two sets of security cameras produced by same vendors but different mod-

els (PT1/PT2 and XC1/XC2) and one doorbell (DB). We first generate fingerprints for every device

and use them in device identification. The result is demonstrated as confusion matrix in Figure 8(a).

The overall accuracy is 96.28% among all 22,107 data samples. In the confusion matrix, each row

of the matrix represents the data samples in ground truth, while each column represents the data

samples in a predicted class. Therefore, we find that the trained model has the best performance

on identifying doorbell, because it gets the best precision (99.51%). Also, the classification between

PT1 and XC1 achieves 100% accuracy. This experiment shows FL4IoT performs well in both mixed

types and grouped subset.

5.2.4 Spoofed Device Detection. In this experiment, we investigate whether FL4IoT can detect

compromised or spoofed devices. Therefore, we choose the data that are malicious traffic carried

by Mirai Botnet from N-BaIoT. More specifically, the data are traffic of automatically scanning

vulnerable devices from XC1, denoted as XC_A. And, we use the benign traffic data from three
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Fig. 8. The confusion matrix shows the FL4IoT’s performance on two experiments: (a) hybrid comparison

and (b) spoofed device detection among different types of devices from N-BaIoT. The denotation of devices

are listed in Table 2. The bar of color gradient represents the number of data samples.

Fig. 9. Test Accuracy in FL4IoT along different number of λ.

devices (PT1, XC1, and DB) in classification. The confusion matrix is shown in Figure 8(b). The

overall accuracy achieves 99.43% among 19,247 traffic data samples. Especially, from the confusion

matrix, we find that only 13 malicious traffic data are identified as benign traffic from XC1, and

the precision of detecting XC_A can reach 99.08%. Therefore, the results show FL4IoT is capable

to detect spoofed or compromised devices from the suspicious traffic generated from them.

5.2.5 Impact by Lambda. To measure how much generated fingerprint should be involved in

FL4IoT, we investigate the accuracy changes along with various values of λ in Equation (7), since

λ is a control tradeoff between the fingerprint and the labels. We take experiment in the N-BaIoT

PT/XC group as an example. As shown in Figure 9, we observe that when the lambda is set to 0.5,

our approach can perform best, and it performs worse for both extreme values in λ, such as 0.1 and

0.9. This phenomenon can be explained that both the fingerprints and labels are critical for FL4IoT.

5.2.6 Efficiency of Federated Learning. To observe the performance and efficiency of FL, we

conduct a set of experiments to evaluate FL4IoT in a federated setup. First, to set up federated
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Table 4. Performance Comparison between FL4IoT and Baselines in Federated Learning

Experiments FL4IoT Base_NN Base_FLKmeans [11]

DF DI

Purity Accuracy F-Score Accuracy F-Score Accuracy F-Score

N-BaIoT

PT/DB 67.18% 99.66% 0.9929 99.11% 0.9925 99.51% 0.9914

PT/XC 76.47% 99.92% 0.9989 99.89% 0.9981 99.77% 0.9962

PT1/PT2 51.96% 93.89% 0.9211 92.27% 0.9022 92.77% 0.9175

UNSW BoT-IoT

BM/AE 80.22% 95.19% 0.9438 93.74% 0.9482 90.63% 0.9088

BM/NW 72.37% 99.51% 0.9935 99.6% 0.9928 94.85% 0.9431

BM/MS 80.35% 96.03% 0.9649 91.39% 0.9277 96.64% 0.9575

IoTSentinel

DT/WL 70.15% 94.67% 0.9438 92.74% 0.9166 93.15% 0.9219

DT/WS 82.48% 92.12% 0.9183 91.42% 0.8855 92.02% 0.9022

DT/HS 74.89% 99.03% 0.9944 98.36% 0.9889 98.77% 0.9892

learning, we design our model structure on the cloud and deploy the initial model to the clients.

For every experiment, we distribute the dataset to two clients and set the parameters the same

way as in the previous experiments in centralized learning. And, we compare FL4IoT with two

baselines. One is a general neural network, denoted as Base_NN, which is able to be applied in

FL setup, and FLKmeans proposed by Kumar et al. [11], denoted as Base_FLKmeans, which is a

federated K-means algorithm. It is to investigate the performance of the proposed federated K-

means in FL4IoT. In this experiment set, we consider both general model performance and the

impact from the number of clients.

In this set of experiments, we evaluate overall FL4IoT performance in FL. The detailed results

are shown in Table 4. To be simpler, we demonstrate the result with the setup of two clients joining,

even though FL4IoT is applicable to multiple clients. Therefore, there are 10 additional data points

sampled from the Gaussian distribution on the central node to be fed into K-means for clustering,

together with aggregated fingerprints. Moreover, we show more details of multiple clients in the

sub-experiment.

Figures 10(a) and 10(b) show the comparison between FL4IoT and two baselines: Base_NN and

Base_Kmeans. We can observe that the performance of FL4IoT in accuracy and F1-Score are both

the best among the three methods, and it performs approximately matching with how it does in

centralized learning. From Table 4, we can find that test accuracy can reach over 92% in every

case, especially 99% in some cases (N-BaIoT PT/DB, N-BaIoT PT/XC, UNSW BoT-IoT BM/NW, and

IoTSentinel DT/WS). Compared to Base_NN, the better performance of FL4IoT and Base_FLKmeans

also show the effectiveness and utility of the generated fingerprints in device identification. More-

over, our proposed federated K-means algorithm outperforms Base_FLKmeans, which means our

proposed scheme of federated K-means is a better choice in our scenario.

5.2.7 Impact from the Number of Clients. In this experiment, we aim to investigate the per-

formance impact brought by the change in the number of clients. Therefore, we conduct a set

of experiments with different numbers of clients and take the experiment in the UNSW BoT-IoT

BM/NW group as an example. We observe the accuracy when the number of clients ranges from

2 to 15. The result is shown in Figure 11. When there are three clients, the model achieves 99.9%
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Fig. 10. Performance comparison of FL4IoT in federated learning on three datasets: (a) Accuracy performed

in device identification (b) The F1-Score performed in device identification.

Fig. 11. Comparison of accuracy of FL4IoT along different number of clients in FL.

accuracy. The result shows as we expect, that the performance gets slightly lower as the number

of clients increases.

6 SECURITY AND PRIVACY ANALYSIS

FL4IoT brings a privacy-preserving way to address the problem of device fingerprinting and iden-

tification. The purpose of FL4IoT is to help identify IoT devices newly joining the network and

avoid attacks such as the NASA system hack [23]. The empirical result shows that FL4IoT can

detect spoofed or compromised devices. We discuss the advantages and disadvantages of FL4IoT

from different aspects. In the aspect of the algorithm, FL4IoT assumes that the number of legiti-

mate devices remains the same. It means that if there is a new legitimate device, then FL4IoT needs

to be retrained. However, the merit of FL4IoT is that the generated fingerprints are not just the

features extracted from the raw traffic traces, but rather another representation reconstructed by

FL4IoT. It increases the difficulties for attackers to retrieve the raw data for a target device, but at

the same time, lowers the risks during the process of aggregation is performed in FL4IoT.

The fingerprint generated by FL4IoT is a vectorized representation that is more lightweight to

be stored in any edge device. This ensures the privacy as the data never leave the perimeter of the
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organization. However, compared with the centralized approach, there are still some risks. Accord-

ing to Reference [17], there is no full guarantee for data privacy, even if the data is anonymized. Due

to the aggregation for updates of parameters (such as FedAvg), frequent communication between

clients and the cloud is needed. Therefore, the algorithm is potentially vulnerable to adversarial

attacks where a compromised client can poison the model [16].

From the clients’ perspective, the cloud may not be a trusted entity. There are some privacy

techniques such as perturbation of local models where noise is added to the parameters; from the

cloud’s perspective, adversaries may manipulate the result of averaging and aggregation such as

poisoning attacks [32]. For FL4IoT, it is possible that the aggregated centroids or the parameters

are poisoned. Therefore, even though it is out of the scope of this article, we agree a well-designed

method for averaging and the protection of the cloud is crucial.

7 CONCLUSION AND FUTURE WORK

Devastating consequences can arise from the presence of unidentified devices in the network, high-

lighting the need to identify and fingerprint IoT devices that are connected to private or critical

networks. Machine learning-based device fingerprinting and identification methods usually rely

on collecting substantial data from IoT networks and sending it to a central cloud. Nonetheless,

private IoT data cannot be shared with the central cloud in many sensitive situations. Therefore,

we introduced a two-phased system called FL4IoT, which involves generating fingerprints and

identifying devices by analyzing their traffic behavior. The fingerprint generated by FL4IoT is

comparatively lightweight and can be used to identify devices by device types, vendors, and prod-

uct modules. We evaluated FL4IoT with real-world datasets, and the empirical results show that it

achieves 99% accuracy and F1-Score in some cases and over 93% in every case. Moreover, FL4IoT has

the capability to identify spoofed devices with a precision rate exceeding 99%. However, FL4IoT is

applicable in federated learning. From the experimental results, we observed that FL4IoT performs

similarly in centralized and federated settings and outperforms the other baselines.

The use of ML/DL techniques to solve a general security problem is becoming prevalent with

the increasing scale and complexity of the networks and systems [6, 34]. Fog/edge computing also

becomes a big trend in the next generation due to the enforcement of GDPR. It brings a large

number of advantages, including privacy preservation, fast response, short latency, cheap cost,

and so on. Gill et al. [6] provides a high-level summarization of the potential challenges related to

fog/edge or serverless computing. Except for these, implementing ML/DL on these comparatively

resource-constrained devices is challenging already. For example, heterogeneous IoT devices lead

the produced data to be in non-independent and identical distribution (non-IID), hindering

the ML/DL applications. Many open research directions are left for future works, such as perform-

ing on-device learning without losing significant utility and learning a decent model on non-IID

data. We believe the growth of fog/edge/serverless computing will also impact the problem of

device fingerprinting and identification, which is an exciting research topic worth exploring.

However, the previous discussions on fog/edge computing also facilitate the emergence of fed-

erated learning discussed in this article. Although FL has many benefits, it also brings new specific

challenges and vulnerabilities. Compared to centralized learning, FL models are directly prone to

adversarial attacks. Sharing models also leads to further issues, such as how to protect the confi-

dentiality of the model. Detecting compromised clients or adversarial inputs in an efficient manner

remains an unresolved matter. A solution needs to be computationally cheap without significantly

degrading the model’s performance. We plan to address these issues in future work and improve

the security of our aggregation algorithms by developing mitigation techniques against adversarial

attacks.
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