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Abstract
From the early explorations of thermodynamics and characterization of black body radiation, Max Planck
predicted the existence of a non-zero expectation value for the electromagnetic quantum vacuum energy
density or zero-point energy (ZPE). From the mechanics of a quantum oscillator, Planck derived the black
body spectrum, which satisfied the Stefan-Boltzmann law with a non-vanishing term remaining where the
summation of all modes of oscillations diverged to infinity in each point of the field. In modern derivation,
correlation functions are utilized to derive the coherent behavior of the creation and annihilation operators.
Although a common approach is to normalize the Hamiltonian so that all ground state modes cancel out,
setting artificially ZPE to zero, zero-point energy is essential for the mathematical consistency of quantum
mechanics as it maintains the non-commutativity of the creation and annihilation operators resulting in
the Heisenberg uncertainty principle. From our computation, we demonstrate that coherent modes of the
correlation functions at the characteristic time of the proton correctly result in the emergence of its mass
directly from quantum vacuum fluctuation modes. We find as well that this energy value is consistent with a
Casimir cavity of the same characteristic distance. As a result, we developed an analytical solution describing
both the structure of quantum spacetime as vacuum fluctuations and extrapolate this structure to the surface
dynamics of the proton to define a screening mechanism of the electromagnetic fluctuations at a given scale.
From an initial screening at the reduced Compton wavelength of the proton, we find a direct relation to
Einstein field equations and the Schwarzschild solution describing a source term for the internal energy
of the proton emerging from zero-point electromagnetic fluctuations. A second screening of the vacuum
fluctuations is found at the proton charge radius, which accurately results in the rest mass. Considering the
initial screening, we compute the Hawking radiation value of the core Schwarzschild structure and find it to
be equivalent to the rest mass energy diffusing in the internal structure of the proton. The resulting pressure
gradient or pressure forces are calculated and found to be a very good fit to all the measured values of the
color force and residual strong force typically associated to quark-antiquark and gluon flux tubes confinement.
As a result, we are able to unify all confining forces with the gravitational force emerging from the curvature
of spacetime induced by quantum electromagnetic vacuum fluctuations. Finally, we applied the quantum
vacuum energy density screening mechanism to the observable universe and compute the correct critical
energy density typically given for the total mass-energy of the universe.

Introduction
General relativity clearly demonstrates a relationship between mass-energy and the structure of spacetime
that has real physical effects we call gravity where massive objects made of elementary particles producing
their mass curve spacetime resulting in a gravitational force. However, application of the same principles at
the particles level yields gravitational forces that are so infinitely small that they are found to be insignificant.
Yet, at the proton nuclear scale, extremely large confining forces are found which would require extremely high
energy levels (or masses) to be produced in the context of general relativity. In fact, those very high levels of
energy were actually predicted by early quantum field theory (QFT) resulting in the so-called ’bare mass’
of particles but renormalized by modern quantum electrodynamics (QED) and quantum chromodynamics
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(QCD) utilizing quantum vacuum fluctuations as a shielding mechanism [1]. Consequently, one could ask the
question in a different way than generally approached, that is instead of why gravity is so weak, that has
no meaning at the quantum level, but why is the proton mass, which is most of the mass of the material
world, so small. This change in reasoning was eventually mentioned by other such as Franck Wilczek [2].
Furthermore, from deep studies of QFT and the divergence of the bare mass, one can ask a more fundamental
question: is quantum vacuum fluctuations responsible for the bare mass shielding or the source of the mass
itself and the resulting forces? This leads to a clear re-examination of our concept of mass.

The general idea that mass is some kind of immutable value independent of forces and energies was dispelled
in the early 1900 by the event of special and general relativity, when it was found that there is a fundamental
equivalence between the concept of mass, energy and the geometry of space. At the quantum scale, the
concept of mass is also described as a variable quantity which can be scaled and screened. Yet, the stigma
that mass is somehow still an isolated entity and that matter is some kind of frozen immutable pieces of
material as in particles is very much still embedded in the folklore of physics. Throughout history, we
have developed theories that have told us that gravitational fundamental forces which agglomerate particles
and organized matter such as galaxies, stars, solar systems and planets, are the result of the curvature
of the structure of space itself. However, this curvature results from an undefined source of energy called
mass emerging from quantum entities we called particles. On the other hand, we have developed theories
that describe these particles and energy structures as quantities emerging from very high energetic fields
resulting from a fundamental oscillation of space itself we call quantum vacuum fluctuations, or ground
state. This field of ’virtual’ particles is at the source of many of our modern particle theories of QFT,
one of them being the Higgs fields with a non-zero vacuum expectation value producing mass which only
predicts ∼ 1 − 5% of the mass of the proton, or for the explanation of the little jiggle of an electron as in the
Lamb shift. Consequently, both cosmological gravitational theory and quantum theory imbues very physi-
cal values to the structure of space itself with effects which have very fundamental and real attributes in reality.

Vacuum fluctuations or zero-point energy are predicted by the most precise theories in modern physics
such as QFT, QED and QCD. However, the description of the vacuum is still debated since the progressive
and longstanding development from the early works from Planck and Einstein in early 1900 up to recent
publication of Milonni et al in 2019 providing further insight on the calculation of the ZPE [1]. The confusion
around the ZPE arises from its many different uses throughout physics and because of the indirect effects
measured experimentally (Casimir effect, Lamb shift, magnetic anomalous moment, etc.). ZPE can be
considered as the source of creation and annihilation for real (spontaneous emission, Schwinger effect) or
virtual pairs (dressed particles, Feynman diagrams) particles, sometimes it corresponds to a ground state
energy fields (Blackbody radiation) or even a background field interacting with particles as in Lamb shift
or electron self-energy (QED loop). Even though Planck thought that the ZPE would not be observed in
experiments, nowadays a long list of experimental work can be explained only when taking ZPE into account,
e.g. black body radiation, spontaneous photon emission, Lamb shift, Casimir effect, Pulsar birefringence,
Schwinger effect, etc.

Here, we demonstrate that mass and thus energy are emerging properties of the fundamental dynamics of
space at the quantum level. We reconcile these two views of the structure of space and demonstrate that
mass-energy is an emergent property of spacetime at the quantum level that unifies gravity, the strong force
at all scales under one mechanism1.

1Note to the reader: In this paper, we keep all units and do not utilize the common convention of reducing all the physical
constant to one (where G = c = ℏ = 1). While mathematically it could be convenient, it represents a loss of information and can
lead to confusion [3]. Also, in certain cases, we do not reduce equations so that the physical meaning can be extracted clearly.
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1 Zero-point energy and consequences
1.1 Origin and discovery of the ZPE
Zero-point energy (ZPE) was discovered from the study of the interaction between electromagnetic waves
and condensed matter, examining the thermodynamics of black body radiation and the photoelectric effect.
ZPE was first obtained by Max Planck trying to solve the UV-catastrophe present in the former classical
models (Rayleigh-Jeans and Wien models) describing the energy density spectrum radiated by a black body
observed by Kirchhoff in 1860 [4]. The objective was to understand, from a thermodynamics point of view,
the mechanisms of absorption and radiation of electromagnetic frequency ν of a black body held at a constant
temperature T . These early attempts allowed in particular the derivation of the Stefan-Boltzmann law giving
the radiative energy surface density j(T ) (in W.m−2)as a function of the massive body temperature

j(T ) = σT 4 (1.1)

where σ is the Stefan-Boltzmann constant.

From the classical model, Max Planck described atoms as harmonic oscillator cavities [5] and derived the
radiated energy density Bν(T )dν (in J.m−3) in the frequency interval [ν, ν + dν]. By equating the absorption
rate of an external electromagnetic energy by a black body and its emission rate he obtained the energy
density spectrum

Bν(T ) = 8πν2

c3 U, (1.2)

where U is the total internal energy of the oscillator [4]. At the time, the challenge was the determination of
the correct expression for U .

Although the oscillator is typically visualized as a linear oscillating spring, one must consider that the spring
analogy is a 1D projection of a 3D rotational motion (Figure 1), the latter of which is a more realistic and
precise visualization of what is occurring in the real physical resonators under consideration (e.g. atoms).

Figure 1: (a) Typical representation of an oscillator as a spring with a mass attached to it in a 1D oscillation.
(b) More realistic representation of a natural oscillator as a 3D rotational motion.

Various statistically unsuccessful derivations such as the Rayleigh-Jeans or Wien distribution laws, were tried to
compute an electromagnetic energy density spectrum compatible with the Stefan-Boltzmann law. The Rayleigh-
Jeans solution Bν(T ) = 8πν2

c3 kBT produced the ultraviolet divergence while the Wien Bν(T ) = 8πν3h
c3 e

− hν
kB T

distribution had no divergence but failed to compute the correct value for the Stefan-Boltzmann constant.
Following these early attempts, Planck initially started by applying the laws of thermodynamics to the
black body and related the total energy U to the system entropy S. His major assumption was to consider
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a continuous absorption and emission, with each individual oscillator emitting an elementary energy ϵ
proportional to its internal frequency ν, ϵ = hν [6]2. Planck thus obtained a total internal energy

U = hν

e
hν
kT − 1

(1.3)

From which, in 1901, he deduced the solution matching the experimental data known as Planck’s law.

B(ν, T ) = 8π
hν3

c3
1

e
hν
kT − 1

(1.4)

This first law resolved the UV-catastrophe with a finite spectrum at high frequencies and the corresponding
radiative energy density giving the Stefan-Boltzmann law. However, it raised a new issue as the internal
energy U should reduce to kBT as predicted by the equipartition theorem in the classical limit of high
temperatures kBT ≫ hν

U = hν

e
hν
kT − 1

≈ hν

1 + hν
kBT + 1

2

(
hν

kBT

)2
− 1

= kBT

1 + 1
2

hν
kBT

≈ kBT − 1
2hν (1.5)

From the Taylor series development, Planck found an additional negative term of − 1
2 hν corresponding to a

missing contribution. Even though his law was successfully matching the experimental density spectrum,
Planck was not satisfied by its derivation due to this negative residual term. It took him almost ten years to
develop a new theory. In the meantime, by studying the emission of electrons from metals illuminated by
light, now known as the the photoelectric effect, Albert Einstein proposed, in 1905, that the quantum term
discovered by Planck was a real physical attribute of radiation and elementary absorbers, such that a beam
of light propagates in discrete energy packets comprised of energy quanta hν, which he coined photons. This
finding of discrete emission of light as photons by matter led to Planck’s second proposition.

In 1912, Planck’s second theory described the black body as a system of elementary oscillators able to
continuously absorb light but radiate a discrete (quantized) electromagnetic energy nhν [6]3. Planck proposed
that an oscillator would absorb continuously until it reached a certain energy threshold from which it emitted
a quanta with a defined probability. Thus, he derived a new expression for the internal energy U

U = hν

2
e

hν
kT + 1

e
hν
kT − 1

= hν

e
hν
kT − 1

+ 1
2hν, (1.6)

Here appears a second terms 1
2 hν which corresponds to the missing contribution, in addition to the classical

term hν

e
hν
kT −1

previously derived ten years earlier. Therefore, Planck’s second theory satisfies the equipartition
theorem resulting in U ≈ kBT at high temperature (kBT ≫ hν)

U = hν

e
hν
kT − 1

+ 1
2hν ≈ kBT − 1

2hν + 1
2hν ≈ kBT (1.7)

However, this new term meant as well, that even at zero Kelvin (T → 0K), oscillations still occurs resulting
in what Planck coined zero point energy (ZPE) corresponding to a ground state energy U0

U0 = 1
2hν (1.8)

2p.5-7
3p.687
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Due to the discrete emission mechanism, Planck thought he could no longer utilize Equation (1.2) to obtain
the energy density spectrum as it was derived in the case of a continuous emission. Planck thus considered
that the ratio between the probability of not emitting (1 − p) and the probability to emit (p) a light quanta is
proportional to the energy density spectrum Bν(T ) and obtained once again his 1901 law (Eq (1.4)). In his
second theory, Planck obtained the right expression for the energy U , which includes ZPE. He believed ZPE
would not have much experimental consequences [6]4, however as we will see ZPE is involved in the critical
fundamental phenomena of quantum mechanics such as spontaneous emission, Lamb shift and many others
(see Table 1 & [7]). At that time, the ZPE did not appear in Planck’s law for the energy density spectrum
Bν(T ) (as Bν(T ) → 0 when T → 0), although in modern course text books the ZPE density spectrum is
considered for the free field (or vacuum). This idea of vacuum fluctuations (ZPE) also came a few years later,
in 1916, by Walther Nernst who replaced the kBT term in Rayleigh-Jeans distribution by hν to estimate
the zero-point energy spectrum of the free electromagnetic field. To avoid the UV-divergence of the energy
density, Nernst had to introduce a cut-off frequency νm such that

ρ(νm) =
∫ νm

0
B0(ν)dν = 2πh

c3 ν4
m (1.9)

Nernst realized that the vacuum ZPE was “quite enormous, making extraordinary fluctuations in it to exert
great actions” [8].

To derive the complete expression of the energy density spectrum Bt(ν, T ) which includes the black body
spectrum and the vacuum spectrum, Planck could have combined Equation (1.2) and (1.6) to obtain the
total energy spectrum

Bt(ν, T ) = B(ν, T ) + B0(ν) = 8π
hν3

c3
1

e
hν
kT − 1

+ 4π
hν3

c3 (1.10)

in which the vacuum energy spectrum of the free electromagnetic field B0(ν) = 4π hν3

c3 appears as suggested
by Nernst.

1.2 Modern derivation of ZPE in free electromagnetic field
The modern derivation of the Bν(T ) uses quantum field theory [1]5 and correlation functions between
destructive and constructive interference (see Appendix A & B for details). The correlation function is a way
to measure the coherence of the field [9]. In a disordered system, the energy density of the electromagnetic
field is given by the normally ordered correlation function

〈
E⃗(−)(r⃗, t) · E⃗(+)(r⃗, t + τ)

〉
= ℏ

2π2ϵ0c3

∫ ∞

0

dωω3e−iωτ

eℏω/kT − 1 (1.11)

In a coherent system, positive (absorption/photon annihilation) and negative (emission/photon creation)
frequencies must be symmetrical resulting in a symmetrically ordered correlation function

〈
E⃗(r⃗, t) · E⃗(r⃗, t + τ)

〉
=
〈

E⃗(−)(r⃗, t) · E⃗(+)(r⃗, t + τ)
〉

+
〈

E⃗(+)(r⃗, t) · E⃗(−)(r⃗, t + τ)
〉

= ℏ
π2ϵ0c3

∫ ∞

0

dωω3 cos ωτ

e
ℏω
kT − 1

+ ℏ
2π2ϵ0c3

∫ ∞

0
dωω3eiωτ (1.12)

When the field modes are sufficiently coherent (the characteristic time is very small, τ ≈ 0), the electromagnetic
energy density ρ(T ) (in J.m−3) derived from the expectation value of the electric free field is

4p.11
5p.180-182
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ρ(T ) = ϵ0
〈
E2(r⃗, t)

〉
= 8π

h

c3

∫ ∞

0

(
1

e
hν
kT − 1

+ 1
2

)
ν3dν

=
∫ ∞

0
(B(ν, T ) + B0(ν)) dν

= 4
c

σT 4 +
∫ ∞

0
B0(ν)dν (1.13)

with σ = π2k4

60ℏ3c2 the Stefan-Boltzmann constant. This complete expression of the energy density contains two
terms : the first term corresponds to the Stefan-Boltzmann law, and the second term representing ZPE arises
only at coherent scales. ZPE density is given by

ρvac =
∫ ∞

0
B0(ν)dν (1.14)

which displays a divergence at high frequencies. This is resolved by regularizing the field with a cut-off
frequency as shown later in section 2.2.

These early derivations by Planck, Einstein and Nernst on the interaction between light and matter yielding
the ZPE density are at the roots of quantum mechanics. The treatment of the harmonic oscillators intrinsically
predicts the existence of a non-zero ground state energy of the vacuum which is apparent in the eigenvalues
of the harmonic oscillators Hamiltonian (cf section 1.3. Also, the vacuum electromagnetic energy ρvac is
critical for the treatment of the bare mass and charge and the renormalization process utilized in quantum
electrodynamic (QED) and quantum chromodynamics (QCD).

Historically, the work on the absorption and emission of an electromagnetic field by matter was extended by
Dirac in 1927 in his quantum electrodynamics theory of the electron describing the interaction of charged
particles by the means of photons being quantized excitations of the electromagnetic field, typically described
as a quantum field theory (QFT). According to QFT, the zero-point energy appears in every single field
as in QED vacuum and QCD vacuum and describes particles as excited states of their respective fields
giving a description of particle creation and interaction. However, the Standard Model does not address the
gravitational field and the spacetime structure associated with energy density levels resulting from a non-zero
vacuum energy (i.e. ZPE). John Archibald Wheeler and others treated some of these issues, which will be
discussed in sections 2.

In the following, we will highlight how ZPE is a necessity in both theoretical approaches and experimental
results analysis for consistency.

1.3 ZPE in Quantum mechanics and its necessity for mathematical consistency
The elucidation of the electromagnetic field in the vacuum state can be deduced from quantum mechanics. An
electromagnetic field in vacuum is typically treated mathematically as a one dimensional harmonic oscillator,
a model broadly used in quantum mechanics especially in perturbation theory [6]6. The generic quantum
Hamiltonian for a harmonic oscillator is

Ĥ = p̂2

2m
+ 1

2mω2x̂2 (1.15)

6p.36-41
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with m the particle mass, p̂ = −iℏ∇. the momentum operator, x̂ the position operator and ω =
√

k/m
the typical oscillator of force k frequency. While working on the coefficient of spontaneous emission of an
atom [10], Dirac derived from the non-commutative rule [x̂, p̂] = iℏ a whole theory of operators mechanics
which yields to the definition of the annihilation a and creation a† operators based on the position and
momentum operators such that [a, a†] = 1 and the harmonic oscillator Hamiltonian can be simplified as (see
Appendix A)

Ĥ = ℏω

(
a†

ωaω + 1
2

)
(1.16)

The associated Schrödinger equation can be solved by looking for the eigenstates of the number operator a†a
from which time-independent energy level for the harmonic oscillator are deduced

En = ℏω(n + 1
2) (1.17)

with n ∈ N, the number of photons present in the mode |n⟩. The ZPE corresponds to the ground state mode
|0⟩, which has no photon but still has an energy E0 = 1

2ℏω. Therefore, the quantum theory of radiation
predicts a zero point energy for the electromagnetic field.

The nature of ZPE can be further understood when translated into the quantization of vacuum electromagnetic
field. As shown in Appendix A, the harmonic oscillators analysis yields the following electric and magnetic
fields

E⃗(t) = −∂A⃗

∂t
= i

√
2πℏω

(
aω(t)A⃗0(r⃗) − a†

ω(t)A⃗0
∗
(r⃗)
)

(1.18)

B⃗(t) = ∇ × A⃗ =
√

2πℏc2

ω

(
aω(t)∇ × A⃗0(r⃗) − a†

ω(t)∇ × A⃗0
∗
(r⃗)
)

(1.19)

In the vacuum state, and for all the stationary state |n⟩ the expectation values for the electric and magnetic
field becomes 0

〈
E⃗(r⃗, t)

∣∣∣E⃗(r⃗, t)
〉

τ
=
〈

B⃗(r⃗, t)
∣∣∣B⃗(r⃗, t)

〉
τ

= 0 (1.20)

As expected, the electric and magnetic fields oscillate with a zero mean value illustrating the fact that they
are not observed at our usual time scale (τ ≫ τ0) since the coherent time τ0 is very small. Historically, this
has been described as a field of ’virtual’ particles. However, the energy density calculated as the expectation
value of the square of the electric field is non-zero

〈
E2(r⃗, t)

∣∣E2(r⃗, t)
〉

= 4πℏω|A⃗0(r⃗)|2n +
〈
E2(r⃗)

∣∣E2(r⃗)
〉

0 (1.21)

with ZPE density given by

ϵ0
〈
E2(r⃗)

∣∣E2(r⃗)
〉

0 = ℏω

2V
(1.22)

With no photon n = 0, the electromagnetic energy density ϵ0
〈
E2(r⃗)

∣∣E2(r⃗)
〉

0 remains lower than the quantum
of energy ℏω threshold for spontaneous emission.

ZPE can be and is commonly mathematically removed from the Hamiltonian by normal ordering procedure
Ĥ ′ = Ĥ − E0(ω), but this does not mean that ZPE vanishes from the system. In fact, the non-zero value of
the |0⟩ mode results from the non-commutative relationship between operators a and a† ([a, a†] = 1) and
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is essential for the mathematical consistency of quantum theory [6]7. This can be demonstrated when we
consider a dipole model of the atom where the dipole length is represented by the coordinates x(t). The
resulting harmonic oscillator equation which takes into account the radiation reaction field ω2

0τ ẋ (in the
small-damping approximation ω0τ ≪ 1) and the zero-point energy source e

m E0(t) is

ẍ + ω2
0τ ẋ + ω2

0x = e

m
E0(t) (1.23)

with τ = 2e2

3mc3 and ω0 the natural frequency of the system. The solution without ZPE (E0(t) = 0) predicts a
rapid collapse of the dipole length (t ≫ (ω2

0τ)−1), like in the case of the classical electron in which it would
radiate all its energy and fall on the nucleus [6] (p81)

x(t) = −x0e−
ω2

0τ

2 t(cos(ωt) + sin(ωt)) −→
t≫(ω2

0τ)−1
0 (1.24)

In fact, the ZPE is a source term necessary to the stability of matter, counterbalancing the radiative damping
of the dipole. When considering a non-zero ZPE in the equation in the form of E0(t) = E0ω cos(ωt + θ), we
get

x(t) = − e

m
Re
(

E0ωe−iωt+θ

(ω2 − ω2
0) + iτω3

)
(1.25)

Also, this solution with the ZPE maintains the non-commutative relationship necessary for the mathematical
consistency of quantum theory. In the small-damping approximation ω0τ ≪ 1, we can calculate the mean
over time value for the commutator [6]8

[x̂, p̂] = ⟨x| [x̂, p̂] |x⟩

=
∑

ω

ie2E2
0ω

m

ω

(ω2 − ω2
0)2 + τ2ω6 (1.26)

For isotropic and unpolarized vacuum fluctuations, we have E2
0ω = 8π

3ϵ0
B0(ω)dω such that, in the continuum

mode limit where
∑
k

→ V
8π3

∫
d3k, the commutative relationship can be approximated by (see Appendix C)

[x̂, p̂] ≃ iℏe2

2π2mc3
8π

3

∫ ∞

0

dωω4

(ω2 − ω2
0)2 + τ2ω6

≃ 2iℏe2

3πmc3 ω3
0

∫ ∞

−∞

dx

x2 + τ2ω6

= 2iℏe2ω3
0

3πmc3
π

τω3
0

= iℏ (1.27)

Consequently, ZPE is required to maintain the non-commutativity of the operators [x̂, p̂] = iℏ which leads
to the fact that the Heisenberg uncertainty principle emerges from the vacuum fluctuations of the ZPE.
These vacuum fluctuations are expressed by the position σx and momentum σp standard deviations which
are computed from the number operator eigenvectors |n⟩, as

7p.53
8p.54
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σ2
x = ⟨n| x2 |n⟩ = i2ℏ

2mω
⟨n| (a − a†)2 |n⟩ = ℏ

mω

(
n + 1

2

)
(1.28)

and

σ2
p = ⟨n| p2 |n⟩ = ℏmω

2 ⟨n| (a + a†)2 |n⟩ = ℏmω

(
n + 1

2

)
(1.29)

from which the Heisenberg principle is deduced

σxσp = ℏ
(

n + 1
2

)
≥ ℏ

2 (1.30)

It then follows that the foundations of quantum mechanics and the uncertainty principle are firmly rooted in
the dynamics of ZPE vacuum fluctuations that defines the bath (or field) in which particles appear, evolve and
interact. Thus, contrary to popular belief, the uncertainty principle is a consequence, not the source of ZPE [6].

Furthermore, the attempts to resolve the divergence problems induced in quantum mechanics by ZPE, all the
while utilizing it to define the fundamental fields of particles and forces, have not been successfully resolved by
the renormalization process. This, in turn, led to very strong statements by some of the fathers of quantum
mechanics

Most physicists are very satisfied with the situation. They say: ’Quantum electrodynamics is a
good theory and we do not have to worry about it any more.’ I must say that I am very dissatisfied
with the situation because this so-called ’good theory’ does involve neglecting infinities which
appear in its equations, ignoring them in an arbitrary way. This is just not sensible mathematics.
Sensible mathematics involves disregarding a quantity when it is small – not neglecting it just
because it is infinitely great and you do not want it! Dirac, 1975 [11]9

The shell game that we play is technically called ’renormalization’. But no matter how clever
the word, it is still what I would call a dippy process! Having to resort to such hocus-pocus
has prevented us from proving that the theory of quantum electrodynamics is mathematically
self-consistent. It’s surprising that the theory still hasn’t been proved self-consistent one way or
the other by now; I suspect that renormalization is not mathematically legitimate. Feynman,
1985 [12]10

Attempts to renormalize infinities in quantum theory have consequences to the structure of spacetime,
explored by many, and meet within black holes, at singularity, where spacetime diverges to infinity as a result
of general relativity. In the last few decades, explorations of these consequences have been explored extensively
in astrophysical applications of quantum mechanics from the holographic principle of Juan Maldacena [13],
Gerard t’Hooft [14] and Leonard Susskind [15], to Wheeler’s quantum foam [16], the virtual micro-black
holes of Stephen Hawking [17] and a correspondence between quantum entanglement and spacetime as in
Einstein-Rosen bridges (ER = EPR). Typically, in all of these explorations the renormalization problem in
quantum mechanics is not addressed as the emphasis is on resolving issues of infinities and conservation in
relativistic physics. Yet, there may be great insights in applications of spacetime formalism at the quantum
scale to give physical meaning to regularization and renormalization.

In the sections below, we explore the relationship of ZPE to the structure of spacetime, its physical relevance
and role in experimental work.

9p.184
10p.128
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1.4 Experimental validations of the ZPE
Dirac’s motivation to develop QED theory was mainly due to the calculation of the spontaneous emission
rate in the hydrogen atom model initiated by Bohr to explain hydrogen spectral lines. In Bohr’s model, the
electron can only exist in certain, discretely separated orbits, where each transition results in spontaneous
emission or absorption of a photon. When a photon is absorbed, it is annihilated by jumping into the vacuum
state, while an emitted photon is created by jumping out of the vacuum state. Similarly, the electron jumps
by being absorbed and emitted from the vacuum at its new orbit. This is mathematically seen through
the annihilation and creation operators which are lowering or raising by one quantum the energy level of
the system : a |n⟩ =

√
n |n − 1⟩ and a† |n⟩ =

√
n + 1 |n + 1⟩. From Dirac’s equation, a relativistic version

of the Schrödinger equation, both positive and negative energy states are accessible by the electrons in
which E = −c

√
p2 + m2c2 is as true as E = c

√
p2 + m2c2. This observation led Dirac to postulate the

existence of the Dirac sea as a pool of disposable electrons with negative energy that can appear out of the
vacuum. From this conception Dirac successfully predicted the existence of the anti-electron, or positron,
as a hole in the Dirac sea. In 1932, the positron existence was experimentally confirmed by Carl Anderson [18].

This capacity of creation and annihilation of electron-positron pairs out of the electromagnetic vacuum
predicted by the Dirac equation and demonstrating the physicality of the quantum vacuum fluctuations, has
been recently experimentally observed:

• Schwinger effect: when applying to the vacuum an electromagnetic field above the Schwinger limit
(ES = m2

ec3

eℏ = 1.32 x1018 V.m−1), electron-positron pairs experience sufficient separation to overcome
cyclical annihilation and are observed, the limit was first derived in 1931 in one of QED’s earliest
theoretical successes by Fritz Sauter [19] and later codified by Julian Schwinger who calculated the rate
of electron–positron pair production [20]. This was measured in 2022 in graphene superlattices [21, 22].

• Vacuum birefringence : postulated by Schwinger in 1936, the vacuum birefringence is now experimentally
observed around Isolated Neutrons Stars (or pulsar). Pulsars generate extremely intense magnetic fields
which are above the Schwinger limit such that electrons and positrons are being created out of the
vacuum around the neutron star. The anisotropy of the vacuum in this region makes it birefringent,
which can be observed in the measured polarization degree of light from the pulsar [23].

• Breit-Wheeler effect : two photons are combined to form an electron-positron pair, which has been
experimentally measured in 2021 at the Large Hadron Collider [24].

One of the first and major experimental validation of the ZPE is attributed to the Lamb shift. In 1947, Lamb
and Retherford measured a shift in the hydrogen energy level 2p1/2 that was not expected by Dirac’s equation.
It was later found that the so-called Lamb shift is the result of vacuum energy fluctuations interacting with
the electron around the nucleus [25]. It was a key observation of the effect of the ZPE and proved the physical
impact of vacuum fluctuations.

Another experimental confirmation of the ZPE is the Casimir effect. When studying the attractive Van
der Waals force between two atoms in vacuum, Hendrik Casimir discovered that two mirrors in vacuum
experience a force due to the cavity between the plates eliminating a percentage of the vacuum fluctuations
modes producing an energy gradient resulting in a force [26]. Steven Lamoreaux in 1997 first measured
the effect confirming Casimir’s calculations [27]. The static effect was measured numerous times following
Lamoureaux first attempt [28].

More recently, experimental validations of the dynamical Casimir effect and the Casimir torque have been con-
firmed which allows direct observational evidence of the vacuum fluctuations and removing all the remaining
confusion about the origin of the Casimir effect [29]. The dynamical Casimir effect was first conceptualized
in 1970 by [30] where two mirrors are oscillated at near relativistic speed to effectively pump the vacuum
fluctuations and extract real photons out of it. In 2011, the first experimental study reported the extraction of
microwave photons in a technique involving a modified SQUID confirming the dynamical Casimir effect [31].
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ZPE-based Effect Theoretical Pre-
diction/Explana-
tion

Experimental Vali-
dation

Additional Refer-
ence

Black Body radiation Planck (1900-
1912) [5]

Kirchhoff (1860) [35] Milonni (1993 ) [6]

Photoelectric effect Einstein (1905) [36] Millikan (1916) [37] Lehnert (2014 ) [38]
Spontaneous Photon Emission Einstein (1916) N/A Dirac (1927) [10]
Lamb Shift Bethe (1947) [39] Lamb-Retherford

(1947) [25]
Casimir Effect Casimir (1948) [40] Lamoreaux

(1997) [27]
Bordag (2001) [28]

Casimir Torque Casimir (1948) Somers (2018) [34]
Dynamical Casimir Effect Moore(1970) [30] Wilson(2011) [31] Dodonov (2020) [29]
Hawking Radiation-Unruh Effect Hawking-Zeldovich

(1972-1973) - Un-
ruh(1976)

Electron-Positron pair creation Dirac (1928) [41] Anderson (1932) [18]
Schwinger effect Sauter (1931) [19] -

Schwinger (1951) [20]
National Graphene
Institute - Geim
(2022) [22]

Vacuum Birefringeance Heisenberg - Euler
(1936)

STAR experiment
(2021) - IXPE (2022)
[24]

Breit-Wheeler Effect Breit-Wheeler
(1934) [42]

Pike et al (2014) [43]

Higgs mechanism Anderson (1962) [44] LHC (2013)
Table 1: List of physical effects based on the ZPE with the theoretical prediction or post-experiment
explanation and corresponding experimental validation.

The beginning of the abstract reporting on the experimental results in Nature makes an impactful statement

One of the most surprising predictions of modern quantum theory is that the vacuum of space is
not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out
of existence. While initially a curiosity, it was quickly realized that these vacuum fluctuations had
measurable consequences, for instance producing the Lamb shift of atomic spectra and modifying
the magnetic moment for the electron. Wilson, 2011 [31]

The effect was confirmed by a second group in 2013 [32] then again in 2019 [33].

These results open the door to using the Casimir torque as a micro- or nanoscale actuation
mechanism, which would be relevant for a range of technologies, including microelectromechanical
systems and liquid crystals. [...] The van der Waals and Casimir effects both result from the same
mechanism (quantum and thermal fluctuations), although historically they were derived from
different physical pictures. Somers, 2018 [34]

All the experimental results presented above are gathered in Table 1.
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2 ZPE density consequences on spacetime, mass definition and
matter stability.

In this section, we will review the consequences of ZPE on the spacetime structure and how it is related to
the definitions of mass in the standard model.

2.1 Calculation of ZPE density
Now that we have built the theoretical origin of the ZPE and confirmed its existence by the current
experimental validations, we derive the total vacuum energy density. ZPE density only arises in coherent
space (cf Appendix B) and results from the sum of all elementary spherical harmonic oscillators with ground
state energy E0(ω) on all possible modes ω of the fields (See derivation in Appendix D). For three dimensional
spherical oscillators (as mentioned above being resonant cavities as in Figure 1), the ground state energy of
the rotational oscillations is given by

E0(ω) = 3
2ℏω (2.1)

and the vacuum energy density for a continuous mode distribution is

ρvac = 1
V

∑
ω

n(ω)E0(ω) = 2π

V

∫ ωmax

0
E0(ω)dn(ω)

= 3ℏ
2πc3

∫ ωmax

0
ω3dω = 3ℏ

8πc3 ω4
max (2.2)

where dn(ω) corresponds to the number of modes between ω and ω + dω in a volume V . If an infinity of
possible modes is allowed, i.e. ωmax → ∞, the vacuum density ρvac would diverge. Yet, the frequencies ω
correspond to a wavelength scale at which the observations are made. Thus, the vacuum energy divergence
occurs when an infinite amount of scales is considered underlying the possible fractal nature of spacetime at
the quantum scale, which is found as well at the cosmological scale at black hole singularity. Furthermore,
spacetime vacuum that appears flat at a large scale is in fact extremely energetic and fluctuating at the small
scale of the quantum world (Figure 2).

Since Einstein’s general relativity equations demonstrate that all energy sources will geometrize spacetime,
and curved spacetime geometry is gravity, the tremendous amount of vacuum fluctuation energy of the
zero-point energy density should result in a highly curved (multiply-connected) spacetime geometry and
strong gravitational action which is apparently not observed at our scale as demonstrated by Wheeler in his
paper Quantum Geometrodynamics [16]. However, the continuous process of creation-annihilation creating
continuous distortion of spacetime occurs at very short distance scales. Quantum fluctuations of the geometry
of spacetime are so violent that the usual picture of a smooth spacetime with a metric on it breaks down.
Instead, one should visualize spacetime as a ’quantum foam’, a superposition of all possible topologies which
only looks smooth and placid on large enough length scales (Figure 2). Wheeler compared the quantum foam
with the surface of an ocean. Very far from the surface, it can be considered as perfectly flat such that no
energy is observed. Zooming in however, at the scale where the waves can be observed, an energy can be
measured. If we continue to zoom in, we will see the wave breaking and even the foam forming at the surface.
All those scales of observation can be associated to an energy, that is to say in the case of spacetime, a mass.

2.2 Natural cut-off at the quantum scale
By simple relationship analysis between general relativity and quantum mechanics, we can heuristically find
a minimum wavelength scale, where the regularization cut-off is set by the spacetime dynamics combined
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Figure 2: Illustration of the quantum foam where the energy level is directly related to the observation
scale at which one measures. A flat surface at the charge radius rp ∼ 10−15 m can result from intense and
turbulent vacuum fluctuations at the Planck scale ℓ ∼ 10−35 m.

with the Heisenberg uncertainty principle emerging from ZPE which provides a minimal value for the angular
momentum of an extremal spacetime vortex of momentum p and energy Mc2 with a radius R

∆x∆p ≥ ℏ
2 (2.3)

where ∆x = R represents the vortex radius and ∆p the relativistic momentum flow (∆p ≈ Mc). Thus, the
minimal angular momentum Γm = MRc is ℏ/2 and it obeys the condition :

MR = ℏ
2c

(2.4)

Such structure would form in the spacetime metric producing quantum foam at the critical Schwarzschild
limit. Thus,

M

R
= c2

2G
(2.5)

By resolving the two conditions Equation (2.4) and Equation (2.5) from quantum mechanics and general
relativity, we obtain the cut-off condition equivalent to the unifying energy occurring at the Planck scale:

R =
√

ℏG

c3 = ℓ (2.6)

M = 1
2

√
ℏc

G
= mℓ

2 (2.7)

with mℓ and ℓ the Planck mass and length respectively. Therefore, Planck length and Planck mass define a
minimum scale in the spacetime structure, typically chosen as a limit as well at the center of black holes
singularity or in the big bang cosmology.
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Although this computation is heuristic in nature, it has the virtue to clearly illustrate that the only non-
arbitrary units, or natural units, of the Planck scale (where forces are unified), are congruent with the
Schwarzschild solution to Einstein field equations, defining an elementary spacetime pixel due to vacuum
fluctuations and producing quantum foam.

This cut-off and its associated quantum foam was further demonstrated by Wheeler (in [16]) who calculated
the characteristic length scale at which spacetime metric fluctuations can be observed as a response of vacuum
electromagnetic fluctuations. Wheeler analyzed the phase of the Feynman-Huygens equation for a field
that combines an Einstein-Hilbert action and an electromagnetic free field such that the exponent phase is
described by

SH

ℏ
∼
∫ [

(c3/8πℏ)(∂g/∂x)2 + (1/8πℏcµ0)(∂A/∂x)2] (−g)1/2d4x (2.8)

where SH is the Einstein-Hilbert action with a potential vector A and gµν the spacetime metrics. For a
typical region of space L4, the phase variation δφ in the path integral formulation due to alterations of the
metrics component δg and electromagnetic fluctuations of the potential vector δA can be written as [16]

δφ = δSH/ℏ ∼ (c3/ℏG)L2(δg)2 + (1/ℏcµ0)L2(δA)2 (2.9)

where the phases are defined as

δφg = c3L2(δg)2

ℏG
: gravitational phase (2.10)

δφem = L2(δA)2

ℏcµ0
: electromagnetic phase (2.11)

The field variations of such region of space contribute to the path histories when phase variations are small
enough to create constructive interferences (δφ ∼ 1), this corresponds to the minimal value for the field action
δSH = ℏ/2. Also, according to Einstein’s field equations, in a vacuum, spacetime curvature will result from
the electromagnetic field energy density given by

Rµν − 1
2Rgµν = 8πG

c4 Tµν (2.12)

Considering small variations of the metric δg, Einstein’s equations for the metric component reduces to

δg2

L2 ∼ G

c4
B2

µ0
(2.13)

The electromagnetic energy density E = B2

µ0
for small variations of the potential vector δA is given by

B ∼ δA

L

E = B2

µ0
∼ 1

µ0L2 δA2 (2.14)

Thus, the spacetime curvature resulting from electromagnetic vacuum fluctuations induces a metric variation
δg defined by
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δg2

L2 ∼ G

c4
B2

µ0
∼ G

c4L2µ0
δA2

δg2 ∼ G

c4
δA2

µ0
(2.15)

Therefore, the electromagnetic and gravitational phases are of the same order δφg ∼ δφem ∼ 1

L2

ℓ2 (δg)2 ∼ L2

ℏcµ0
(δA)2 ∼ 1 (2.16)

As a result, the typical metric and electromagnetic field energy density fluctuations are

δg ∼ ℓ

L
(2.17)

δE ∼ δA2

µ0L2 ∼ ℏc

L4 (2.18)

The metric reaches a maximum fluctuations when δg ∼ 1 (cf Appendix E). Then, the characteristic length L
of the metric fluctuations is of the order of the Planck length

L ∼ ℓ (2.19)

Similarly, the energy of the electromagnetic field oscillators at the Planck length scale is of the order of the
Planck mass:

M ∼ δEℓ3

c2 = mℓ (2.20)

Wheeler’s investigation of electromagnetic vacuum fluctuations inducing a gravitational response, led to what
he coined quantum foam. He found that these fluctuations have qualitative and quantitative consequences at
distances in the order of the Planck length, ℓ, where the metric fluctuations δg are coherent enough. Therefore,
the spacetime curvature fluctuations due to vacuum fluctuations give birth to creation and annihilation of
virtual wormholes descripted by Wheeler having a charge of the order of the Planck charge qℓ =

√
4πϵ0ℏc ∼ 12e,

a mass of the order of the Planck mass, mℓ, and a typical energy E = mℓc
2 ∼ ρvacℓ3 associated to ZPE

(ρvac). Then Wheeler investigated the possibility that the mass and charge of elementary particles could
be described from a quantum geometrodynamic point of view. This would mean that mass and charge of
elementary particles, such as the electron, would result from a collective and coherent disturbance of vacuum
fluctuations associated with the metric and gravitational fluctuations generated by the creation-annihilation
of Planck size micro-wormholes.

2.3 Consequences of the Planck length cut-off
Here, we have used two different approaches to describe the relationship between electromagnetic vacuum
fluctuations and spacetime curvature resulting in a natural cut-off value of the spacetime structure at the
quantum scale. Similar to these results already in 1967 prominent physicist Andrei Sakharov explored the
possibility of a microscopic foundation to gravitation from quantum vacuum fluctuations that he coined
’the metric elasticity of space’, where he utilized the Planck length cut-off as well and found an equivalence
between the electromagnetic fluctuations of the vacuum and the gravitational constant G [45]
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G = c3

16πℏC
∫

kdk
= 2c3ℓ2

16πCℏ
(2.21)

with C = 1
8π is a geometrical constant of the order of unity and

∫
kdk is the sum of all reachable modes of

the vacuum electromagnetic fluctuations. Considering the Planck length cut-off, according to Sakharov’s
definition, the gravitational force results directly from the intensity of the fluctuations in the quantum
foam [46]11.

Returning to Equation (2.2) ρvac = 3ℏ
8πc3 ω4

max and renormalizing with an oscillator of characteristic diameter
of the order of the Planck length ℓ, we obtain a cut-off pulsation

ωmax = 2πc

2π ℓ
2

= 2c

ℓ
(2.22)

and a finite vacuum energy density expressed as

ρvac = 6
π

c7

G2ℏ
≈ 8.90 × 10113 J.m−3 (2.23)

Although this is typically the value given for the quantum vacuum energy density (or ZPE) which is extremely
high (in the order of Planck density), one must keep in mind that the system energy density is directly related
to the correlation time τ (see Appendix B) delineating and characterizing a coherent state of constructive
interferences which corresponds to a characteristic scale defined by the system effective time. Thus, it’s
possible to compute the system energy density ρ by considering the electromagnetic vacuum fluctuations
correlation time τ such as (cf Appendix B)

ρ(τ) = ϵ0

〈
E⃗(r⃗, t), E⃗(r⃗, t + τ)

〉
≈ 6

π

ℏc

(cτ)4 = ρvac

(
tℓ

τ

)4
(2.24)

where tℓ is the Planck time.

Therefore, when a characteristic time τ = tℓ, we clearly find ρvac giving a deeper meaning to the cut-off
wavelength and being directly related to the coherency of the vacuum fluctuations defining the energy levels of
the system. Remarkably, when we consider a significant change of scale, and we implement the characteristic
time of the proton τp defined by

τp = rp

c
≈ 2.8 × 10−24s (2.25)

where rp is the proton rms charge radius, which is as well consistent with the characteristic time of the strong
nuclear force typically given by the ρ meson lifetime (4 × 10−24s), we obtain the energy density ρp of that
scale from ρvac considering the creation and annihilation cycle reducing by a factor of 2

ρp = ρvac

2

(
tℓ

τp

)4
= 3

π

ℏc

r4
p

≈ 6.05 × 1034 J/m3 (2.26)

Thus, the corresponding energy Ep for that scale resulting from the coherent behavior of the quantum vacuum
fluctuations in the volume of a proton is

Ep = 4
3πr3

p × ρp = 4ℏc

rp
= 938 MeV (2.27)

11p.427-428
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Considering that the rest mass of the proton is known to be 938 MeV.c−2, our computation precisely finds
the energy equivalent of a proton from a coherent structure of vacuum fluctuations at that scale. In this
non-trivial result, we find a clear origin of the mass-energy emerging from quantum vacuum fluctuations at
the Planck scale, through a decoherence or screening mechanism that generates the proton rest mass.

From a completely different approach of an external point of view, this correlation time τp can be as well
thought of as the characteristic of a resonant cavity of a length rp = cτp generating a Casimir force equivalent
to an energy gradient by eliminating the short wavelength of vacuum fluctuations. Thus, considering the
proton as a resonant cavity, we sum all the cavity resonant modes ν and obtain once again equation (2.26)

ρp = 12
π

∫ ∞

νp

ℏν3

c5 dν = 3
π

ℏc

r4
p

(2.28)

where the cavity modes are given by ν = c
r . Here our computation finds a precise value (limited by the

precision on the proton radius) for the hadronic mass and clearly suggests, as we will demonstrate further,
that the nuclear confining force analogous to the Casimir effect, and the mass, arise from the ZPE quantum
vacuum fluctuations dynamics. In fact, we note that the binding pressure force arising from a Casimir
resonant cavity at a characteristic distance of a proton is on the same order of magnitude as the strong
interaction [47, 48]

FCasimir ∼ ρp × Ap ≈ 104 N (2.29)

The current standard mechanism to define the source of the rest mass of the proton usually requires the
strong nuclear force contribution to make up the deficiency of the Higgs mechanism, which only predicts
∼ 1 to 5% of the proton mass [49, 50]. Furthermore, the fundamental origin of confinement and the residual
nuclear force (or strong force) given by quantum chromodynamics (QCD) has no analytical solution or origin.
Therefore, the origin of mass for matter in our universe remains an open issue, notwithstanding dark matter
and dark energy which is thought to be ∼ 95% of the mass-energy of the universe.

The screening and reduction of energy from ZPE to the proton rest mass-energy scale and the nuclear force,
or residual strong force, was first explored in [51] and [52] by consideration of a semi-permeable horizon
surface defining the mechanism of decoherence of the vacuum energy density ρvac to produce the mass-energy
of particles and forces.

We note that our result, from the correlation functions, relates the charge radius of the proton not only to
the rest mass, but as well to the reduced Compton wavelength λp = ℏ

mpc giving a direct relationship between
the charge radius and λp given as

Ep = 4ℏc

rp
= mpc2 = ℏc

λp
⇒ λp = rp

4 (2.30)

This emerging characteristic length λp was utilized by Hideki Yukawa for the effective radius of residual
strong force [53] and will become significant in the screening process explored in sections 3 & 4.

3 Spacetime lattice and the Holographic Mass Solution
3.1 Electromagnetic Harmonic Oscillators
From the correlation functions, defining the coherence of a symmetrically ordered system resulting in the
energy at different scales depending on the correlation time τ and following Wheeler’s quantum foam bubbles
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approach, we compute utilizing Equation (2.20) and Equation (2.23) the geometry of the elementary oscillator
or voxel of the field ρvac having the electromagnetic field energy of the order of the Planck mass mℓ. Thus,
for a volume V filled by N space filling voxels of mass-energy mℓ having an equivalent density ρvac we find

ρvac = 6
π

c7

G2ℏ
= Nmℓc

2

V
(3.1)

where the number of oscillators in the volume V is given by

N = V

V0
(3.2)

where V0 is the elementary oscillator volume. Combining the two equations, it results

6
π

c5

G2ℏ
= mℓ

V0
(3.3)

and solving it for the voxel’s volume V0, we get

V0 = π

6
mℓG

2ℏ
c5

= π

6

(
ℏG

c3

)3/2

= 4π

3

(
ℓ

2

)3
(3.4)

Therefore, the voxel appears to be a spherical foam bubble of radius ℓ
2 and mass-energy mℓ. It is consistent

with the initial description of a spherical cavity given as the harmonic oscillator (cf. Figure 1). Furthermore,
the space filling nature of the computation must be kept in the context of a dynamical foam of spherical
bubbles appearing and disappearing, as creation and annihilation cycles, resulting in a space-filling symmetry.
These Planck spherical bubble units, or spherical quantum harmonic oscillators, constitute the fabric of
spacetime structure at the Planck scale and have been previously termed as Planck Spherical Units (PSU) [52].
The PSU is the elementary oscillator of ground state energy E0 = 1

2ℏω.

We compute the PSU characteristic time τpsu at their ground energy level E0 from the PSU resonant frequency

τpsu = ω−1
psu (3.5)

By comparing the PSU mass-energy mℓ with its ground state energy at the resonant frequency ωpsu we
obtain the equation

1
2ℏωpsu = mℓc

2 (3.6)

And, solving it for the resonant frequency, we get

ωpsu = mℓc
2

ℏ
= 2c

ℓ
(3.7)

Thus, the fluctuation time of a PSU cycle is of the order of the Planck time with each foam bubble following
a creation and annihilation cycle of period 2τpsu = tℓ
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τpsu = ℓ

2c
= tℓ

2 (3.8)

where tℓ = ℓ
c is the Planck time.

The PSU as the elementary constituent of spacetime forms a plasma-like superfluid structure flowing at all
scales. At the quantum scale, this flow is found as the ZPE fluctuations ρvac, which is consistent with Dirac’s
analysis of the potential vector Aµ resulting in a velocity of an underlying medium [54, 55]. In his study
on spontaneous emission [10], Dirac also commented on the zero-point energy : “The light-quantum has
the peculiarity that it apparently ceases to exist when it is in one of its stationary states, namely, the zero
state.” When PSU are in the ZPE state, their energy is below the quantum of energy E0 < ℏω such that we
cannot see them. Once they become coherent and adopt a collective movement they start to create an energy
flow that we call mass. We identify this energy flow as a Planck plasma with phase transitions generating
boundaries resulting in energy screening.

3.2 The quantum spacetime structure
The Planck plasma flow of PSU can be compared to a quark–gluon plasma (QGP), where at high energy
densities quarks and gluons are freed of their strong attraction for one another [56]. QGP is described as a
highly coherent fluid and was experimentally discovered in high energy colliders [57, 58]. As the coherence
decreases mass and strong force appear, such that all the structured matter is supposed to derive from this
early-universe cooling process. Similarly, but in our case occurring in a time independent manner (stationary
process) and true at all scales, the Planck plasma energy density ρvac undergoes phase transitions resulting
in a reduction of coherence and thus of energy. The resulting screening process is described here with a
focus on the proton scale, which is the source of baryonic mass in the universe and a specific emphasis on
the relationship between its nuclear force and gravity. Although our earlier computation of the correlation
functions clearly indicated a direct relationship between quantum vacuum fluctuations ρvac and the production
of the rest mass at the proton effective time scale (cf Equation (2.26)), further investigations must occur
to understand clearly the mechanism in which the ρvac energy density transits from its highly coherent
phase within the proton core (as in the coherent QGP) to a less coherent phase generating the rest mass energy.

The first noteworthy observation using Equation (2.27) is that the relationship between the rest mass density
and the vacuum density naturally generates the well-known gravitational coupling constant αg = Gm2

p

ℏc =

16
(

ℓ
rp

)2
relating the nuclear force strength to the apparently weak gravitational Newtonian force [59]

ρp

ρvac
= 1

2

(
ℓ

rp

)4
=

α2
g

512 =
α2

g

83 (3.9)

This emergence of αg in the decoherence process and energy reduction gives us a first inkling of a scaling
relationship between the nuclear force energy potential and the gravitational potential. This scaling factor
was noticed and investigated by others including B.J. Carr and M.J. Rees [60]. The factor 83 that appears as
well implies that there must be a geometric parameter to be considered in the screening mechanism of the
electromagnetic vacuum fluctuations.

The quantity ℓ
rp

given in radii is a reduction of the physical representation of a system which must be defined
in three dimensions as volumes enclosed in surfaces. To understand the deeper mechanism underlying the
screening of ρvac one must consider the surface capacity in terms of vacuum fluctuations or information
to radiate the enclosed energy as in the Bekenstein entropy bound, which implies that the information of
a physical system is encoded on its surface where the upper bound entropy is reached at the black hole
condition [61].

Every it, derives from bits John Archibald Wheeler, 1989 [62]
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Figure 3: Schematic representation of the screening processes producing the rest mass from the quantum
vacuum fluctuations ρvac which is associated to two screenings surfaces: the first screening at the Compton
wavelength λp = rp

4 and the second screening at the proton charge radius rp resulting in the proton black
density ρbh = ρvac

ηλ
and the rest mass energy density ρp = ρvac

2ηλη64
, respectively.

We compute, in our case, the screening coefficient ηp of a proton surface composed of fluctuating PSU
shielding the available interior vacuum energy ρvac. Thus, the number of oscillating PSU cross-section π

(
ℓ
2
)2

tilling the proton surface Ap = 4πr2
p gives the screening coefficient ηp

ηp =
4πr2

p

π
(

ℓ
2
)2 = 16

(rp

ℓ

)2
= 256

αg
(3.10)

Equations (3.9) and (3.10) suggest that there are two phase transitions or screening surfaces on the order of
ηp = 256α−1

g to reduce from ρvac to the rest mass-energy density of the proton (cf Figure 3). From the result
of the correlation functions computation (cf Equation (2.27)), we identify the first screening surface ηλ being
at the reduced Compton wavelength λp and the second screening surface ηp at the proton charge radius rp.

ρp = ρvac

2

(
ℓ

rp

)4
= ρvac

1
ηλ

× 8
ηp

(3.11)

We then define R as the number of PSU in the volume of the system representing the internal energy of the
quantum vacuum fluctuations ρvac available in the volume enclosed by the screening surface η

R = ρvacV

mℓc2 =
4
3 πr3

4
3 π
(

ℓ
2
)3 = 8

(r

ℓ

)3
(3.12)

Therefore, the geometric mechanism resulting in the rest mass of the proton from the vacuum fluctuations as
in Equation (2.27) can be written as

mp = ρpVp

c2 = 8 Rp

ηλ × ηp
mℓ (3.13)
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The above results give us a direct, remarkable, and non-trivial geometric relationship between the decoherence
of the electromagnetic quantum vacuum fluctuations ρvac, the origin of mass, and scales of the forces involved
between the gravitational potential and the nuclear force. Furthermore, it provides an insight into the
geometric mechanism that produces a reduction of energy at the proton scale and, as we will see later, at
various scales of baryonic matter and at the cosmological scale. Unlike the QED scheme which reduces the
mass of particles from an infinite ’bare’ mass using vacuum fluctuations, we identify the vacuum fluctuations
as the source of mass that is shielded to produce the observed mass-energy density. Examining Equation
(3.13) we find that the production of mass for the proton, which constitutes most of the mass in the universe,
from the ZPE ρvac requires two surface screenings by the surface vacuum fluctuations ηλ and ηp enclosing
the volumes Rλ and Rp, respectively. We now investigate the physical meaning of these surfaces and their
relationship to spacetime dynamics.

3.3 First screening and Einstein Field Equations
Examining the relationship of the electromagnetic vacuum fluctuations between the volume R and the surface
screening η we discover a relationship to cosmology and find a direct and non-trivial path to general relativity,
or spacetime. To deeper understand the screening mechanism principle we ignore, for now, the relationship
to the proton from which the surface to volume information/energy ratio was found and we generalize it to
see if it relates to any fundamental physical principle. We find

M = ρvacV

η
= R

η
mℓ (3.14)

Computing the mass M we obtain

M = R
η

mℓ =
4
3 πr3

4
3 π
(

ℓ
2
)3 ×

π
(

ℓ
2
)2

4πr2 × mℓ = r

2ℓ
mℓ (3.15)

and thus

M = r

2ℓ
mℓ = r

2

√
c3

ℏG

√
ℏc

G
= rc2

2G
(3.16)

M = R
η

mℓ = rc2

2G
(3.17)

where Eq (3.16) corresponds to the first exact solution to Einstein Field Equations (EFE), i.e., the
Schwarzschild solution rs = 2GM

c2 . Thus, we find a clear relationship between the first screening and
the fundamental physics of spacetime producing a gravitational horizon. This is another remarkable result
considering that only vacuum fluctuations at the quantum scales were considered with a surface screening
mechanism that now clearly relates to the semi-permeable structure of the event horizon of a black hole
given by the Schwarzschild solution rs. Furthermore, this gives us a profound insight on the structure and
geometry of the surface horizon of a black hole congruent with the holographic principle and Bekenstein black
hole entropy conjecture [63], where here the surface pixelization by PSU η represents the information energy
encoded on the surface utilized in the Hawking-Bekenstein entropy of a black hole

S = kBA

4ℓ2 = kB
π

16η (3.18)

with kB the Boltzmann constant. From this expression of Hawking entropy which eventually leads to Hawking
temperature of a black hole, the surface pixelization η can be seen as a surface information. In our case, from
quantum mechanics and geometric consideration alone, we obtain a fundamental result of general relativity.
This has significant implications in the unification of physics as this result relates gravitational curvature to
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the source of the stress energy tensor being quantum vacuum fluctuations. As such, the Schwarzschild metric
ds typically given as (in (-,+,+,+) convention)

ds2 = −
(

1 − 2GM

rc2

)
c2dt2 +

(
1 − 2GM

rc2

)−1
dr2 + r2dΩ2 (3.19)

is an analytical solution of EFE

Rµν − 1
2Rgµν + Λgµν = 8πG

c4 Tµν (3.20)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν is the metric tensor, Tµν is the stress-energy tensor and
Λ is the cosmological constant.

Not so well known is the fact that from our derivation the Schwarzschild metric can be written from the
mechanics of mass production emerging from vacuum fluctuations as

ds2 = −
(

1 − 2ℓ

r

M

mℓ

)
c2dt2 +

(
1 − 2ℓ

r

M

mℓ

)−1
dr2 + r2dΩ2 (3.21)

As a result, the Planck units and the zero-point energy ρvac are the natural normalization factors of general
relativity in Einstein field equations

(
Rµν − 1

2Rgµν + Λgµν

)
ℓ2 = 48 Tµν

ρvac
(3.22)

Keeping in mind that EFE are fluid dynamic equations, it is appropriate to study them in their dimensionless
form in order to evaluate the amplitude of the mechanics involved. This dimensionless version sets the Planck
scale as the fundamental scale and ZPE density ρvac corresponds to the energy density required to obtain a
spacetime curvature on the order of the Planck length Rµν − 1

2 Rgµν + Λgµν ∼ 1
ℓ2 , which is consistent with

the cut-off found earlier (cf section 2).

Beyond the fact that the Planck units generate a compact and elegant formulation of the metric, a deep
mechanical meaning emerges from this treatment. Equations (3.14), (3.15), (3.16), (3.22) provide a direct
relationship between a black hole mass (thus the stress-energy tensor in EFE) and quantum vacuum
fluctuations ρvac, scaled through a purely geometric parameter

R
η

= Φ−1 (3.23)

given by [52] as the holographic ratio. This brings further insights into the relationship between the quantum
electromagnetic field, the origin of mass-energy required in the Einstein stress-energy tensor and the gravita-
tional spacetime manifold curvature at any scale. We find that the black hole mass M , responsible for intense
gravitational force and spacetime curvature, originates from a certain level of decoherence in electromagnetic
vacuum fluctuations screened by the information entropy stored at its surface η.

This supports Sakharov’s approach of 1967 discussed earlier, that electromagnetic vacuum fluctuations can
be the source of the spacetime elasticity generating the gravitational constant (or vice versa) which could
have led the way to a profound understanding of the unification of forces and the source of mass. As well,
in 1973, an autodidact physicist, who had a great influence in standard physical theory, Yakov Zeld́ovich,
demonstrated based on previous work from Gertsenshtein [64] and Landau [65] that electromagnetic waves
under specific conditions are converted into gravitational waves [66]. Not so well-known as well is the fact
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that Karl Schwarzschild at the same period of his calculation of the exterior solution for EFE published the
same year (in 1916) an interior solution considering a perfect incompressible fluid to compute spacetime
dynamics in the interior of the black hole [67].

Contrary to the classical approach, where one would expect the black hole formation to be the result of an
accretion of infalling material to a critical limit, our result demonstrates that black hole formation is the
result of a natural spacetime behavior emerging from a state of coherency of the collective quantum vacuum
fluctuation oscillators in a region of space at different scales. The mechanism that defines these states of
coherency are related to the angular momentum of an oscillator, as described by Max Planck originally.
The coupling of the oscillators produces collective behaviors or a quantum vortex in a turbulent flow of the
spacetime manifold in a region of space generating what we observe as a black hole. The details of such
fluid dynamics, that we coined a Planck Plasma flow and their relationship to the electromagnetic field and
the gravitational manifold are beyond the scope of this manuscript and will be appearing in a much larger
publication (work in progress) permitting their derivation.

We note that this mechanism of black hole formation from coherent modes of vacuum energy may explain the
latest observations of the James Webb Space Telescope finding supermassive black holes at z > 5 at the very
early universe where star formation and accretion would not have been possible to produce them [68, 69].

The first screening solution not only changes the concept of black hole formation and its source of mass but
as well the QFT perspective in which the vacuum fluctuations are responsible for the bare mass shielding by
virtual particles. To be clear, the vacuum fluctuations are the source of mass and the shielding is due to
the dynamical properties of the PSU flow which is similar to quark-gluon plasma at thermal and chemical
equilibrium with their color charge and force. As we have just seen, this shielding is related to the horizon
surface of a black hole. Furthermore, this mechanism is in accordance with Stephen Hawking analysis
of the early universe formation finding that “a sufficient concentration of electromagnetic radiation can
cause gravitational collapse” forming primordial and elementary black holes of Planck length and Compton
wavelength size [70].

3.3.1 First screening applied at the proton scale

Following this line of thoughts of primordial black holes, we apply the screening mechanism ηλ at the reduced
Compton radius λp = ℏ

mpc and obtain an analog to the ’undressed’ mass or ’bare’ mass of the proton Mp

Mp = ρvac

ηλ
Vp (3.24)

where Vp is the proton volume at the reduced Compton radius and the pixelization screening surface ηλ is
defined as

ηλ =
4πλ2

p

π
(

ℓ
2
)2 = 16

(
λp

ℓ

)2
(3.25)

This concept of black hole proton was partially presented by one of us examining what would be the energy
level requirement provided by the quantum vacuum fluctuations energy density at the proton scale to obey
the Schwarzschild solution. In these early publications first attempts of reconciling the strong confining force
with gravity was heuristically demonstrated [51, 52]. Combining Equations (3.9), (3.13) and (3.24) we find
the gravitational coupling constant αg

mp

2Mp
= αg ≈ 5.91 × 10−39 (3.26)

23



This strongly suggests that the relationship between a black hole proton core and its rest mass correctly
describes the force gradient between the confining color force or strong force given by the coupling constant
αs, which is typically given in the order of unity, and the gravitational force given by αg. This will be treated
in details in section 4.

Although the concept of particles being black holes or at least ’hosting’ singularities at their core might be
shocking at first encounter, one may consider that the density of quantum vacuum fluctuations in a region
of space largely exceed the value required to obey the Schwarzschild condition of a black hole and thus it
follows that the Planck length obeys that very condition (notwithstanding a factor of 2 denser which will
be discussed in the next section) 2Gmℓ

c2 = 2ℓ (cf Eq (3.28)). Furthermore, throughout the modern history
of physics, significant literature explored this possibility as a result of the quantum structure of spacetime,
for instance with the event of general relativity predictions of Einstein-Rosen bridges [71] where Einstein
and Rosen considered that in order for spacetime to retain continuity, particles would have to be bridges
between region of space later coined wormholes by Wheeler in 1957 [72]. In 1935, Einstein and Rosen stated
when describing the bridges between two Minkowski sheets “... here is a possibility for a general relativistic
theory of matter which is logically completely satisfying and which contains no new hypothetical elements.”
This idea of a complete geometric approach applying at the quantum scale was furthered by Wheeler’s
Geometrodynamics and his explorations of Quantum Foam [16]. In his papers on Geometrodynamics, Wheeler
defined particles as a collective coherence of Planck size wormholes establishing a continuity between the
Planck scale spacetime dynamics and particle creation. Eventually, with the event of string theory the concept
of particles being related to black hole physics became prominent resulting in Leonard Susskind stating “One
of the deepest lessons that we have learned over the past decade is that there is no fundamental difference
between elementary particles and black holes” [73].

3.3.2 First screening applied at the Planck scale

We now apply the first screening mechanism at the Planck scale to investigate the size of the smallest black
hole of mass mℓ created from vacuum fluctuations ρvac. By considering the Planck mass and our discussion
above, equation (3.14) yields

M = ρvacV

ηℓ
= mℓ (3.27)

we then deduce the Schwarzschild radius of this smallest blackhole

rs = 2ℓ (3.28)

In terms of the holographic mass solution for a black hole of radius 2ℓ, we find

M = R
η

mℓ = 64
64mℓ = mℓ (3.29)

Therefore, and remarkably, where general relativity meets the Planck scale the initial micro black hole pixel
emerging from vacuum fluctuations is found to have an equivalence information structure between volume
to surface ratio of 64 PSU in the volume and 64 PSU on the surface, such that the information ratio Φ is
in the order of unity generating a first scale voxel screening with a mass of the order of the Planck mass
mℓ. This elementary black hole, which we coined kernel-64, has a volume 64 times larger than a PSU,
which illustrates the screening mechanism and suggests dynamical processes and geometric relationships
that occur in the Planck plasma flow within black hole structure. This kernel-64 is considered as a primary
state of PSU organization. Previously, similar micro-black holes constructs were referred to instantons by
Carr and Rees in [60] stating that “space may be thought of as being filled with virtual black holes of this
size. Such instantons have an important role in quantum gravity theory”. Also envisioned by Wheeler in his
treatment of quantum geometrodynamics was a geon (a Gravitational Electromagnetic Entity) described as
a self-gravitating particle [74–76] curving spacetime inducing the encapsulation of the energy radiation to
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Figure 4: Semi-permeable surfaces at the two screening surfaces λp and rp responsible for the vacuum
fluctuations screening from ρvac to the proton black density ρbh = ρvac

ηλ
and the rest mass energy density

ρp = ρvac

2ηλη64
. As described in section 4, the reduction in energy density is associated to a reduced ’gravity’

pressure force Fp on the Planck plasma flow originating the color confinement force Fs ≈ 104 N and the
residual strong force Fs ≈ 48.4 N.

produce a particle.

3.4 Second screening for the proton rest mass
One can consider the continuing aggregation of self-gravitating islands of PSU oscillators forming scale
relationships in the Planck plasma as it undergoes phase transitions from the event horizon into a less
coherent phase carrying less energy. This mechanism of energy screening can be represented as self-gravitating
oscillators curving spacetime to encapsulate the internal energy reducing the available effective energy of
the decoherent phases. Between the Compton wavelength horizon and the charge radius surface, the Planck
plasma flow transits from single PSU to kernel-64 aggregates. This aggregation mechanism gives us a deeper
understanding of the second screening resulting in the proton rest mass (cf Eq (2.27)): while the first screening
η at the horizon has a mesh of characteristic wavelength ℓ

2 , the second screening has a larger wavelength 2ℓ
letting through not single PSU but instead larger aggregates of 64 PSU carrying a mass-energy information
of mℓ (Figure 4). Therefore, the surface information capacity reduces to

η64 =
4πr2

p

π(2ℓ)2 = 1
16

4πr2
p

π
(

ℓ
2
)2 = ηp

16 (3.30)

Thus, from Eq (3.13), the holographic mass solution expression for the rest mass can be decomposed to
describe the two screenings, ηλ and η64 carrying an information packet mℓ giving

mp = 8 Rp

ηλ × ηp
mℓ = 1

2
Rp

ηλ × η64
mℓ = 2Φpmℓ (3.31)

In terms of energy density, the proton rest mass density is expressed from the ZPE ρvac as
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ρp = 1
2

ρvac

ηλ × η64
(3.32)

As a result, we find that this encapsulation mechanism describes the second screening correctly predicting the
rest mass of the proton as emerging from the change of state of the grain structure of the vacuum fluctuations.
The factor 1

2 earlier associated with the pairs creation and annihilation process in the correlation functions
becomes clearer as it may be related to a Hawking type radiation of the internal black hole source identified
as the first screening, where one particle falls inwards and the other is radiated outwards. We now calculate
this energy.

3.5 Hawking radiation
In 1973, S.W. Hawking conceived, inspired by the work of J. Bekenstein on black holes entropy [63] as well
as the work of Y. Zel’dovich and A. Starobinsky [77], that vacuum fluctuations in the surrounding strong
gravitational field of a black hole undergo radiation as the dynamics of ’virtual’ pairs of particles creation
and annihilation cycles occur in proximity of the event horizon, resulting in one particle of the pair falling
into the black hole, and the other one being radiated as a ’real’ particle. This process would slowly evaporate
the black hole energy as the ’negative’ energy of the infalling particle would extract energy from the black
hole [78]. While this picture has been widely accepted the details of the mechanisms relating the quantum
vacuum fluctuations and the horizon of a black hole are still shrouded in some obscurity. One of them is
the trans-planckian problem where field modes very near to the horizon of a black hole can have frequencies
that transcend the Planck time scale generating divergent energy density similar to ZPE. In our case, the
spacetime dynamics combined with the Heisenberg uncertainty principle limits the range of frequencies
characterizing our scale (cf 2.2), as well the phase of the Feynman-Huygens equation for a field that combines
an Einstein-Hilbert action, and an electromagnetic free field defines the Planck length as the scale at which
metric fluctuations are on the order of unity. Therefore, assuming the Hawking radiation mechanism is
somewhat correct, although it has not been directly verified experimentally, it would stand to reason that if
our solution to the origin of mass from ρvac undergoes a first decoherence phase transition at a black hole
condition that one could calculate the Hawking radiation resulting from it at the proton scale.

According to Stefan-Boltzmann law for black body radiation, the resulting energy radiated at the charge
radius surface A = 4πr2

p and on a characteristic coherence time τp = rp

c is

E = σT 4
λAτp (3.33)

where Tλ is the Hawking temperature generated by the Compton horizon λp. Considering the space between
the Compton horizon and the charge radius surface filled with vacuum fluctuations acting as a superfluid,
we have an isothermal process between these two surfaces. Hawking utilized Bekenstein’s work on black
hole entropy to derive the Schwarzschild black hole entropy of radius rs as a pixelization of the black hole
cross-section with Planck squares of size ℓ2

S = kB
A

4ℓ2 = kB
πr2

s

ℓ2 (3.34)

and the corresponding Hawking temperature as a function of the Planck temperature Tℓ and the entropy S

TH(rs) = ℏc

4πrskB
= Tℓ

4
√

π

√
kB

S
(3.35)

Clearly nature does not tile in squares ℓ2 and a more natural representation would be the cross section of
a sphere as seen earlier in the second screening surface η64, pixelized by kernel-64 of radius 2ℓ. Tiling the
Compton cross-section Aλ/4 we find
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S = kBC Aλ/4
π(2ℓ)2 = kBC

λ2
p

(2ℓ)2 (3.36)

where C is the surface compacity characterizing the kernel-64 circle packing of the Compton cross-section.
We find the Hawking temperature

Tλ = 1
4
√

Cπ

2ℓ

λp
Tℓ =

√
4π

C
ℏc

4πkBλp
=
√

4π

C
TH(λp) (3.37)

Thus, the radiated energy expression simplifies to

E = σApT 4
λτp

= π2k4
B

60ℏ3c2

(√
4π

C
ℏc

4πkBλp

)4

4πr2
p

rp

c

= 4π

15C2
4ℏc

rp

= 4π

15C2 Ep (3.38)

Therefore, the Hawking radiation energy transferred by black body radiation mechanism resulting from
vacuum fluctuations pair production at the Compton horizon λp (recall that black body radiation is intimately
linked with ZPE) and diffusing to the charge radius surface rp generates the proton rest mass-energy with
consideration of a geometric correction factor on the entropy of the system. This indicates that the second
screening process η64 can also be described by a Hawking-like radiation mechanism transferring the energy
from the semi-permeable black hole horizon ηλ resulting in the proton rest-mass energy (Figure 5). We find
the packing compacity is

C =
√

4π

15 ∼ 0.915 (3.39)

which is within 0.009 or less than 1% higher than the compacity for hexagonal circle packing C = π
2

√
3 ∼ 0.906,

or

E = σT 4
λAτp ∼ mpc2 (3.40)

3.6 Hawking evaporation
In the initial study of Hawking temperature [79], Bardeen, Carter and Hawking considered axisymmetric
solutions containing a perfect fluid with circular flow around a central black hole. We have shown from the
above solution that a black hole, whether a proton or a cosmological black hole, emerges from the flow of
the quantum vacuum fluctuations, or Planck plasma ρvac, undergoing a phase transition or shielding at the
semi-permeable horizon which is a mechanism that can be associated with the process utilized by Hawking to
obtain his black hole evaporation construct [80]. We now calculate the life expectancy of such black hole
irradiating mass-energy undergoing Hawking radiation considering the internal source term ρvac or total
interior energy Rmℓc

2. At a size r, a black hole interior energy is

Eint = Rmℓc
2 = 8r3

ℓ3 mℓc
2 (3.41)
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Figure 5: Schematic representation of the Hawking radiation of the first screening energy density. The black
hole mass Mp from one screening of the quantum vacuum fluctuations ρvac by ηλ at the reduced Compton
wavelength λp radiates the rest mass mp at the proton charge radius rp.

A variation of energy dE is therefore associated to a reduction of PSU and black hole interior size dr following

dE = 24mℓc
2 r2

ℓ3 dr (3.42)

Over a time dt the system radiates the energy dE

dE = −σT (r, t)4A(r, t)dt = − 4π

15C2
4ℏc2

r2 dt (3.43)

which corresponds to system size variation dr over a time dt

dE = 24mℓc
2 r2

ℓ3 dr = − 4π

15C2
4ℏc2

r2 dt (3.44)

we can thus evaluate the evaporation time of a proton black hole as

tevap =
∫ tevap

0
dt = −γ

c

∫ 0

λp

5r4

ℓ4 dr =
γλ5

p

cℓ4 ≈ 7.64 × 1044years (3.45)

where γ = 9
2π C2 is a numerical factor.

Equation (3.45) can similarly be used to evaluate the reduction δ in proton black hole radius since the
estimated beginning of the universe tu = 13.7 × 109 years

tu =
∫ tu

0
dt = −γ

c

∫ λp

λp+δ

5r4

ℓ4 dr =
γ((λp + δ)5 − λ5

p)
cℓ4 ∼

δ
λp

≪1

5γλ4
pδ

cℓ4 (3.46)
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Figure 6: Implication of the proton charge radius measurements in the Standard Model (extracted from [81]).

then

δ = tucℓ4

5γλ4
p

≈ 7.54 × 10−52 m (3.47)

We find a proton black hole lifetime that is extremely long, on the order of 1035 billion years, making proton
energy structure perfectly stable over very long periods of time. Furthermore, since the estimated beginning
of the universe, the proton would have decayed an infinitesimal energy consistent with an extremely stable
particle over time. No measurable variations to the mass or the radius would be observable within the short
span of the contemporaneous age-estimate of the universe.

3.7 Proton charge radius
A precise knowledge of charge radii is important for benchmarking ab initio nuclear theory.
Antognini et al., 2022 [81]

The proton charge radius rp is a fundamental quantity in particle physics for the precise determination of
fundamental constants such as the Rydberg constant (R∞). It also challenges our understanding of the
Standard Model for precise calculations of the energy levels and transition energies of the hydrogen atom,
for example, the Lamb shift [81, 82] (cf Figure 6). The proton radius is generally defined by the slope of
the proton charge form factor GE

p at zero momentum transfer t which is determined in the non-perturbative
regime of the strong interaction [83].

r2
p = 6

dGE
p (t)
dt

∣∣∣∣
t=0

(3.48)

Historically, two experimental methods are used to determine proton charge radius : the hydrogen spectroscopy
(H spec, also called electron Lamb shift) and the electron-proton scattering (e-p scat) [83–85]. Before 2010,
most measurements of the two methods had large uncertainties and indicated a mean proton radius situated
around the Codata 2010 value ∼ 0.87 fm considered as the ’large’ radius. With the advent of the muonic
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hydrogen spectroscopy (µH spec), consisting of replacing the electron by the heavier muon, the measurement
of the proton charge radius became more precise and provided a ’small’ radius of rp = 0.84184(67) fm. The
4% difference between the large and small proton radius was at that time known as the proton radius ’puzzle’
as no-one could decide which value was the right value [83].

From the Holographic rest mass solution of the proton (Eq (3.31)), Haramein successfully predicted in 2012
the proton charge radius from the experimental data of the proton mass [Public record Dec 2012], confirming
the µH spec of the small proton radius in 2013 [86]. Equation (3.31) relates the proton rest mass to its
charge radius which allows prediction of the proton charge radius, given the rest mass and vice versa. Table 2
presents the latest Codata values for proton rest mass and radius (mp and rp) as well as the corresponding
prediction from the Holographic mass solution (mth

p and rth
p ). The charge radius of the proton is directly

related to its mass and reduced Compton wavelength λp :

rp = 4ℓ
mℓ

mp
= 4ℏ

mpc
= 4λp. (3.49)

rp (experimental Codata 2018) mp (experimental Codata 2018) rth
p

0.8414(19) fm 1.67262192369(51) x10−27 kg 0.84132150851 fm
Table 2: Latest Codata 2018 values for the proton rest mass mp and proton charge radius rp, and the
predicted values for the holographic proton charge radius rth

p .

This early success of the holographic mass solution relies on the fact that the ZPE is at the center of the
solution. In QFT and QCD theory, the ZPE is mostly ignored by restructuring the Lagrangian terms. The
Holographic mass solution is built on the Vacuum electromagnetic fluctuations and evaluates its effect based
on the phase coherence of the system. In fact, by describing the equation relating the proton mass and its
charge radius, the Holographic mass solution is able to predict the exact value constituting a validation of
the Holographic mass solution as an appropriate nuclear theory. This example highlights also the difficulties
of QCD theory to predict new values as the coupling constants, QCD free parameters, required a fitting with
experimental data and making predictions extremely difficult.

From 2017, new experimental data for the e-p scat measurements with smaller momentum transfer were
refining the proton radius in favor of the small proton radius [84, 85]. These new insights motivated a review
of the analysis of the model used to derive the proton radius on the old measurements dataset. The new
models included the electromagnetic vacuum fluctuations by combining time-like measurements, such as the
creation of nucleon and anti-nucleon creation in electron-positron annihilation and its reverse reaction, with
the space-like measurements [87]. Surprisingly, the use of the ZPE in the re-analyses of the old electron-proton
scattering data shifted the ’large’ proton radius to the ’small’ proton radius, which ended the proton radius
’puzzle’ and set its latest Codata 2018 value of rp = 0.8414(19) fm (already predicted by Haramein in 2012 [88]).

4 Nuclear force and residual strong force
4.1 Planck Force: the ground state
Frank Wilczek, along with David Gross and David Politzer, Nobel prize laureates in physics for their
formulation of asymptotic freedom, utilized running coupling constants to characterize quarks and gluons
interactions. While our screening mechanism describes a decoherence from ρvac energy density to produce the
Schwarzschild condition (first screening ηλ) and the radiation of the rest-mass (second screening η64), Wilczek
et al. described an anti-screening process due to the Yang–Mills vacuum, that Gross described as an analog to
paramagnetism, and where “QCD is asymptotically free because the anti-screening of the gluons overcomes
the screening due to the quarks” [89]. This was instrumental to save quantum field theory inconsistencies
where forces were formally infinite at very short distance (interestingly as in a spacetime singularities), and
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now resulting in the creation of a ’color’ confinement where quarks and gluons cannot be isolated. The quarks
pair are thought to ’snap’ the gluon tube that confines them when the separation energy level reaches the
quark-antiquark pair energy creation, such a separating force is estimated to be reached at ∼ 104 N [48].

In 1999, Wilczek utilizing this formalism of force interactions and his work on asymptotic freedom recovered
an expression for the proton rest-mass that he associated with the anti-screening function of the forces
coupling constant αunified at the ’unification’ energy of the Planck mass [90]

mp ∼ exp(−k/αunified)mℓ (4.1)

where αunified ≈ 1
25 is the common value of the strong, electromagnetic and weak couplings when they unify,

and k = 11
2π is a calculable numerical factor that characterizes the anti-screening. This treatment is a good

order approximation for the proton rest-mass and is similar in nature with the holographic mass solution
given in Equation (3.31). Thus, considering Wilczek anti-screening approach and our screening mechanism
described earlier, we find a relationship with the holographic ratio of the proton Φp

exp(−k/αunified) ≈ 1
2

Rp

ηλ × η64
= 2Φp (4.2)

In 2001, Wilczek, resulting from his exploration of the running coupling constants and the hadronic of mass,
states “If we accept that GN (the gravitational constant G) is a primary quantity, together with ℏ and c,
then the enigma of N ’s smallness (the gravitational coupling constant αg) looks quite different. We see that
the question it poses is not, ’Why is gravity so feeble?’ but rather, ’Why is the proton’s mass so small?’ for
in natural (Planck) units, the strength of gravity simply is what it is, a primary quantity, while the proton’s
mass is the tiny number

√
N .” [2] While Wilczek’s comment is absolutely correct and well placed, from our

result we find that the ’tiny’ rest mass of the proton is in fact the result of a much larger energy density ρvac

expressing a strong gravitational region and force at the first screening ηλ which is reduced by a significantly
large number at the second screening of the rest mass η64 ∼ 1039. Here, Wilczek is pointing to Dirac large
number hypothesis introducing N , a large dimensionless number, that seems to emerge as a natural ratio in
the universe linking length, mass and forces at different scales explored by others as well [60, 91, 92]. This
large number N , or αg, commonly defined from the proton rest mass is given by

αg = mp

2Mp
=

Gm2
p

ℏc
≈ 5.91 × 10−39 (4.3)

where Mp is the vacuum energy density after the first screening at λp. Rearranging this equation Rees and
later Wilczek found the scaling relationship between the proton rest mass and the Planck mass. Later,
Haramein gave a deeper understanding of the source of mass through vacuum fluctuations coherent collective
behavior resulting in the holographic mass solution

mp = √
αgmℓ = 2Φpmℓ (4.4)

Therefore,

αg = 4Φ2
p (4.5)

where Φp = ηp

Rp
. Proton rest mass is key because it provides a complementary pattern for the screening

mechanism as well as a complementary understanding of the gravitational coupling constant as the ratio
between the proton energy mpc2 and the vacuum energy

Rpmℓc
2 = 2ηλη64mpc2 = 128α−2

g mpc2 (4.6)
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Considering that the gravitational coupling constant αg is typically thought of as the force ratio between
gravity and the strong force [59], this result strongly suggests that not only the rest-mass energy emerges
from the black hole Hawking radiations, or the second screening, but that the strong force is directly related
to the curvature of spacetime at the hadronic scale by the energy density of the proton black hole phase. To
find the origin of the forces, and in consideration of our result, we calculate the gravitational force between
two PSU interacting in the Planck Plasma vacuum fluctuations

Gm2
ℓ

(2 ℓ
2 )2 = c4

G
= Fℓ ≈ 1.21 x1044 N (4.7)

As would be expected we find the Planck force as the Planck scale is thought to be the unification energy
where forces ratio become on the order of unity. As such we can think of the Planck force as the ground state
of force generating forces at different scales.

4.2 General relativity under pressure
In general relativity, it is usual to consider a perfect fluid in the stress energy tensor to model an idealized
distribution of matter and to obtain an exact solution to Einstein field equations as in the Schwarzschild
interior solution [67], the interior of a star and Friedman-Lemaître-Robertson-Walker (FLRW) model of an
homogeneous and isotropic universe [46]. In such spacetime fluid solution we can relate the energy density ρ
to the fluid pressure P (ρ) through an equation of state given here as

P (ρ) = 2
3ρ (4.8)

Consequently, the Planck force Fℓ corresponds to the vacuum pressure force experienced by PSU in the
Planck Plasma flow

Fℓ = Pvac σP SU = 2
3ρvac π

(
ℓ

2

)2
(4.9)

where σP SU represents the PSU cross-section typically used as the effective surface in fluid dynamics for a
solid sphere in a turbulent flow. More generally, from equation (3.22), it follows that Einstein proportionality
constant κ (Einstein gravitational constant) for the stress energy tensor on the right-hand side of the field
equations can be expressed as a function of the Planck force resulting from a vacuum pressure Pvac = 2

3 ρvac

as the source of curvature

Rµν − 1
2Rgµν + Λgµν = 48

ρvacℓ2 Tµν (4.10)

or

Rµν − 1
2Rgµν + Λgµν = 8π

Fℓ
Tµν (4.11)

Here Einstein gravitational constant which is typically thought as a proportionality factor clearly displays a
physical meaning, deeply rooted at the quantum scale, as the ground state pressure of the Planck plasma
flow where

κ = 48
ρvacℓ2 = 32

Pvacℓ2 = 8π

Fℓ
(4.12)

From this analysis of κ, the Planck force can be seen as a pressure force exerted by the vacuum fluctuations
pressure Pvac on the Planck plasma flow and is the reference ground state force from which nucleation at
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the Planck scale occurs, i.e. as in Wheeler’s quantum foam [16] describing this pressure as an analog to the
surface tension of a bubble [93]. This pressure corresponds to the force required to generate a surface horizon
at the Planck scale against the rigid elasticity of spacetime. Thus, one can estimate the stress-energy tensor
trace T µ

µ at the horizon and find a direct analogy between the surface tension in Young-Laplace equation in
4D-spacetime γ = κ−1ℓ−2 = ρvac

48 [94] and the stress-energy tensor structuring the spacetime manifold

1
r2 = κT µ

µ = 3κρ (4.13)

Using the equation of state we recognize a Young-Laplace type equation for our horizon hyper-surface
curvature

P = 2γ
ℓ2

r2 = Fℓ

4πr2
s

(4.14)

where ℓ2

r2 ∼ η−1 is the spacetime curvature and our screening surface confining the electromagnetic vacuum
fluctuations within the region of space and screening the energy and force experienced outside that region.
Consequently and more generally, in order to form a stable Schwarzschild bubble black hole in spacetime at
any scale rs, the black hole energy density repulsive pressure required to compensate the spacetime elasticity
Fℓ is given by

F = 2
3ρS = 2

3
Mc2

4
3 πr3

s

4πr2
s = Fℓ (4.15)

As demonstrated above considering ρvac to be the source of mass and Fℓ resulting from the flow of ρvac

curving spacetime, we evaluate the mechanism in which the strong color confinement, the nuclear force and
eventually the gravitational force, responsible for black hole formation, originate from the same screening
process of the ground state force Fℓ by generalizing the Equation (4.9) for any phases energy densities ρ as

F (ρ) = 2
3ρ π

(
ℓ

2

)2
(4.16)

4.3 Planck Force first screening
From equation (4.8) we can now evaluate the pressure force produced by the vacuum density at scales in
which measurements can be observed, i.e. at the baryonic scale of the proton where the color confinement
force and the residual strong force have been probed through scattering experiments and quark-gluon plasma
dynamics. Therefore, we apply our first screening mechanism ρvac

ηλ
to compute the numerical value and verify

that the mechanism is consistent with mass-energy production from ρvac. We find the value of the confining
force Fs as

Fs = 2
3

ρvac

ηλ
π

(
ℓ

2

)2
= Fℓ

ηλ
≈ 4.54 × 104N (4.17)

This value is in agreement with the recent and astonishing measurements which succeed in measuring the
interior pressure force of the proton and experienced by quarks [47, 48]. This is as well commonly associated
with the confining force strength expected at the horizon of the proton corresponding to the snapping of
’gluon tubes’ resulting in quark-antiquarks pair creations [95]. In general, the quark-antiquarks binding energy
is in the range of 89 MeV − 332 MeV depending on the quark flavor considered [96], and the characteristic
distance of the force corresponding to where the gluon string breaking takes place between qq̄ pair is just
above dqq̄ ∼ 1.2 fm [97]. The resulting estimated force strength is
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Fqq̄ ∼ Λ
dqq̄

≈ 1.19 × 104 N − 4.43 × 104 N (4.18)

Remarkably, utilizing the same mechanism of screening of quantum vacuum fluctuations ρvac , which led to
the Schwarzschild solution, applied to the ground state force Fℓ, we find that the force exerted equivalent to
the mass energy in that region of space corresponds to the confinement force at the horizon expected for the
structure of the proton quark-antiquark confinement [98]. This force can be interpreted in two different ways:
the gravitational force between two PSU separated by a characteristic distance of the proton charge radius rp

Fs = Fℓ

ηλ
= Gm2

ℓ

r2
p

(4.19)

or as the proton black hole mass Mp gravitationally binding the proton rest mass energy at rp surrounding
the λp horizon

Fs = 2GMpmp

r2
p

(4.20)

This derivation demonstrates that both the origin of the gravitational force and color force is the result of the
Planck force Fℓ and the Planck energy flow pressure Pvac generating a highly curved space within the proton
interior. Thereafter, the quark-gluon formalism, where the gluon flux tubes force snaps to generate quark-
antiquark pairs out of the vacuum fluctuations and generate confinement, is related to the electromagnetic
Planck plasma pressure of the quantum vacuum that we have demonstrated to be the origin of mass and now
confinement. The formalism defining this fluid dynamics and quantum vortex structure will be published in a
larger manuscript, however it is important to note that it is related in principle and mechanism to recent
advancements in lattice QCD utilizing center vortices to describe confinement/deconfinement contributions
of the gluon strings [99, 100].

It is also important to note that there is no classical nor clear definition for the strong force in the standard
model. The strong force emerged from the observation that two positively charged protons should not be
able to bind due to electrostatic repulsion. QCD built up a complex formalism attempting to describe the
strong force based on quark-antiquark interactions. The QCD model describes these interactions as the sum
of the exchange energy of gluons between slow charmed quarks with the linear confinement potential and the
spin-dependent interaction that can occur between charm-anticharm pairs. QCD theory uses 9 free parameters
through the six quarks masses and the three running coupling constants for each quark flavor. QCD is a
non-analytical theory where any computation of the QCD Lagrangian requires many approximations, while
our solution is analytical and grounded in the fundamental physics of both spacetime and quantum mechanics.

4.4 Second screening of the Planck force
We further investigate the result of the second mass-energy screening by computing the pressure within the
rest-mass energy density region ρp = 1

2
ρvac

ηλ×η64
utilizing the equation of state (4.8)

Pp = 2
3

ρvac

ηλ × 2η64
= 4 × 1034 Pa (4.21)

this pressure matches the latest measurements of the confining pressure experienced by quarks in the proton
interior and is in the order of magnitude of the pressure within the core of a neutron star [47, 48, 101] or a
stellar-size black hole. We then apply this pressure on the kernel-64 cross-section

Fg = 2
3

ρvac

ηλ × 2η64
π (2ℓ)2 = 8Fℓ

ηλη64
=

α2
g

32 Fℓ =
2Gm2

p

(2rp)2 (4.22)
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which corresponds to the gravitational force between two contiguous protons. We note that the force
ratio between the strong force Fs and the Newtonian gravitational force Fg corresponds to the well-known
gravitational coupling constant αg describing the weakness of the gravitational interaction between two
rest-mass protons

Fg

Fs
= mp

4Mp
= αg

2 (4.23)

This is consistent with the analysis of the black hole proton mass-energy producing the strong color confinement
occurring at the first screening of ρvac and the weakness of the rest mass resulting from the second screening

Fg

Fs
= mp

4Mp
= 8ηλ

ηλη64
= 8

η64
(4.24)

In Table 3, we gather the above results showing that similarly to the vacuum fluctuations energy-density
screening, the Planck force Fℓ is screened twice by the gravitational coupling constant αg, resulting first in
Fs a gravitational force with an amplitude on the order of the color force and after the second screening, in
Fg the Newtonian force between two rest mass protons.

Fℓ = Gm2
ℓ

(2 ℓ
2 )2 = ℏc

ℓ2 ≈ 1.17 × 1044N PSU interaction: Planck force

Fs = Fℓ

ηλ
= Gm2

ℓ

r2
p

= ℏc
r2

p
= αg

16 Fℓ ≈ 4.54 × 104N QQ̄ Interaction: Color confinement force

Fg = 2 Gm2
p

(2rp)2 = 8Fs

η64
= 8Fℓ

ηλη64
= α2

g

32 Fℓ ≈ 1.32 × 10−34N Newtonian Gravitational force
Table 3: Summary of the Planck force screening resulting in the color confinement force Fs and the Newtonian
gravitational force Fg

We demonstrated that the high intensity of the nuclear confinement forces is derived from quantum vacuum
fluctuations ρvac curving spacetime and underlying the fundamental nature of forces at the quantum scale as
pressure in the Planck plasma flow eventually resulting in the Newtonian gravitational force (Fg) at large
distance. Utilizing a screening mechanism of a semi-permeable surface η we obtained a correct approximation
of the forces at the different horizons. However, the forces extend beyond the horizons resulting in a residual
strong force necessary for the nuclear binding energy. To evaluate the forces between horizons, we consider in
the next section the construction of a gravitational force potential providing a continuous solution for the
screening mechanism.

4.5 Screening Potential φg

As seen in Table 3, the first screening of Fℓ reduces the pressure force of ρvac in the order of αg ∼ 10−39 within
the very short range, between the reduced Compton wavelength and the charge radius of the proton. To
evaluate the forces close to the proton black hole exterior horizon λp, we consider the extended Schwarzschild
solution by utilizing the regular solution given by the Kruskal-Szekeres (KS) coordinates which removes
the artificial (mathematical) singularity at the black hole horizon rs = λp. The resulting metric, giving
the dynamics of the particle proper time near the horizon, shows a Yukawa-type interaction between a test
particle and spacetime

ds2 =
4λ3

p

r
e

− r
λp (−dT 2 + dX2) + r2dΩ2 (4.25)

We will show that this Yukawa-type elasticity of spacetime (without the full treatment here) gives an accurate
description of forces at the hadronic scale.

Furthermore, the Schwarzschild solution is typically applied to an ’empty’ region (void of matter-energy)
outside the horizon. However, the surrounding space of proton horizon λp is not empty as we have demonstrated
that this region hosts the energy density equivalent to a black hole mass in terms of vacuum fluctuations. To
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model this presence of matter-energy in EFE, one can utilize either an equation of state, as we derived earlier,
relating the pressure to the energy density, or a modified stress energy tensor derived from a Klein-Gordon
(KG) field φ acting as a source term in EFE and resulting in [102]

Tµν = ρvac

2 [φ∗
;µφ ;ν + φ∗

;νφ ;ν + gµν(φ∗φ + φ∗
;αφ ;α)] (4.26)

The KG field models the relativistic waves interactions which are, in our case, Planck plasma turbulent
vortical flow at the origin of mass. The KG field is associated to a divergence free ’particle-number’ current
Jν [103] describing the Planck plasma flow as

Jν = 1
2 i(φ∗

;νφ − φ ;νφ∗) (4.27)

This full derivation of the Planck plasma flow circulation from EFE will be addressed in a later publication
and for now, we consider a more direct approach by utilizing Yukawa-type energy potential reduction [53].
To be clear, so far we have obtained force values at specific discrete horizons, we now explore the mechanics
of the continuous energy potential between horizons screening dynamics and their relationships. As a result
to extend our analysis, we construct a general potential, as a first order approximation, as

φg(r) = −ℏc

2r

(
αg + αse

− r−rp
λp + α−1

g

2ℓ

r
e− r−λp

ℓ

)
(4.28)

where αg is the gravitational coupling constant and αs the strong coupling constant. We utilize similar
gravitational potentials as the ones published in [104] and [105] to illustrate and recover the forces reduction
obtained by the energy-density screening. This general potential has been constructed as a superposition of
three terms resulting from the two screening mechanisms

φg = φ(3)
g + φ(2)

g + φ(1)
g (4.29)

where φ
(3)
g = −αg

ℏc
2r corresponds to the Newtonian gravitational potential yielding the gravitational force

between two proton rest masses. The second screening term φ
(2)
g = −αs

ℏc
2r e

− r−rp
λp which leads to the color

confinement force of the quark-antiquark interaction [98], is a Yukawa-type potential solution of a screened
Poisson equation or time-independent Klein-Gordon equation of characteristic length λp(

∆ − 1
λ2

p

)
φ(2)

g (r) = 0 (4.30)

To evaluate the energy diffusion through the highly curved spacetime region of the proton interior, the
system coupling Klein-Gordon equation with the Einstein field equations is generally utilized, which has
been demonstrated to be equivalent in spherically symmetric gravitational field and in a semi-relativistic
approximation to a Poisson-Schrödinger system [106].

The last term φ
(1)
g = −α−1

g
ℏcℓ
r2 e− r−λp

ℓ , corresponding to the first screening of the ground state Planck force is
also a solution of a screened Poisson equation involving, in this case, a source term which would be expected
as we have demonstrated it to be the source of mass

(
∆ − 1

ℓ2

)
φ(1)

g (r) = 2α−1
g

ℏc

r3 e− r−λp
ℓ

[
1 + ℓ

r

]
(4.31)

Given the Yukawa exponential attenuation on a characteristic length of the Planck length ℓ, non-negligible
solutions are localized at or near the Compton wavelength horizon, i.e. within a few Planck length after the
horizon. Therefore, the source term can be computed at the lowest order where r ∼ λp and ℓ

λp
≪ 1 so that
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2α−1
g

ℏc

r3 e− r−λp
ℓ

[
1 + ℓ

r

]
∼

r∼λp

2α−1
g

ℏc

λ3
p

e− r−λp
ℓ (4.32)

Utilizing the result of the holographic mass solution α−1
g = λ2

p

ℓ2 to elucidate the mechanism of the source term,
we can write, ignoring the exponential for now,

2α−1
g

ℏc

λ3
p

= 16π
Mpc2

Aλ
= 16π

3
λp

c

ρvacc

ηλ
= jbhτλ (4.33)

where Mp is the proton black hole mass, Aλ = 4πλ2
p, τλ = λp

c the characteristic time and jbh = 16π
3

ρvacc
ηλ

the
mean energy flux per unit surface and unit time. From this derivation we can see that the source term is an
energy flux per surface unit jbh corresponding to the proton black hole energy radiated in the surrounding of
the surface λp so that the screened Poisson equation for φ

(1)
g becomes

(
∆ − 1

ℓ2

)
φ(1)

g (r) = 16π
Mpc2

Aλ
e− r−λp

ℓ (4.34)

It is showing a direct relationship between quantum vacuum fluctuations and the surface energy diffused
between the two horizons λp and rp. That relationship is apparent in Figures 7 and 8 relating the Planck
force to the confinement force and to the gravitational force.

4.6 Unification of forces from vacuum fluctuations as the source of color force
and gravity

The force resulting from the potential φg is given by F⃗s = −∇⃗φg

Fs(r) = −∇φg = ℏc

2r2

(
αg + αs

(
1 + r

λp

)
e

− r−rp
λp + 2α−1

g

(
1 + 2ℓ

r

)
e− r−λp

ℓ

)
(4.35)

This derivation allows us to recover the forces obtained for the different horizons at r = λp and r = rp. At
r = λp = rp

4 , we get by noticing that αg = ℓ2

λ2
p

(cf Equations (2.30) & (4.5))

Fs(λp) = ℏc

2λ2
p

(
αg + 2αse

− λp−rp
λp + 2α−1

g

(
1 + 2ℓ

λp

))
≈ α−1

g

ℏc

λ2
p

= ℏc

ℓ2 = Fℓ (4.36)

And the corresponding potential energy is

|φg(λp)| = ℏc

2λp

(
αg + αse

− λp−rp
λp + 2α−1

g

ℓ

λp

)
≈ ℏc

ℓ
= Eℓ (4.37)

At the proton black hole horizon, the gravitational force and potential are ruled by the Planck force and
Planck energy respectively as the source of mass and forces. At the Compton wavelength the energy potential
φ

(1)
g dominates and φ

(2)
g and φ

(3)
g are negligible. However, as the radius increases towards the charge radius

horizon, the force/energy density reduces so that φ
(2)
g eventually dominates at rp such that

Fs(rp) = ℏc

2r2
p

(
αg + 5αs + 2α−1

g

(
1 + 2ℓ

rp

)
e− 3λp

ℓ

)
≈ 5

2αs
ℏc

r2
p

(4.38)

To evaluate the strong coupling constant αs, we utilize the running coupling constant derivation of QCD
asymptotic freedom [107] given as
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αs(E2) = g2(E2)
4π

≈ 12π

(33 − 2nf ) ln
( E2

Λ2

) (4.39)

where nf = 6 is the number of quarks active in pair production and Λ(6) ≈ 89 MeV is experimentally
determined [96]. We obtain a coupling constant at the proton energy E = 4ℏc

rp
= 938 MeV of

αs(rp) ≈ 0.38 (4.40)

Therefore

Fs(rp) ≈ ℏc

r2
p

= Fℓ

ηλ
(4.41)

we find the color force Fs(rp) = Fℓ

ηλ
as obtained in table 3.

For radii r ≫ rp the general potential φg becomes φ
(3)
g the Newtonian gravitational potential where the force

Fs(r) reduces to Fg(r) or the gravitational force between two protons at rest mass. However, more technically
correct, in our context of a fundamental description of the forces mechanism, the force Fg is the force that
two Planck oscillators within the Planck plasma experience at that energy density

Fs(r) →
r≫rp

2αg
ℏc

(2r)2 = 2
Gm2

p

(2r)2 (4.42)

φg(r) →
r≫rp

αg

2
ℏc

r
=

Gm2
p

2r
(4.43)

The forces derived above have been established from the pressure force experienced by a PSU in the Planck
plasma flow (cf Equation (4.9)) responsible for mass-energy. Thus, a physical interpretation of the energy
potentials φ

(1)
g , φ

(2)
g and φ

(3)
g is the surface energy per PSU, such that by summing the potential value of all

the PSU of a screening surface one would recover a mass-energy on the order of the corresponding screening,
namely the Planck mass for φ

(1)
g = mℓ, the black hole mass for φ

(2)
g ηλ ∼ Mp and the rest mass for φ

(3)
g η64 ∼ mp.

The force Fs and potential φg are both plotted on Figure 7, highlighting the dynamics of the two screenings
from the ground state force Fℓ to the Newtonian gravitational force Fg. As the first screening has a
characteristic length of the Planck length ℓ, in a region of few Planck length after the horizon λp the force
(and the potential) drops to the first screening value on the order of Fℓ/ηλ (and αs

8
ℏc
rp

). Up to the charge
radius the force and the potential are decreasing relatively slowly resulting in a force of ∼ 104 N at the
proton charge radius (vertical red line in Figure 7.a). From there, the screening mechanism reduces the force
dramatically again as we compute the approximate strength of this force relative to the electrostatic repulsion
between two protons such as

Fs(r) = e2

4πϵ0r2 ⇔ Fs(2.6 rp) ≈ 48.4 N (4.44)

The equilibrium is reached at a distance of r = 2.6 rp ≈ 2.18 fm (vertical black line in Figure 7.a) yielding to
the typical residual strong force estimate of Fs(2.6 rp) ≈ 48.4 N. The distance we find for the equilibrium
between the forces is in the range of the typical measured distance between two protons in α-cluster given as
1.9 − 2.4 fm [108].
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Figure 7: (a) Color confinement force, residual strong force and gravitational force all derived from the
general potential φg. (b) The general potential allows for direct evaluation of the nuclear binding energy at
1.15 fm = 1.3 rp.

The advantage of deriving an analytical solution for the gravitational potential φg allows us for predicting
the radius at which the binding energy is attained. From figure 7.b we find that the gravitational potential
crosses the typical value of 9 MeV at a radius of r = 1.1 fm = 1.3 rp

φg(1.3 rp) ≈ 9.0 MeV (4.45)

which is the typical inter-nucleon distance [108, 109].

Figure 8: Summary of the Planck force screening at the horizons: reduced Compton wavelength of the proton
λp, proton charge radius rp and 2.6 rp, where the Planck force, the color confinement force and the residual
strong force respectively occur.
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5 Discussion
In this paper we have demonstrated that electromagnetic quantum vacuum fluctuations (or ZPE) are
responsible for the energy curving spacetime resulting in the production of mass and forces. Historically, since
the discovery of ZPE by Max Planck, it has been challenging to understand the impact of vacuum energy on
the structure of spacetime, i.e. if quantum vacuum energy density is so high why is spacetime not curved
into a very small regions with the rest of the universe. From our results, we demonstrate that indeed ZPE
has curved spacetime into very small regions defined by Planck scale entities and that these entities collective
behavior generate scaling so that at characteristic length the decoherence of the collective behavior results
in residual energies (i.e. not all modes cancel out) that we measure and experience as masses and forces.
Therefore, the application of such approach should be found to be scalable to vastly larger characteristic
distances than the proton such as our universe as a whole. In fact, by applying the screening mechanism
at the universe scale ηu and computing the universe density ρu (Figure 10.a), we find the exact measured
critical density at current time ρcrit = 3H2

0
8πG which includes baryonic matter and so-called dark matter and

dark energy [110]

ρu = ρvac

ηu
= 8.53 x10−27 kg.m−3 (5.1)

where ηu = 4πr2
u

π( ℓ
2 )2 the universe surface pixelization by PSU, ru = c

H0
the radius of the observable universe and

the Hubble constant typically given as H0 = 67.4 km/s/Mpc [111]. Therefore and remarkably, utilizing the
same mechanism applied at the hadronic scale for the proton, when we screen ρvac with the Hubble horizon
ηu, we obtain the exact critical density of the universe. Considering a single screening of ηu is equivalent to
the Schwarzschild solution, it results that the observable universe of radius ru obeys the Schwarzschild black
hole condition as shown by [112] and [113]

Mu = 4
3πr3

u × ρcrit

= ruc2

2G
(5.2)

It is well-known since the early 2000 that supermassive black holes are present at the center of every
large galaxy and that stellar black holes are common. Furthermore, primordial black holes theories are
gaining significant popularity as a result of the latest measurements of James Webb Space Telescope [68].
Consequently, the life and evolution of galactic and stellar structures seem to have deep ties to black holes
theory where, from the proton to the universe, black holes appears to be at the core of systems at all scales.
Therefore, the Schwarzschild solution is the first natural scaling law for organized matter. In their review,
Carr and Rees [60, 114] presented the black hole region as an upper limit towards which massive objects
tend. The lower limit being the quantum realm with the wave-particle principle defining the proton Compton
wavelength. Rees identifies a clear scaling from the instanton, which corresponds to the Planck scale region,
to the universe demonstrating that the gravitational coupling constant α−1

g = ηλ

16 is the main scaling factor
describing both mass and radius from the Planck scale to the size of the universe

m = αn
g mp (5.3)

where n is a rational number positive or negative. We note also that α−1
g mp on Figure 9 represents the black

hole energy at the Compton radius of the proton which Rees describes as the ’exploding hole’ resulting from
the Hawking evaporation scheme of primordial black holes which would exhaust their energy in the present
epoch. However, from our result we have found a direct relationship of the energy phase transition from the
density structure of the quantum vacuum to the black hole and rest-mass density resulting as demonstrated
above to an evaporation time of 1035 billion years. As well, Rees and Carr exploit the relationship between
the proton and electron (the fine-structure constant α and the mass ratio µ = me

mp
) to refine the scale. Such
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relationship was explored in the context of the holographic mass solution of the electron [115] where the mass
of the electron is extracted from quantum vacuum fluctuations utilizing the same mechanism presented here.

Figure 9: The figure is adapted from Carr and Rees scaling law [60]. It illustrates the atomic density line,
the nuclear density line, the black hole density line and the ’quantum line’ corresponding to the Compton
wavelength. Most characteristic scales depend on simple powers of αg and the wide span of so many orders of
magnitudes is a direct consequence of its huge numerical value which reflects the importance of gravity at all
scales.

From a cosmogenesis perspective, the scaling law suggests that the scaling mechanism can be coupled with
an evolutionary mechanism in which a universal horizon would emit a primordial Planck oscillator, as in
Hawking radiation, which will find itself in an extremely low density external pressure environment resulting
in a rapid inflation to a universal size causing internal vortical flows generating fractal structures at different
scales [116, 117]. In such scenario, the growth would certainly go through a proton scale as composite matter
creation and thermal cooling occur within the volume resembling the mechanism described in Einstein ’lost’
paper of 1931 [118]. Consequently, a relationship between the vacuum internal energy structure of a proton
size entity and the universe should be found (Figure 10.b). In fact, we find that the quantum vacuum
fluctuations energy contained in the volume of a proton at the Compton wavelength h

mpc is equivalent to
the universe information-energy Mu (including the so-called dark energy and dark matter). For a Hubble
constant H0 = 67.4 km/s/Mpc and where mvac

p is the energy in the Compton wavelength volume of the
proton, we get

mvac
p

Mu
= ρvacVp

ρcritVu

= 16H0

ℓ2c

(
h

mpc

)3
(5.4)

≈ 1.03

Therefore, the quantum vacuum energy or information ρvac within a Compton proton volume is equivalent to
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the information or critical density ρcrit in the universe. Furthermore, it should be noted that by utilizing the
proton charge radius rp instead of the Compton wavelength in the volume Vp, we find a value of 26.6% of the
mass of the universe which is very close to the 26.8% typically given for the contribution of dark matter in the
universe. This represents a direct conceptual holographic model of the information-energy both relating the
quantum scale to the cosmological scale through vacuum fluctuations with very specific scaling factors and
defining an entangle state of black holes hubs connected by a wormholes network as in ER = EPR [119, 120].
Furthermore, while the volume of a proton seems to hold an equivalence of information-energy in terms of
vacuum fluctuations as the volume of our universe, the surface information of all protons Npηp is equivalent
to the surface information of the universe ηu pixelized by kernel-64 such that ηu = 4πr2

u

π(2ℓ)2 = r2
u

ℓ2 and utilizing
Equation (5.4)

ηu

Npηp
= mpr2

u

Mu (πrp)2 ∼ 1 (5.5)

These last two computations imply not only an intimate relationship between protons and the universe but
also demonstrate that the screening coefficient of a scale may have energy ratio relationships to much larger
scales implying a fractal structure. In this case all the pixelization surfaces of the proton are equivalent to
the screening of the quantum vacuum fluctuations resulting in the mass-energy density of the universe. Thus,
the local holographic screening of a system has non-local relationships to other scales (fractal-like structure)
in a network of information transfer that generates gradients across scales producing pressures or forces that
we experience and measure both at the quantum scale and cosmological level. The scaling law emerging from
the Planck plasma vortex flow and spacetime filaments results from the dynamic equilibrium of forces and
energy density gradients between scales at different temperatures.

Figure 10: (a) Screening mechanism at the universe scale connecting the surface-information of the universe ηu

to the surface-information of each proton ηp. (b) Relationship between the vacuum internal energy-information
structure of a proton size entity to all the protons in the universe.

Conclusion
Here, we have demonstrated that the electromagnetic quantum vacuum fluctuations are the source of mass
and forces at the hadronic scale. We have shown that a first screening mechanism of quantum vacuum
fluctuations based on the pixelization of the surface of a system recovers a direct analytical solution to
Einstein field equations in terms of the Schwarzschild metric at any scale. This not only elucidates a deeper
understanding of the structure of spacetime producing gravitational curvature but as well when applied to
the proton scale generates a source of energy at the origin of mass. When applied to the reduced Compton
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wavelength of the proton core, the resulting force is the Planck force Fℓ at the horizon which undergoes a
Yukawa-type diminishing potential generating the known measured values for the color force pressure, the
residual strong force and the nuclear binding energy. After a second screening of ρvac with the surface of the
charge radius η64 we recover the rest mass and find that the force in a region of approximately 2 proton radii
is in the range of the typical values of the residual strong force in the nucleus. From there we find that the
typical ∼ 1/r2 Newtonian gravitational force is found at about ∼ 20 fm. We have demonstrated as well that
the Hawking radiation at the core at reduced Compton wavelength of the proton corresponds to the rest
mass energy of the proton.

This unification of mass and forces is derived from electromagnetic quantum vacuum fluctuations only in
a mechanism driven by an energy density phase transition of the vacuum Planck plasma flow resulting in
pressure and energy gradient that make up the fundamental structure of matter and its agglomeration into
organized matter for scaling systems from the Planck scale to the universal scale. Future works will follow
and derive the dynamics and kinematics of the Planck plasma flow both at the cosmological and quantum
scale. Much of that work has already been accomplished and will appear in publication shortly.
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Appendix A: Energy of the free electromagnetic field12

In free space, the electromagnetic oscillating field describes by the gauge invariant transverse vector potential
A⃗(r⃗, t) satisfies the homogeneous wave equation and the divergence condition (utilizing the Coulomb Gauge
assumption)

∇⃗2A⃗ − 1
c2

∂2

∂t2 A⃗ = 0

∇⃗ · A⃗ = 0

The simplest nontrivial solution for those two equations is given by

A⃗(r⃗, t) =
∑
k⃗,s

√
ℏ

2ϵ0ωk⃗V

(
ak⃗(t)Ak⃗(r⃗) + a†

k⃗
(t)A∗

k⃗
(r⃗)
)

with

ȧk⃗(t) = −iωk⃗ak⃗(t)

and each Ak⃗ is a solution of the Helmholtz equation

∇⃗2A⃗k⃗ +
ωk⃗

c2
∂2A⃗k⃗

∂t2 = 0⃗

The operators ak⃗ and a†
k⃗

are usually named annihilation and creation operators. And the electric E⃗ and
magnetic B⃗ fields are given by

12Appendix A and B were both adapted from [1]
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E⃗ = −∂A⃗

∂t

B⃗ = ∇⃗ × A⃗

The Hamiltonian of such electromagnetic oscillating field is

Ĥ = 1
2

∫
V

ϵ0(E2 + c2B2) d3r = 2ϵ0
∑
k⃗,s

ω2
k⃗,s

|αk⃗,s(t)|2

where s define the polarization mode and the time dependent wave amplitude αk⃗,s(t) is given by

αk⃗,s(t) =
√

ℏ
2ϵ0ωk⃗

ak⃗(t)

The energy of a system of independent harmonic oscillators, one representing each mode (k⃗, s) of the
electromagnetic free field. The state of the classical radiation field is specified by the set of all canonical
variables position-momentum (qk⃗,s, pk⃗,s) is given by

Ĥ = 1
2
∑

k⃗

∑
s

[
p2

k⃗,s
(t) + ω2q2

k⃗,s
(t)
]

where

qk⃗,s = i
√

ϵ0(αk⃗,s − α∗
k⃗,s

)

pk⃗,s = ωk⃗,s

√
ϵ0(αk⃗,s + α∗

k⃗,s
)

Then, the quantized hamiltonian takes the following form

H = 1
2
∑
k⃗,s

ℏωk

(
a†

k⃗,s
ak⃗,s + ak⃗,sa†

k⃗,s

)
=
∑
k⃗,s

ℏωk

(
a†

k⃗,s
ak⃗,s + 1

2

)
=
∑
k⃗,s

ℏωk

(
nk⃗,s + 1

2

)

where the photon number operator nk⃗,s = a†
k⃗,s

ak⃗,s gives the number of photon at the energy level En The
electric field operator is

E(t) = −∂A⃗

∂t
= i
∑
k⃗,s

√
ℏω

2ϵ0V

(
ak⃗(t)Ak⃗(r⃗) − a†

k⃗
(t)A∗

k⃗
(r⃗)
)

In the vacuum state |0⟩ (state with 0 photon), the mean values of the electric and magnetic fields are given by

⟨0| E⃗H(r⃗, t) |0⟩ = i

√
ℏ

2ϵ0V
∑

k

2∑
s=1

√
ωk

[
⟨0| ak⃗,se⃗s(k⃗)ei(k⃗.r⃗−ωkt) |0⟩ + ⟨0| a†

k⃗,s
e⃗∗

s(k⃗)e−i(k⃗.r⃗−ωkt) |0⟩
]

= 0
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because

⟨0| ak⃗,s |0⟩ = 0

⟨0| a†
k⃗,s

|0⟩ = 0

Thus,

⟨0| E⃗H(r⃗, t) |0⟩ = ⟨0| B⃗H(r⃗, t) |0⟩ = 0

The electromagnetic field mean value is zero but its fluctuations is not zero as shown for one mode by

E(t) =
√

ℏω

2ϵ0V
(
ae−iωt + a†eiωt

)
E2(t) = ℏω

2ϵ0V
(
a2e−i2ωt + (a†)2e2iωt + 2a†a + I

)
Taking the mean value, we get

⟨0| a2 |0⟩ = ⟨0| (a†)2 |0⟩ = ⟨0| aa† |0⟩ = 0

Thus, we find the vacuum energy in the free space for the pulsation ω

⟨0| E2(t) |0⟩ = 1
2
ℏω

ϵ0V

To compute the effective energy density, we need to consider the correlation function.

Appendix B : Correlation function and black body radiation
We can use the density operator to evaluate the second order correlation functions of the optical field

〈
E⃗(−)(r⃗, t) · E⃗(+)(r⃗, t + τ)

〉
=
∑

k

2∑
s=1

ℏωk⃗

2ϵ0V
e−iω

k⃗
τ

eℏω
k⃗

/kBT − 1〈
E⃗(+)(r⃗, t) · E⃗(−)(r⃗, t + τ)

〉
=
∑

k

2∑
s=1

ℏωk⃗

2ϵ0V
e−iω

k⃗
τ

eℏω
k⃗

/kBT − 1

where the single polarization component of the electric field operator (s ="+" and s ="-") are

E⃗(+)(r⃗, t) = i
∑

k⃗

√
ℏω

2ϵ0V
ak⃗e−iωβt = E⃗(−)(r⃗, t)†

E⃗(−)(r⃗, t) = −i
∑

k⃗

√
ℏω

2ϵ0V
a∗

k⃗
eiωβt
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It results the normally ordered field correlation functions is〈
E⃗(−)(r⃗, t) · E⃗(+)(r⃗, t + τ)

〉
=
∑

k⃗

ℏω

2ϵ0V
⟨nk⃗⟩e−iωτ =

∑
k⃗

ℏω

2ϵ0V
⟨a†

k⃗
ak⃗⟩e−iωτ

and the anti-normally ordered correlation function is〈
E⃗(+)(r⃗, t) · E⃗(−)(r⃗, t + τ)

〉
=
∑

k⃗

ℏω

2ϵ0V
⟨ak⃗a†

k⃗
⟩eiωτ =

∑
k⃗

ℏω

2ϵ0V
(⟨nk⃗⟩ + 1)eiωτ

The creation annihilation operator for the mode k⃗ gives

⟨ak⃗a†
k⃗
⟩ = ⟨a†

k⃗
ak⃗⟩ + 1 = ⟨nk⃗⟩ + 1 = 1

eℏω
k⃗

/kBT − 1
+ 1 = eℏω

k⃗
/kBT

eℏω
k⃗

/kBT − 1

where nk⃗ is the photon number operator for the mode k⃗ and ⟨nk⃗⟩ = ⟨a†
k⃗
ak⃗⟩ is the average photon number of

mode k⃗.

A coherent system yields symmetrically ordered correlation function corresponding to the sum of the normally
and anti-normally ordered correlation functions which results in the continuous mode in〈

E⃗(r⃗, t) · E⃗(r⃗, t + τ)
〉

=
〈

E⃗(−)(r⃗, t) · E⃗(+)(r⃗, t + τ)
〉

+
〈

E⃗(+)(r⃗, t) · E⃗(−)(r⃗, t + τ)
〉

= ℏ
πϵ0c3

∫ ∞

0

(
e−iωτ

eℏω/kBT − 1 + eiωτ

eℏω/kBT − 1 + eiωτ

)
ω3dω

= 2ℏ
πϵ0c3

∫ ∞

0

cos ωτ

eℏω/kT − 1ω3dω + ℏ
πϵ0c3

∫ ∞

0
eiωτ ω3dω

The temperature-dependent term can be calculated as

2ℏ
πϵ0c3

∫ ∞

0

cos ωτ

eℏω/kT − 1ω3dω = 2ℏ
πϵ0c3

(
b4

sinh2(bτ)

[
3

sinh2(bτ)
+ 2
]

− 3
τ4

)

where b = πkBT
ℏ . The temperature-independent term can be evaluated as [1]

ℏ
πϵ0c3

∫ ∞

0
eiωτ ω3dω = 2ℏ

πϵ0c3 × 3
τ4

such that the total energy of the symmetrically ordered system is

ϵ0

〈
E⃗(r⃗, t) · E⃗(r⃗, t + τ)

〉
= 2ℏ

πc3
b4

sinh2(bτ)

[
3

sinh2(bτ)
+ 2
]

and in the limit case of T → 0 K

ϵ0

〈
E⃗(r⃗, t) · E⃗(r⃗, t + τ)

〉
→

T →0

6ℏ
πc3 × 1

τ4 = ρvac

(
tℓ

τ

)4
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Appendix C: Non commutativity of canonical operators
From the definition of the position and momentum operators we have :

x̂ = i

√
ℏ

2mω
(a − a†)

p̂ =
√

mωℏ
2 (a + a†)

Thus for a vector |n⟩ the commutator applies as

⟨n| [x̂, p̂] |n⟩ = iℏ
2 ⟨n| [a − a†, a + a†] |n⟩

= iℏ
2 ⟨n| (a − a†)(a + a†) − (a + a†)(a − a†) |n⟩

= iℏ
2 ⟨n| a2 + aa† − a†a − a†2 − a2 + aa† − a†a + a†2 |n⟩

= iℏ ⟨n| aa† − a†a |n⟩
= iℏ

From [6] (p53) we have the position

x(t) = − e

m

E0ωe−iωt+θ

(ω2 − ω2
0) + iτω3

and
ẋ(t) = −iωx(t)

We note that x̂ |x⟩ = x |x⟩, ⟨x| x̂ = (x̂† |x⟩)† = x∗ ⟨x| and p̂ |x⟩ = mẋ |x⟩. Thus

⟨[x̂, p̂]|[x̂, p̂]⟩ω = ⟨x| [x̂, p̂] |x⟩
= ⟨x| x̂p̂ − p̂x̂ |x⟩
= ⟨x| x̂p̂ |x⟩ − ⟨x| p̂x̂ |x⟩
= mx∗ẋ − mẋ∗x

= −2miω|x|2

= −2 ie2E2
0ω

m

ω

(ω2 − ω2
0)2 + τ2ω6

Using
∑
ω

→ 1
4π2

∫
ω2dω and E2

0ω = 8π
3ϵ0

B0(ω)dω = 8πℏ
3ϵ0πc3 ω3dω it follows

[x̂, p̂] = ie2ℏ
2π2mc3

8π

3

∫ ∞

0

dωω4

(ω2 − ω2
0)2 + τ2ω6

≃ 2iℏe2

3πmc3 ω3
0

∫ ∞

−∞

dx

x2 + τ2ω6

= 2iℏe2ω3
0

3πmc3
π

τω3
0

= iℏ
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Appendix D: ZPE Calculation
The ZPE density derives from the sum of elementary spherical harmonic oscillators with ground state energy
E0 on all possible modes of the fields (See Appendix B). For three dimensional spherical oscillators

E0(ω) = 3
2ℏω

and the vacuum energy density results from the sum of all the mode of energy E0(ω):

ρvac = 1
V

∑
ω

n(ω)E0(ω)

with n(ω) the number of mode of pulsation ω. Following the calculation derived by Adler et al in [121], we
calculate the number of modes dn between ω and ω + dω in a volume V as the volume of momentum of space
in a thin spherical shell, divided by (2π)3, such that

dn(ω) = V

c3(2π)3 4πω2dω

and therefore, by switching the sum into integral we have

ρvac = 2π

V

∫ ωmax

0
E0(ω)dn(ω) = 3

2ℏ
∫ ωmax

0

8π2ω3

c3(2π)3 dω = 3
8π

ℏω4
max

c3

The adjunction of 2π is added as a geometrical factor. One would expect an infinity of possible mode
(ωmax → ∞) such that the vacuum density ρvac would diverge. However, as explained in Appendix C, we
limit the large frequencies to a oscillation cut-off pulsation corresponding to an oscillator of characteristic
diameter ℓ, the planck length, we obtain a cut-off pulsation ωmax = 2πc

2π ℓ
2

= 2c
ℓ . And thus, the vacuum energy

density is finite and can be expressed as (in unity of mass) :

ρvac = 6
π

c5

G2ℏ
= 9.89 x1096 kg/m3 (5.6)

The choice of the cut-off ωmax = 2c
ℓ is justified by considering the Planck length scale as the minimum

acceptable length in our space time structure as described in section 2.2.

Appendix E: metric gradient ∂grr

∂r

For the Schwarzschild metric we have
grr = 1

1 − rs

r

and the derivative of grr along the r coordinate is

∂grr

∂r
= rs

r2
1(

1 − rs

r

)2 = rs

(r − rs)2 ∼ rs

r2

Therefore, a small perturbation of the metric in the radial direction outside the Schwarzschild radius less
than the unity

δg = rsδr

r2 ≤ 1

48



References
(1) Milonni, P. W., An Introduction to Quantum Optics and Quantum Fluctuations, 1st ed.; Oxford

University PressOxford: 2019.
(2) Wilczek, F. Physics Today 2001, 54, 12–13.
(3) Wesson, P. S. Space Science Reviews 1980, 27, 109–153.
(4) Milonni, P. W.; Shih, M. .-. American Journal of Physics 1991, 59, 684–698.
(5) Planck, M. Ann. Phys. 1912, 342, 642–656.
(6) Milonni, P. W., The quantum vacuum: an introduction to quantum electrodynamics; Academic press:

1993.
(7) Mehra, J., The Golden Age of Theoretical Physics: (Boxed Set of 2 Volumes); WORLD SCIENTIFIC:

2001.
(8) Kragh, H. Astronomy & Geophysics 2012, 53, 1.24–1.26.
(9) Scully, M. O.; Zubairy, M. S., Quantum optics; Cambridge University Press: Cambridge ; New York,

1997; 630 pp.
(10) Dirac, P. A. M. Proc. R. Soc. Lond. A 1927, 114, 243–265.
(11) Kragh, H., Dirac: a scientific biography; Cambridge University Press: 1990.
(12) Feynman, R. P., QED: The strange theory of light and matter ; Princeton University Press: 1985;

Vol. 90.
(13) Maldacena, J.; Susskind, L. Fortschritte der Physik 2013, 61, 781–811.
(14) Hooft, G. In Basics and Highlights in Fundamental Physics; World Scientific: 2001, pp 72–100.
(15) Bigatti, D.; Susskind, L. In Strings, branes and gravity; World Scientific: 2001, pp 883–933.
(16) Wheeler, J. A. Annals of Physics 1957, 2, 604–614.
(17) Hawking, S. W. Phys. Rev. D 1996, 53, 3099–3107.
(18) Anderson, C. D. Science 1932, 76, 238–239.
(19) Sauter, F. Z. Physik 1931, 69, 742–764.
(20) Schwinger, J. Phys. Rev. 1951, 82, 664–679.
(21) Berdyugin, A. I. et al. Science 2022, 375, Publisher: American Association for the Advancement of

Science, 430–433.
(22) Schmitt, A.; Vallet, P.; Mele, D.; Rosticher, M.; Taniguchi, T.; Watanabe, K.; Bocquillon, E.; Fève, G.;

Berroir, J. M.; Voisin, C.; Cayssol, J.; Goerbig, M. O.; Troost, J.; Baudin, E.; Plaçais, B. Nat. Phys.
2023, 19, 830–835.

(23) Mignani, R. P.; Testa, V.; Caniulef, D. G.; Taverna, R.; Turolla, R.; Zane, S.; Wu, K.; Curto, G. L.
Evidence of vacuum birefringence from the polarisation of the optical emission from an Isolated
Neutron Star, 2018.

(24) STAR Collaboration et al. Phys. Rev. Lett. 2021, 127, Publisher: American Physical Society, 052302.
(25) Lamb Jr, W. E.; Retherford, R. C. Physical Review 1947, 72, 241.
(26) G, C. H. B. Proc. Kon. Ned. Akad. Wet. 1948, 51, 793.
(27) Lamoreaux, S. K. Physical Review Letters 1997, 78, 5.
(28) Bordag, M.; Mohideen, U.; Mostepanenko, V. M. Physics Reports 2001, 353, 1–205.
(29) Dodonov, V. Physics 2020, 2, 67–104.
(30) Moore, G. T. Journal of Mathematical Physics 1970, 11, 2679–2691.
(31) Wilson, C. M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J. R.; Duty, T.; Nori, F.;

Delsing, P. Nature 2011, 479, Number: 7373 Publisher: Nature Publishing Group, 376–379.

49



(32) Lähteenmäki, P.; Paraoanu, G.; Hassel, J.; Hakonen, P. J. Proceedings of the National Academy of
Sciences 2013, 110, 4234–4238.

(33) Vezzoli, S.; Mussot, A.; Westerberg, N.; Kudlinski, A.; Dinparasti Saleh, H.; Prain, A.; Biancalana, F.;
Lantz, E.; Faccio, D. Communications Physics 2019, 2, 84.

(34) Somers, D. A. T.; Garrett, J. L.; Palm, K. J.; Munday, J. N. Nature 2018, 564, 386–389.
(35) Kirchhoff, G. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science

1860, 20, 1–21.
(36) Einstein, A. Annalen der Physik 1905, 17, 132–148.
(37) Millikan, R. A. Physical Review 1916, 7, 355.
(38) Lehnert, B. Journal of Electromagnetic Analysis and Applications 2014, 06, Number: 10 Publisher:

Scientific Research Publishing, 319.
(39) Bethe, H. A. Phys. Rev. 1947, 72, Publisher: American Physical Society, 339–341.
(40) Casimir, H. B. G.; Polder, D. Phys. Rev. 1948, 73, 360–372.
(41) Dirac, P. A. M. Proc. R. Soc. Lond. A 1928, 117, 610–624.
(42) Breit, G.; Wheeler, J. A. Physical Review 1934, 46, 1087.
(43) Pike, O.; Hill, E.; Rose, S.; Mackenroth, F. In APS Division of Plasma Physics Meeting Abstracts,

2014; Vol. 2014, UO7–007.
(44) Anderson, P. W. Physical Review 1963, 130, 439.
(45) Sakharov, A. D. Sov.Phys.Dokl. 1967.
(46) Thorne, K. S.; Wheeler, J. A.; Misner, C. W., Gravitation; Freeman San Francisco, CA: 1971.
(47) Shanahan, P.; Detmold, W. Physical Review Letters 2019, 122, 072003.
(48) Burkert, V. D.; Elouadrhiri, L.; Girod, F. X. Nature 2018, 557, 396–399.
(49) Wilczek, F. Open Physics 2012, 10, DOI: 10.2478/s11534-012-0121-0.
(50) Cho, A. Science Magazine 2010, 201004.
(51) Haramein, N. In Liege, (Belgium), 2010, pp 95–100.
(52) Haramein, N. 2013, DOI: 10.31219/osf.io/5ed8c.
(53) Yukawa, H. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 1935, 17, 48–57.
(54) Dirac, P. A. M. Nature 1951, 168, 906–907.
(55) Haramein, N.; Rauscher, E. A. 2004.
(56) Karsch, F. In Lectures on quark matter ; Springer: 2002, pp 209–249.
(57) Maiani, L. 2004.
(58) Rafelski, J. The European Physical Journal Special Topics 2020, 229, 1–140.
(59) Rohlf, J. W.; Collings, P. J. Review Of” Modern Physics 1994, 12, 1–1994.
(60) Carr, B. J.; Rees, M. J. Nature 1979, 278, 605–612.
(61) Bekenstein, J. D. Phys. Rev. D 1981, 23, 287–298.
(62) Wheleer, J. Zurek (ed.) Complexity, Entropy and the Physics of Information, Addison-Wesley 1990.
(63) Bekenstein, J. D. Phys. Rev. D 1973, 7, 2333–2346.
(64) Gertsenshtein, M. Sov Phys JETP 1962, 14, 84–85.
(65) Landau, L. D.; Lifshits, E. M.; Lifshits, E. M., Mechanics; CUP Archive: 1960; Vol. 1.
(66) Zel’dovich, Y. B. Zh. Eksp. Teor. Fiz 1973, 65, 1311.
(67) Schwarzschild, K. Sitzungsberichte der königlich preußischen Akademie der Wissenschaften zu Berlin

1916, 424–434.

50

https://doi.org/10.2478/s11534-012-0121-0
https://doi.org/10.31219/osf.io/5ed8c


(68) Yuan, G.-W.; Lei, L.; Wang, Y.-Z.; Wang, B.; Wang, Y.-Y.; Chen, C.; Shen, Z.-Q.; Cai, Y.-F.; Fan,
Y.-Z. arXiv preprint arXiv:2303.09391 2023.

(69) Harada, T.; Yoo, C.-M.; Kohri, K. Physical Review D 2013, 88, 084051.
(70) Hawking, S. W. Phys. Rev. Lett. 1971, 26, 1344–1346.
(71) Einstein, A.; Rosen, N. Phys. Rev. 1935, 48, 73–77.
(72) Misner, C. W.; Wheeler, J. A. Annals of Physics 1957, 2, 525–603.
(73) Susskind, L. Cosmic Natural Selection, 2004.
(74) Wheeler, J. A. Phys. Rev. 1955, 97, 511–536.
(75) Wheeler, J. A. Rev. Mod. Phys. 1957, 29, 463–465.
(76) Wheeler, J. A. Rev. Mod. Phys. 1961, 33, 63–78.
(77) Hawking, S. W.; Jackson, M., A brief history of time; Bantam Books New York: 2001; Vol. 666.
(78) Hawking, S. W. Communications in mathematical physics 1975, 43, 199–220.
(79) Bardeen, J. M.; Carter, B.; Hawking, S. W. Commun.Math. Phys. 1973, 31, 161–170.
(80) Hawking, S. W. Nature 1974, 248, 30–31.
(81) Antognini, A.; Bacca, S.; Fleischmann, A.; Gastaldo, L.; Hagelstein, F.; Indelicato, P.; Knecht, A.;

Lensky, V.; Ohayon, B.; Pascalutsa, V.; Paul, N.; Pohl, R.; Wauters, F. Muonic-Atom Spectroscopy
and Impact on Nuclear Structure and Precision QED Theory, 2022.

(82) Xiong, W.; Gasparian, A.; Gao, H.; Dutta, D.; Khandaker, M.; Liyanage, N.; Pasyuk, E.; Peng, C.;
Bai, X.; Ye, L., et al. Nature 2019, 575, 147–150.

(83) Hammer, H.-W.; Meissner, U.-G. arXiv preprint arXiv:1912.03881 2019.
(84) Xiong, W.; Peng, C. Universe 2023, 9, Number: 4 Publisher: Multidisciplinary Digital Publishing

Institute, 182.
(85) Karr, J.-P.; Marchand, D.; Voutier, E. Nat Rev Phys 2020, 2, 601–614.
(86) Antognini, A. et al. Science 2013, 339, 417–420.
(87) Lin, Y.-H.; Hammer, H.-W.; Meißner, U.-G. Phys. Rev. Lett. 2022, 128, Publisher: American Physical

Society, 052002.
(88) Public Record Data 2012, https://publicrecords.copyright.gov/search?query=haramein&

field_type=Keyword&records_per_page=10&page_number=0&date_field=representative_
date.

(89) Gross, D. J. Reviews of Modern Physics 2005, 77, 837.
(90) Wilczek, F. Nature 1999, 397, 303–306.
(91) Dirac, P. A. M. Mathematical and Physical Sciences 1974, 338, 439–446.
(92) Dirac, P. In Theories and Experiments in High-Energy Physics; Springer: 1975, pp 443–455.
(93) Wheeler, J. A. Scientific American Library 1990.
(94) Perko, H. In Journal of Physics: Conference Series, 2017; Vol. 845, p 012003.
(95) Fritzsch, H. 1983.
(96) Tanabashi, M. et al. Phys. Rev. D 2018, 98, 030001.
(97) Baker, M.; Cea, P.; Chelnokov, V.; Cosmai, L.; Cuteri, F.; Papa, A. The European Physical Journal

C 2020, 80, 514.
(98) Griffiths, D. INC., USA 1987.
(99) Engelhardt, M.; Langfeld, K.; Reinhardt, H.; Tennert, O. Physical Review D 2000, 61, 054504.

(100) Kamleh, W.; Leinweber, D. B.; Virgili, A. arXiv preprint arXiv:2305.18690 2023.
(101) Özel, F.; Freire, P. Annual Review of Astronomy and Astrophysics 2016, 54, 401–440.

51

https://publicrecords.copyright.gov/search?query=haramein&field_type=Keyword&records_per_page=10&page_number=0&date_field=representative_date
https://publicrecords.copyright.gov/search?query=haramein&field_type=Keyword&records_per_page=10&page_number=0&date_field=representative_date
https://publicrecords.copyright.gov/search?query=haramein&field_type=Keyword&records_per_page=10&page_number=0&date_field=representative_date


(102) Kaup, D. J. Physical Review 1968, 172, 1331.
(103) Kaup, D. J. Phys. Rev. 1968, 172, 1331–1342.
(104) Kehagias, A.; Sfetsos, K. Physics Letters B 2000, 472, 39–44.
(105) Long, J. C.; Chan, H. W.; Price, J. C. Nuclear Physics B 1999, 539, 23–34.
(106) Giulini, D.; Großardt, A. Class. Quantum Grav. 2012, 29, 215010.
(107) Wilczek, F. Annu. Rev. Nucl. Part. Sci. 1982, 32, 177–209.
(108) Otsuka, T.; Abe, T.; Yoshida, T.; Tsunoda, Y.; Shimizu, N.; Itagaki, N.; Utsuno, Y.; Vary, J.; Maris,

P.; Ueno, H. Nat Commun 2022, 13, 2234.
(109) Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D. Nature 2012, 487, 341–344.
(110) Haramein, N.; Val Baker, A. JHEPGC 2019, 05, 412–424.
(111) Sedgwick, T. M.; Collins, C. A.; Baldry, I. K.; James, P. A. Monthly Notices of the Royal Astronomical

Society 2021, 500, 3728–3742.
(112) Pathria, R. K. Nature 1972, 240, Number: 5379 Publisher: Nature Publishing Group, 298–299.
(113) Popławski, N. In Regular Black Holes: Towards a New Paradigm of Gravitational Collapse; Springer:

2023, pp 485–499.
(114) Dicke, R. H. Nature 1961, 192, Number: 4801 Publisher: Nature Publishing Group, 440–441.
(115) Haramein, N. 2019, DOI: 10.31219/osf.io/2acve.
(116) Zhu, W.; Feng, L.-l. The Astrophysical Journal 2015, 811, 94.
(117) Parker, M. C.; Jeynes, C. Sci Rep 2019, 9, 10779.
(118) Castelvecchi, D. et al. Nature 2014, 506, 418–419.
(119) Kain, B. Physical Review Letters 2023, 131, 101001.
(120) Haramein, N.; Brown, W. D.; Val Baker, A. Neuroquantology 2016, 14, DOI: 10.14704/nq.2016.14.

4.961.
(121) Adler, R. J.; Casey, B.; Jacob, O. C. American Journal of Physics 1995, 63, 620–626.

52

https://doi.org/10.31219/osf.io/2acve
https://doi.org/10.14704/nq.2016.14.4.961
https://doi.org/10.14704/nq.2016.14.4.961

	Zero-point energy and consequences
	Origin and discovery of the ZPE
	Modern derivation of ZPE in free electromagnetic field
	ZPE in Quantum mechanics and its necessity for mathematical consistency
	Experimental validations of the ZPE

	ZPE density consequences on spacetime, mass definition and matter stability.
	Calculation of ZPE density
	Natural cut-off at the quantum scale
	Consequences of the Planck length cut-off

	Spacetime lattice and the Holographic Mass Solution
	Electromagnetic Harmonic Oscillators
	The quantum spacetime structure
	First screening and Einstein Field Equations
	First screening applied at the proton scale
	First screening applied at the Planck scale

	Second screening for the proton rest mass
	Hawking radiation
	Hawking evaporation
	Proton charge radius

	Nuclear force and residual strong force
	Planck Force: the ground state
	General relativity under pressure
	Planck Force first screening
	Second screening of the Planck force
	Screening Potential g
	Unification of forces from vacuum fluctuations as the source of color force and gravity

	Discussion

