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Abstract 

 

A stroke is a medical condition caused by a disruption in blood flow to the brain. This 

can lead to difficulties with everyday activities and movement. Music therapy is a 

promising new alternative to traditional rehabilitation methods. This therapy uses sound’s 

natural properties to enhance stroke recovery, improve motor skills and stimulate neural 

plasticity. This approach motivates people on both a physical and emotional level. 

Software tools developed to date to aid in motor recovery after stroke rely mainly on 

external mechanisms and specific hardware components. This limitation restricts the 

potential scope of these tools. This study aims to examine the effectiveness and 

mechanisms of using a mobile application with machine learning algorithms and music 

therapy principles as a complementary intervention for post-stroke motor recovery. This 

research project has resulted in the development of a mobile app, based on the widely 

used Fugl Meyer Assessment. The application uses Vision Framework from Apple and a 

custom Activity Classification CoreML machine learning model to detect an individual's 

position in a seated posture. It has also been integrated with XCode. The application 

generates an audio cue when a user successfully completes one of the Fugl-Meyer 

Assessment activities. To train the model, 340 clips of a variety of exercises have been 

created. The research sheds light on how this technology can be used to transform 

neurorehabilitation while also helping to develop accessible and convenient tools that 

promote stroke motor recovery. 

 

Keywords: music therapy; stroke; machine learning; CoreML; Fugl-Meyer  
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1. Introduction 

 

A stroke is a condition that happens when the blood flow to the brain gets disrupted. It 

can cause serious issues that have a substantial impact on how someone lives their life 

and how they feel. Traditional rehabilitation methods have been widely used to support 

motor recovery. However, recent advancements have unveiled a promising approach 

known as music therapy. This innovative therapeutic technique harnesses the powerful 

influence of music on the brain, stimulating the brain's ability to adapt (neural plasticity), 

facilitating the reacquisition of motor skills, and improving overall stroke motor recovery. 

Music therapy offers a comprehensive rehabilitation approach that actively engages and 

motivates individuals on both physical and emotional levels. This thesis aims to 

investigate the underlying mechanisms and effectiveness of utilizing a mobile app as a 

supplementary intervention in music therapy for stroke motor recovery. By shedding light 

on the potentially transformative nature of this technology within the field of 

neurorehabilitation practices, the study endeavours to contribute to the development of 

accessible and convenient tools for promoting stroke motor recovery. 

 

1.1. Motivation 

 

The motivation behind this thesis lies in the recognition of the pressing need for 

innovative and accessible approaches to stroke motor recovery. While music therapy has 

shown promising results, traditional methods often require specialized resources, specific 

hardware and trained professionals, limiting their widespread implementation. This study 

intends to solve these issues and provide stroke survivors with a practical, affordable, and 

easily accessible solution by suggesting a mobile app as an alternative to traditional music 

therapy. Utilizing mobile technology for neurorehabilitation holds significant potential to 

reach a bigger population and offer individualized treatment because of the rising 

prevalence of smartphones and their incorporation into daily life. This thesis seeks to 

advance neurorehabilitation techniques by examining the potential and efficacy of a 

mobile app as an additional intervention in stroke motor recovery, ensuring that survivors 

of stroke have access to cutting-edge and effective tools for their recovery process. 
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1.2. Objectives 

 

The objectives of this thesis are outlined as follows: 

- To develop an easy-to-use mobile app that can be utilized by stroke survivors, 

allowing independent practice of motor exercises and therapeutic activities. 

- To explore in which ways music therapy fundamentals can be applied to this new 

technology and include it. 

- To investigate the feasibility and effectiveness of a mobile app as a supplement in 

stroke motor recovery, which facilitates motor improvement without the need for 

additional hardware or special equipment. 

- To include a machine learning model in the app for seated poses and exercises 

detection. 

- To gather feedback and insights regarding the acceptability, usability, and 

perceived benefits of the mobile app in comparison to conventional music therapy 

methods. 

By achieving these objectives, this thesis aims to provide valuable evidence and insights 

into the practicality of a mobile app as an alternative approach for stroke motor recovery. 

Additionally, it hopes to enhance teletherapy possibilities, which would improve stroke 

survivors' access to neurorehabilitation treatments in the long run. 
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2. State of the art 

 

2.1 Stroke 

 

Strokes are one of the most serious forms of cerebrovascular disease that occur when 

blood flow to a part of the brain is interrupted or reduced, depriving brain cells of oxygen 

and nutrients. As a result, brain cells begin to degenerate in a matter of minutes, which 

causes a high mortality rate, a high rate of morbidity, and a considerable degree of 

disability, all of which have a significant influence on the lives of the survivors. Patients 

may develop aphasia, dysphagia, cognitive impairment, motor dysfunction, mood issues, 

and other consequences as a result of the stroke. Damage to the parts of the brain that 

control language results in language disorders such as aphasia. Aphasia can make it 

challenging for people to find words, form sentences, understand spoken or written 

language, read, and write. The medical term dysphagia refers to the difficulty swallowing 

liquids and food which can lead to dehydration, malnutrition and aspiration pneumonia. 

Cognitive recovery includes memory and learning ability, sensory and perceptual 

disorders, and attention. According to the degree of affectation on the patient, motor 

dysfunction can range from numbness or weakness of the limbs to paralysis or spasms. 

This thesis will focus primarily on motor dysfunction. The damage to the nervous system 

in many cases is not completely recoverable and cannot be completely reversed. That’s 

why early intervention and rehabilitation is fundamental to restoring impaired 

neurological function, which depends on the brain's plasticity and functional 

reorganization (Huang et al., 2021). 
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2.1.1 Stroke motor recovery evaluation 

 

There are 5 stages to stroke recovery. The first two weeks are defined as the acute stage 

of stroke. From 3 to 11 weeks, sub-acute stage. From 12 to 24 weeks is the early chronic 

stage and, finally, more than 24 weeks is the chronic stage of the stroke. 

The evaluation possibilities for stroke recovery are wide as it depends on what is to be 

assessed. For the evaluation of motor recovery, which will be the focus of this thesis, an 

examination of the patient’s physical abilities and functional status is needed. Some 

common tests used for this purpose are Fugl-Meyer Assessment (FMA), Motor 

Assessment Scale (MAS), Action Research Arm Test (ARAT), Barthel Index… All these 

tests provide valuable information about the patient’s motor recovery state after a stroke 

and can help with the creation and development of an effective rehabilitation program. In 

this thesis Fugl-Meyer Assessment (FMA) will be considered the standard as it is 

currently what is being used at Hospital Forum Mar by the music therapy professionals. 

 

2.2 Music Therapy 

 

The practice of using music to treat conditions like depression, pain, anxiety, and 

cognitive function is known as music therapy. The fundamental idea behind this therapy 

is that because music involves so many different neuronal connections and functions, it 

has a perceptible effect on the brain. For instance, the left part of the brain is responsible 

for lyric comprehension and rhythm distinction, while the right part is focused on melody 

analysis. During a session, a trained music therapist assesses the individual’s needs and 

develops a personalized treatment plan. This plan may include passive activities, such as 

listening to the music of the user’s liking, making them feel comfortable and safe. Or 

alternatively, active activities, such as singing, playing with instruments, and moving 

along with the music. Studies have shown that music therapy is a potential strategy for 

stroke patients' rehabilitation since it can help to lessen the stroke's numerous side effects. 

It is a reliable, affordable, practical, and simple-to-apply solution. This, together with its 

high patient acceptance, explains why this therapy is becoming more and more popular 
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among staff members in hospitals, rehabilitation centers, and nursing homes. (Braun 

Janzen et al., 2022). 

 

2.2.1 Music Therapy for stroke recovery 

 

Music therapy has various applications for stroke recovery due to music’s inherent 

properties and its connectivity with the brain. Early music intervention may promote 

long-term neuroplasticity changes in sensory and perceptual processes that facilitate 

cognitive function recovery. For example, vocal music can be helpful to improve memory 

recovery whereas mindful music might assist with relaxation and concentration. In the 

same way that vocal and singing exercises are advised for speech recovery in dysphagia, 

rebuilding cortical and subcortical structural networks in the dominant hemisphere of 

language is the main objective in aphasia treatment. The brain regions that are engaged 

while speech and singing activities overlap, according to neuroimaging research. Melodic 

Intonation Therapy (MIT), which involves singing words and phrases while engaging in 

daily tasks and using a musical tune, was born as a result of this. Patients who are unable 

to talk may be able to sing words. 

Regarding the thesis's primary focus on motor function recovery, a range of techniques 

can be implemented, among which is Rhythmic Auditory Stimulation (RAS) for path 

cadence. An auditory rhythmic cue is utilized here in the form of repetitive isochronous 

pulses (e.g., a metronome) or metrically accentuated music matching the individual's 

cadence. As the cues are gradually increased or decreased by 5-10%, they provide 

anticipatory time cues that allow movements to be planned and prepared, helping 

therefore to regulate timing and pace. Additionally, Music-Based Interventions (MBI) 

have been shown to improve upper extremity motor function recovery. These iMBI 

techniques include Music-Supported Therapy (MST), a standard rehabilitation technique 

that employs a keyboard or electronic drum to enhance both movement kinematics and 

motor function in the subacute stage of a stroke. This is an enjoyable activity for patients 

and helps with movement coordination, auditory-motor coupling and integration. Music 

therapists also use Patterned Sensory Enhancement (PSE) to improve timing, duration, 

direction, and force of movements by playing musical instruments. With the creation of 
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musical patterns for different movements, actions that would not be rhythmical by nature, 

for instance getting dressed, are structured and regulated.   

Instead, in Therapeutic Instrumental Music Performance (TIMP), which will be of great 

importance for this thesis, musical instruments are simply feedback, either tactile, visual 

or auditory. Individuals' bodies are strategically arranged with instruments at strategic 

locations. With this, various movements can be trained.  

The impact of music therapy on stroke rehabilitation has been gradually substantiated in 

clinical practice (Xu et al., 2022). 

 

2.3 Technology-enhanced stroke rehabilitation 

 

The goal of this chapter is to give a general review of the cutting-edge technology utilized 

in stroke therapy while highlighting both its advantages and disadvantages. 

Robotic-assisted therapy has garnered significant attention in stroke rehabilitation. 

Robotic devices offer high-intensity, repetitive movements that can facilitate motor 

recovery. These devices provide precise control, allowing therapists to target specific 

muscle groups and customize interventions according to individual needs. Examples of 

robotic-assisted therapy devices include robotic exoskeletons, end-effector devices, and 

robotic-assisted gait training systems. Studies have shown promising results in improving 

upper and lower limb function, reducing muscle tone, and enhancing overall motor 

recovery (Hesse et al., 2003; Mehrholz et al., 2015). 

Virtual Reality (VR) and Augmented Reality (AR) provide experiences that facilitate 

motor learning and neuroplasticity while performing rehabilitation exercises in virtual 

environments, increasing users’ engagement and adherence to therapy. VR generates 

computer-generated 3D simulations, while AR overlays virtual elements in the real world. 

Additionally, this method can provide real-time feedback, assessment tools, and data 

analytics to track progress and customize interventions (Laver et al., 2017; Saposnik et 

al., 2016). 

Brain-Computer Interfaces (BCIs) establish a direct communication pathway between the 

brain and external devices, bypassing impaired motor pathways. With this, stroke 

survivors control robotic devices or computer programs using their brain activity, 

promoting motor recovery and enhancing functional independence (Ang et al., 2014; 
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Cervera et al., 2018). Electroencephalography (EEG) and functional near-infrared 

spectroscopy (fNIRS) are commonly used to detect and monitor brain signals.  

Wearable sensors like accelerometers and gyroscopes provide home-based therapy and 

continuous monitoring. These tools offer precise movement measurements, allowing 

therapists to evaluate motor function from a distance. For example, machine learning 

algorithms can be used to analyse the acquired data and provide individualized feedback 

and improve treatment plans. Through remote monitoring and telerehabilitation, this 

technology removes geographic restrictions and improves access to care. (Porciuncula et 

al., 2018). 

Games have also been used to transform traditional rehabilitation exercises into 

interactive and enjoyable activities. This motivates stroke survivors and enhances their 

engagement in therapy. By incorporating elements like rewards, competition, and 

progression, games promote repetitive practice and motor learning. They can be 

combined with other technologies such as VR and motion sensors to create immersive 

and challenging rehabilitation experiences (Lohse et al., 2014; Saposnik et al., 2016). 

Lastly, Telerehabilitation and Mobile Health (mHealth) solutions enable remote 

rehabilitation services, improving access to care and supporting home-based 

rehabilitation. Telecommunication technologies, video conferencing, and mobile apps 

allow therapists to provide guidance, monitor progress, and offer remote interventions. 

Stroke survivors can perform exercises at home while receiving real-time feedback and 

support from healthcare professionals. These technologies have the potential to reduce 

healthcare costs, increase patient autonomy, and improve long-term outcomes (Dodakian 

et al., 2017; Tchero et al., 2018) . Several software apps for stroke recovery are accessible 

on the internet, catering to both patients and professionals. While some programs provide 

informative resources for stroke patients and their families, like Codigo Ictus and 

Essential Anatomy 3, others are developed to support recovery treatment, such as 

Constant Therapy for speech therapy and CPA for image-based communication.  

 

The primary focus of this thesis is to examine applications that target the motor recovery 

of the upper limb, for instance, Dexteria and CloudRehab. Dexteria (Sawant et al., 2020) 

is an app with several game-like exercises that require the user to use their hand to 

improve pencil grip, work with both hands and follow lines. It does not include arm 
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exercises, focusing only on hand and finger strength. CloudRehab (Rodriguez-Prunotto 

& Cano-de-la-Cuerda, 2018) facilitates patients to review their recorded rehabilitation 

session, while simultaneously observing themselves doing the same exercise on the other 

half of the screen. The recorded session is then transmitted to the designated doctor or 

therapist for analysis, who subsequently provides feedback to the patient. But again, there 

is no feedback from the app to the patient, just a mirroring service. 

 

When it comes to music therapy apps for stroke recovery, most are for relaxation, 

meditation, and music selection. There are other options available, all of which require 

external hardware to be used, such as a piano, sensors (GotRhythm, Jintronix, 

MedRhythms) or specifically built an instrument for the application such as the one 

developed in (Segura et al., 2021) 

The key point here is that, currently, there is no app for motor recovery after a stroke that 

makes use of music therapy techniques and requires no external hardware or specific 

materials. 

 

2.3.1 Machine Learning Models in Mobile Applications 

 

The incorporation of Machine Learning and Artificial Intelligence in mobile applications 

has given cell phones the ability to convert text to speech, interpret gestures, and identify 

objects and people in images. All of these new possibilities have piqued the interest of 

developers in many domains, including healthcare. 

 

Machine Learning methodologies can be grouped into four main categories. Supervised 

Learning entails training the algorithm with labelled inputs and outputs, followed by 

predicting the output with the test dataset. Some examples of Supervised Learning include 

Decision Trees, Random Forests, K-Nearest Neighbours, Linear Regression, Logistic 

Regression, Neural Networks, and Deep Learning. On the other hand, Unsupervised 

Learning involves the algorithm learning similarities, patterns, or differences to classify 

unlabelled data. Examples of this are k-Means clustering and Mean-shift. There is also 

something in between, Semi-supervised learning, where labelled and unlabelled data are 

combined throughout the training phase to produce either a category or numerical output 
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(regression). Another different approach can be Reinforcement Learning, in which the 

algorithm learns from its environment. This methodology learns from its experiences in 

the environment and once it has encountered the entire range of possible states, it can 

make decisions based on its acquired knowledge. 

 

In order to incorporate Machine Learning in mobile applications, there are two main 

architectures. Server-side architecture, where everything is done on to the server through 

a web service in which the information is sent to be analysed. The deployment of the 

model on the server endows all clients with instantaneous updates on the model, which 

may have occurred through reinforcement learning during the evaluation on the server. 

This approach is ideal for applications that demand a precise model while utilizing the 

device’s minimum amount of space and CPU power. Contrary, on client-side architecture, 

a copy of the trained model exists on the device and it is executed locally to calculate the 

result, enabling its use even in the absence of internet connectivity. This approach is 

particularly advantageous for image processing, as the evaluation is more direct due to 

the absence of network latency (Ganesan, 2022). 

 

For the purposes of the present thesis, a client-side architecture will be employed. This 

approach guarantees that the patients' images will not be transmitted to any online server, 

which is a crucial factor in secure medical data treatment. It is crucial to acknowledge 

that the models accessible for implementation in mobile applications are subject to 

constraints in terms of space and processing power. Hence, even though there might be 

several models available online for the purpose of this thesis, specific models designed 

explicitly for a mobile environment must be selected. 

From all the frameworks available such as TensorFlow, Keras, Scikit and ML Kit. Core 

ML (with the use of the Vision framework from Apple) and XCode offer the 

infrastructure to develop and implement an app with a machine learning model for iOS 

platforms.  
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2.4. MoveNet 

 

MoveNet is a state-of-the-art model evolved by Google AI, designed for real-time human 

pose estimation. Pose estimation refers to the procedure of detecting the position and 

orientation of 17 key body parts (key points) in an image or video. This model architecture 

prioritizes velocity and performance without compromising accuracy, contrary to 

traditional pose estimation models that frequently require powerful computing hardware.  

MoveNet comes in two variants: Movenet Lightning, designed for ultra-fast inference 

and suitable for applications that require actual-time feedback, and Movenet Thunder, a 

bigger version designed for programs where higher accuracy is preferred and some 

computational overhead is acceptable.  

The output of the model in both cases is a tensor with 17 xy coordinates of the body points 

and the confidence scores for the key point.  
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3. Methods and material 

3.1. Materials  

Name Comment 

iPhone 12 iOS 16.5.1, 68GB 

Macbook Pro 2020 MacOS Ventura 13.3.1, Apple M1, 16GB RAM 

 

Due to the availability of this material and the impossibility to use app simulators for a 

live camera application, the platform for which the application has been coded is iOS. 

3.1.1. Fugl-Meyer Assessment (FMA) 

 

In the Fugl-Meyer Assessment (FMA), motor recovery after stroke can be quantitatively 

measured. Its scale, Fugl-Meyer scale, was the first developed quantitative evaluation for 

sensorimotor recovery measurement in stroke. It consists of 100 points based on different 

exercises that involve mobility for the upper and lower extremities (Gladstone et al., 

2002).  

A score from 0 to 2 is assigned to each of these tasks. Patients with a score of 0 cannot 

perform the exercise, whereas those with a maximum score are able to perform the task 

completely. The scores of all sections are then added together to obtain a total score. 

In this thesis, the Upper Extremity exercises (66 points if done perfectly, 33 tasks) 

proposed by FMA are used as an inspiration for the development of the exercises in the 

mobile application. Mentioned exercises are listed below for the reader’s comprehension.  
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Figure 1: Exercises for Fugl-Meyer evaluation 

 

3.1.2. XCode 

 

XCode is an Apple-developed integrated development environment (IDE) that provides 

a visual interface where developers can design the user interface, write code, and debug 

applications. It includes a simulator to test and preview the app's behavior with different 

iOS hardware (iPhone, iPad, iPod, Mac, all different generations). Any CoreML model 

can also be integrated into the project. Once integrated, the model can be utilized to make 

real-time predictions within the iOS app. Among the programming languages that this 

software offers, the app has been coded in Swift. 

 

3.1.3. Create ML – Activity Classifier 

 

Create ML is the MacOS software that has all Apple CoreML algorithms available. The 

Action Classifier Model in Create ML is a valuable tool for developing accurate machine 
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learning models that can recognize activities effectively. This model employs Apple 

Vision framework to detect 19 body landmarks, which are essential points or features 

within an activity that help differentiate and categorize actions. After detecting these 

landmarks, a neural network is used for classification of the different activities.  

The output of the model in terms of data includes all possible categories or movements 

that have been detected (labels), as well as the confidence or probability of each of them, 

selecting the one with highest confidence as the predicted action. 

 

 

Figure 2: Simplified diagram of Action Classifier from CoreML 

 

For each of these landmarks, both x and y coordinates are computed. For example, in 

Fugl-Meyer activities, landmarks can include the hand, arm, or shoulder positions during 

movement. By tracking these landmarks, the model learns to associate specific patterns 

with different activities.  
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Figure 3: Vision framework body landmarks detection. 

 

3.2. Selection of the posture detection framework 

 

It is worth noting that existing machine learning models for posture recognition are 

primarily designed for a full-body perspective, specifically focusing on individuals in a 

standing position. That can be due to the dataset chosen for the pretraining of these 

models. However, stroke survivors and individuals undergoing Fugl Meyer assessment 

activities are typically seated. The existing models for seated positions aim at cameras 

located laterally to the participants, thus are not fitting for the context of the app in this 

thesis.  

One of the main tasks of this thesis has been to decide which framework to use to obtain 

the landmarks due to this limitation.  

As MoveNet is one of the state-of-the-art models for body landmarks detection, the first 

approach was to use this framework for this purpose. The idea was to first obtain these 

points and then use different classifiers for activity classification. The code for obtaining 

these captures is available in Appendix –  MoveNet screen captures code. 



 

 

15 

 

 

Figure 4: Body landmarks detected with MoveNet Thunder 

 

Figure 5: Body landmarks detected with MoveNet Lightning 



 

 

16 

 

Given these results, MoveNet cannot be used for the purpose of this application, as body 

landmarks are not well detected, probably because of the seated position. A classifier is 

highly dependent on the input data. In this case, the input data would not be representative 

of the different actions.   

Otherwise, landmark detection in CoreML is more accurate for the required task because 

of the use of Vision, thus the final classification would be more precise. Therefore, the 

justification for the use of this framework for the development of the app.  

 

 

Figure 6: Body landmarks detected with CoreML using Vision 
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3.3. Data collection: Creating the Dataset 

 

The development of an activity detection model for Fugl Meyer activities needs of the 

creation of a video dataset showcasing the specific target activities. As there is no dataset 

available online for such a purpose, this section delineates the primary steps involved in 

constructing the dataset.  

As the scope of this thesis is to provide a proof of concept for an app utilizing music 

therapy in motor stroke recovery, it is important to note that not all exercises encompassed 

by the Fugl Meyer assessment will be available in the dataset. Rather, the focus will be 

on two specific exercises: the movement of the hand from the knee to the ear, as well as 

shoulder lateral flexion spanning the range of 0 to 90 degrees. Both are done with both 

hands. 

 

 

Figure 7: Ear exercise example 
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Figure 8: 90lateral exercise example 

 

Regarding the video recording setup, the camera's positioning should allow for a complete 

view of the participant's body in the frontal camera frame. Video samples should be 

recorded at a frame rate of 30 frames per second (fps), as this aligns with the configuration 

of the developed app's camera input. If recorded at any other frame rate, this info would 

need to be updated both in the model configuration and in the corresponding parts of the 

code regarding data input. 

Videos have been recorded using the frontal camera of an iPhone 12 set to 30fps, then 

cropped with Adobe Premiere to 1 second duration clips, manually labelled and organized 

in a directory structure categorizing the activities performed. Independently of how many 

exercises are to be detected, an extra “negative” category with examples of no-movements 

(i.e. resting position) needs to be added for the proper function of CreateML classifier. 
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Figure 9: Database folder distribution for training and testing 

The resulting dataset consists of 340 clips: 

Table 1: Dataset clips and classes distribution 

Activity label Total clips 

Ear left 68 

Ear right 69 

90lateral left 67 

90lateral right 68 

Other (resting) 68 

Total 340 

 

3.4. Training CoreML 

 

The Action Classifier Model undergoes a training process where it learns from a labelled 

dataset, where each example is associated with a specific activity category. Once trained, 

it can be used to predict the activity category of new, unseen examples. By feeding the 

input data, such as an image or video frame, into the model's neural network, the model 

analyses the input and generates a prediction indicating the most likely activity category. 

CreateML automatically divides data for training and validation. Optionally, a set of clips 

can also be selected for testing evaluation. The number of iterations, the prediction 

window size and the framerate of the input data can be selected. Data augmentation is 
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also possible thanks to the horizontal flip feature that it offers, training then the same 

action for both sides. 

 

The accuracy of the trained model can be measured using metrics like precision, recall, 

and F1 score. This helps determine the effectiveness of the model in recognizing and 

classifying activities. A preview of the model behaviour is also available in the same 

program for quick testing, either with pre-recorded videos or live camera input. 

The dataset has been automatically split for training and validation. For testing evaluation, 

around 20% of the dataset has been separated.  

 

3.5. FuglMeyerApp – the result app 

 

The resulting app from this thesis, FuglMeyerApp, is an iOS app coded in Swift using 

XCode 14.3.  

 

What the app essentially does is described in the following diagram. First, a live video 

feed from the frontal camera of the user is sent to the app. This input feed is then analysed 

within a defined prediction window. For every frame in this window, with the use of 

Vision framework, body landmarks are detected. With said landmarks, then the trained 

model can predict which activity the user is doing. If the confidence for such prediction 

is higher than a threshold, the prediction is considered valid, and a sound is played as 

feedback. The sound varies according to the activity that is being completed. As a help 

for the user to understand with the app functioning, a preview layer is added as a unique 

output in the user’s screen, in which the user can see on top of themselves in real-time the 

body landmarks that have been detected.  
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Figure 10: Proposed application scheme 

 

The dependencies used for this purpose are Vision, AVFoundation and CoreML.  

The code for the main parts of the app can be found in Appendix – Main APP Code Parts. 

Also in Appendix, a README file is included. The following documentation serves as a 

comprehensive guide to understanding the app's structure and behaviour. 

 

3.5.1.Structure 

 

The modular structure and organized codebase ensure scalability and maintainability, 

allowing for further enhancements and customization. The app is now functioning for 

five classes (ear right, ear left, 90 lateral right, 90 lateral left and others). But more 

activities could be easily added to the app with no issue due to its structure. The main 

parts of the app: 

- View Components: These components handle how the app looks and how users 

interact with it. They include the main view controller, storyboard files, and 

various UI elements like buttons, labels, and video preview layers. 

- Capture and Processing Components: These components are responsible for 

capturing video data from the device's camera and processing it to estimate body 
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positions and predict actions. The VideoCapture class handles video capturing, 

while the Predictor class processes the data and makes predictions. 

- Machine Learning Model: At the heart of the action prediction functionality lies 

a trained machine learning model. In this app, the FMClassifier (Fugl-

MeyerClassifier) model is used, which analyzes body pose observations to label 

detected actions. 

- Audio Feedback Components: These components provide real-time auditory cues 

to the user based on the detected actions. To accomplish this, we use 

AVAudioPlayer instances to play sound files that deliver ear and lateral cues. 

 

3.5.2.  Capturing data 

 

The VideoCapture class is responsible for capturing video data from the device's frontal 

camera and passing it to the predictor for further processing. It utilizes the AVFoundation 

framework to set up an AVCaptureSession, which manages the input (camera) and output 

(video data). The main behavior of this class includes: 

- Initialization: Upon initialization, the VideoCapture class sets up the capture 

session and adds the AVCaptureVideoDataOutput, which is responsible for 

receiving video frames. 

- Capture session Start: The startCaptureSession() method is called to start the 

capture session and activate the video capture. 

- Sample Buffer Delegate: The class conforms to the 

AVCaptureVideoDataOutputSampleBufferDelegate protocol, allowing it to 

receive sample buffers containing video frames. The output capture method is 

triggered whenever a new sample buffer is available. In this method, the predictor 

instance is invoked to estimate body poses based on the received sample buffer. 

 

3.5.3. Predictor 

The Predictor class is responsible for analyzing the body pose observations received from 

the video capture and making predictions about the detected actions. It utilizes a trained 

machine learning model (*FMClassifier*) to label the actions and calculates the 
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confidence level for each prediction. It also delegates the recognized points to the 

ViewController for visualization. The key behaviors of this class include: 

- Body Pose Estimation: The estimation method is called when a new sample buffer 

is received. It uses Vision and a human body pose request to process the sample 

buffer and obtain human body observation instances representing body poses. 

- Recognized Points Processing: For each received human body observation, the 

recognized body points are extracted and transformed to display coordinates. The 

transformed points are then sent to the delegate through 

the didFindNewRecognizedPoints() method for visualization purposes. 

- Action Labeling: The stored human body observation instances are used as input 

to the FMClassifier model to predict the actions. The labeled action and its 

confidence level are sent to the delegate through the didLabelAction() method. 

- Observation Storage: The class maintains a window of human body observation 

instances to ensure a continuous stream of data for action prediction. When a new 

observation is received, it is stored in the window. If the window exceeds the 

defined prediction window size, the oldest observation is removed. 

The recognized points are superposed to the input camera information, showing the points 

on top of the user’s body. This is done so the user can be certain that their extremities are 

being properly captured by the app and to notice situations such as lag, delays or points 

out of position which could occur in case of error.  

 

3.5.4. Adding sound 

 

The audio feedback functionality is implemented using AVAudioPlayer instances. Based 

on the labelled actions and their confidence levels, the app provides real-time auditory 

cues to the user upon action completion. The specific audio files and playback logic can 

be customized and extended according to the specific requirements of the rehabilitation 

program. This means, if more activities were added in the future, more sounds could also 

be introduced easily in the code. 
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3.5.5. Accessibility and landing screen 

 

As the target for this application is people who are recovering from a stroke, some 

considerations are needed regarding the layout of the application. The app itself should 

be as easy as possible to use. Because of this, no registration is needed, and the idea is to 

have an app that is “plug and play”. As soon as the app is started, after granting access to 

the camera, the frontal camera is enabled and body key points are displayed on top of the 

user’s view. From that moment, the app can detect the exercises. This is the easiest 

scenario that could be implemented. Even if users do not have others nearby to help them 

set up the app, the app should be easy enough to use. Exercises demanded on the app 

should also be easy to do and the app behavior should be understandable by the user.  

A landing screen showing how to setup properly the camera should suffice for using the 

application. 

 

 

Figure 11: Example of landing screen 
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3.6. Music Therapy principles in the app  

 

One of the key motivations of building this kind of application was to incorporate music 

therapy principles into it, with the idea to come up with a solution that does not require 

external hardware. For this, different music therapy techniques were studied, deciding 

how it could be included in an app of this nature to help with post-stroke motor recovery. 

The approach that seemed more convenient was Therapeutic Instrumental Music 

Performance (TIMP), in which instruments are used as auditory, tactile or visual 

feedback. TIMP emphasizes the therapeutic benefits of actively engaging with musical 

instruments, such as promoting coordination and motor control. In this app, users interact 

with the “virtual instrument” of their body through their motor movements, creating a 

dynamic and interactive musical experience. The app leverages the inherent rhythmic 

elements of music to facilitate motor learning, enhance motivation, and provide a sense 

of enjoyment and accomplishment.  

 

Upon completion of an action, auditory feedback is generated, akin to the production of 

sound when playing a percussive musical instrument, which typically requires physical 

movement. The sounds selected for this demo are drums and percussion clips from 

Freesound, so that the body of the user feels like a drum set themselves. This decision has 

been made taking into consideration that not every user might be able to differentiate the 

pitch or different notes of the same instrument, thus it would be easier to have a variety 

of instruments that are not precisely melodic for this purpose. This selection also enables 

users to engage in drumming while participating in music therapy sessions at the hospital, 

where music therapists commonly utilize the piano or guitar. Furthermore, users can play 

the drums along with their preferred music at home, or alternatively, practice exercises 

aimed at creating rhythmic patterns. 
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3.7. Usability Questionnaire  

 

When designing a therapeutic application, usability is a must. Users should find some 

benefit in using it and doing the exercises. Also, it should not be difficult to understand 

what is happening. Otherwise, the contribution of this thesis would be only technical and 

not practical.  

The ideal situation would have been to conduct a clinic study with stroke survivors during 

some months, a control group who would have been using the app several times a week 

as a supplement to their normal therapy sessions, and another group who just had the 

music therapy sessions at the hospital with no extra practice. Progress for patients in both 

groups could have been tracked with Fugl-Meyer Assessment evaluation. But due to time 

constraints, this escapes the scope of this thesis and is encouraged to do in the future.  

As an alternative, testing sessions have been conducted with volunteers from their 20s to 

people in their 80s, focusing more on people older than 40 years. In each of these 

individual sessions, individuals have been given contextual information on what is stroke, 

the inconveniences and difficulties that stroke survivors might deal with, what is music 

therapy and how it is used for stroke recovery, specially TIMP. After that, they were 

asked to use the application for a few minutes and to complete the usability questionnaire 

that can be found in Appendix – Usability questionnaire. Examples of questions include 

a rating on how intuitive to use the app is, how easy to do the exercises are, and app’s 

overall behaviour, among others. 
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4. Results 

4.1. CoreML 

 

The Activity classifier model used in the application has been trained as follows: 

- Number of iterations: 60 

- Augmentation (Horizontal flip): no 

- Frame rate: 30 fps 

- Action duration: 1 second (30-frame prediction window) 

Table 2: Testing evaluation FMClassifier iteration 20 

Class Count Precision Recall F1 Score 

Ear right (4) 26 100% 81% 0.89 

Ear left (3) 26 100% 73% 0.84 

90lateral right (2) 21 100% 71% 0.83 

90lateral left (1) 26 100% 65% 0.79 

Other (0) 15 36% 100% 0.53 

 

Here are some examples of the model live output using the camera from the Macbook 

Pro with the labels predictions and confidence levels. Labels are 3 (ear left, meaning the 

exercise is done with the left hand) and 2 (90lateral right).  

 

 

Figure 12: Live Output predictions of the trained CoreML model 
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4.2. FuglMeyerApp 

 

The outcome of this thesis work culminates in the development of an iOS application that 

enables the generation of sounds upon successful completion of specific exercises from 

the Fugl Meyer assessment. Through the utilization of this app, the participant's body 

assumes the role of a percussive musical instrument. The aim of this app is to help post-

stroke survivors with their upper-limb motor recovery. 

 

 

Figure 13: FuglMeyerApp with custom logo 

 

In order to test the app, an iPhone is connected via cable to a MacbookPro where the 

XCode project with the application is stored. Then, in XCode with the run option, the 

iPhone is selected and the app is built into it. All tests regarding the app show real results 

in terms of timings and processing, because even though the original code is in XCode, 

the app runs the version that has been built into the iPhone. Posting the app on AppStore 

would be possible after following some requirements. Still, this would require revision 

and approval from people at Apple, so this was the faster way to test the application. On 

the other hand, there is no app hosting fee per se, but an annual fee of 99€ for the Apple 

Developer Program is needed to publish the app, which is also another constraint.  
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Figure 14: Screenshot of the iPhone while the app is being used 

 

The app’s code as well as other code used in this thesis for results is available in 

https://github.com/mireiadg/fuglmeyer_recovery.git  

 

 

  

https://github.com/mireiadg/fuglmeyer_recovery.git
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4.3. Questionnaire results 

 

The complete results chart can be found in Appendix – Usability Questionnaire Results.  

- Demographics: 

The age of the volunteers ranged from 24 to 85 years, with a fairly wide distribution. 

There are 8 males and 13 females in the sample.  

4 out of 21 volunteers reported having an upper-limb movement limitation, which is 

roughly 19% of the sample.  

- Usability Evaluation 

All questions in this section were marked with a score from 1 to 5. 

 

Table 3: Usability questions average score (out of 5) 

Question Average 

U1 (Overall Usability): 4,84 

U2 (Ease of Exercises): 4,69 

U3 (Technical Issues): 3,99 

U4 (Intuitiveness): 4,36 

U5 (Configuration Information Clarity): 3,86 

U6 (Response Time): 4,21 

 

 

U1 (Overall Usability): The average rating for overall usability is 4.81 (out of 5). This 

suggests that users generally found the app to be very easy to use. 

U2 (Ease of Exercises): The average rating is 4.69. Users generally found the exercises 

easy to do.  

U3 (Technical Issues): The average rating is 3,99. Most users did not encounter 

significant technical issues, though a few reported some problems. There is room for 

improvement here. 

U4 (Intuitiveness): The average rating is 4,36. This suggests that the app is generally 

perceived as intuitive to use.  
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U5 (Configuration Information Clarity): The average rating is 3,86. This is relatively 

lower compared to other usability metrics, suggesting that the clarity of the configuration 

information might be an area for improvement. 

U6 (Response Time): The average rating is 4,32 This suggests that most users found the 

app’s response time to be fast.  

- Musical Instrument Substitution 

MI1 (Potential to Substitute a Traditional Instrument): Most of the volunteers (18 out of 

21) either ‘Agree’ or ‘Slightly Agree’ that the app has the potential to substitute a 

traditional musical instrument in the context of music therapy for stroke recovery. 

MI2 (Comparison to Playing a Traditional Percussive Instrument): The majority of 

volunteers (18 out of 21) either ‘Agree’ or ‘Slightly Agree’ that the use of the app is 

comparable to playing a traditional musical instrument. However, three volunteers 

‘Slightly Disagree’ with this statement.  

MI3 (Easier with a Musical Instrument): All volunteers (21 out of 21) answered ‘NO’ to 

whether they think the exercises would be easier to do with a musical instrument. This 

suggest that the users don’t see a traditional instrument as necessary for the exercises.  
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5. Discussion 

 

In this thesis, a significant consideration has been the selection of an appropriate machine 

learning framework for body landmark detection, critical for the accurate classification 

of post-stroke upper-limb motor activities. The majority of existing models for posture 

recognition, such as MoveNet, are designed with a focus on full-body perspectives and 

are typically trained on datasets of individuals in standing positions or doing full-body 

movements. This paradigm presents a limitation for applications like the one in this thesis, 

which targets populations that are typically in a seated position. 

 

When experimenting with MoveNet, the body landmarks detected were misaligned, 

probably due to the seated position of the users. A classifier’s effectiveness is intrinsically 

tied to the quality of its input data, and in this context, MoveNet was not sufficient. In 

contrast, with CoreML and Vision from Apple, body landmarks were more accurate for 

seated individuals. Contrary to MoveNet which shares the datasets used for this training,  

Vision does not specify which database has been used for its training as it is a commercial 

model. By seeing the results, it is more than likely that the database that they are using 

includes more seated examples. The decision of using CoreML models for this thesis 

enabled the development of the classification for the Fugl-Meyer Assessment activities 

in the resulting app. 

This work, therefore, not only contributes a potential solution for post-stroke motor 

recovery with music therapy but also sheds light on the significant gap in existing 

machine learning models regarding accurate assessment of seated individuals, a common 

scenario in clinical evaluations. 

 

Regarding the evaluation of the app, the results predominantly indicate a positive user 

experience. The usability questions indicate that users found the exercises easy to perform 

(4,69/5) and the app to be intuitive (4,36/5) with a satisfactory response time (4,21/5).  

There are two areas that received a lower score. The clarity of the configuration 

information (3,86/5) indicates that users may benefit from more explicit instructions or 

guidance within the app. On the other hand, some users experienced technical issues 
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(3,99/5) with the detection of exercises. Users who were wearing flowing clothing 

reduced the model’s accuracy when trying to detect their body key points, this is stated 

as a model limitation in Apple developer’s Vision framework official webpage. The 

generated model for this thesis is also not perfect and might mistake an action for another 

in some cases.  

A majority of the participants felt the app has the potential to substitute a traditional 

musical instrument, aligning with the goal of the application. Furthermore, all 

participants, regardless of their upper-limb mobility status, did not perceive the need for 

conventional instruments to facilitate the exercises and emphasized the independent value 

of the app. 

 

There were certain inherent limitations when the topic of this work was decided. First, 

obviously, the constraints of using a model that can be deployed in a mobile application, 

as the app was the final goal. Also due to materials availability and that it is not possible 

to use an app simulator on the computer to test and debug an app that is using live video 

feed, the app was developed for an iOS environment. This study assumes that patients 

have access to and familiarity with the necessary technology, which could be a significant 

limitation among older adults. In order to prevent this issue, the app design is as simple 

as possible, assuming the user will be able to locate their mobile phone accordingly to the 

instructions. Also, due to time limitations, the study did not evaluate the long-term effects 

and retention of motor skills developed through the use of the app, which would help 

assess the sustained impact of this intervention. 

 

If found to be effective, this research suggests that the app could be integrated into 

standard post-stroke rehabilitation protocols, thereby offering a novel, cost-effective, and 

engaging method for patients to improve their upper-limb motor function. The app’s 

potential to make rehabilitation exercises more accessible could be transformative, 

especially for individuals who are unable to attend frequent in-person therapy sessions 

due to geographical, financial, or health-related constraints. This study also opens the 

door to more personalized, patient-centred care. The app’s exercises could be adapted on 

each patient’s progress and preferences. By integrating music therapy principles into 
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digital health interventions, this app could contribute to expanding the scope and 

acceptance of music therapy techniques in various clinical settings. 

 

Future work in this field should consider a wider participant sample size, with a diverse 

demographic representation of the stroke survivor population. Participants with varying 

degrees of upper-limb motor impairment should be involved to assess the app’s 

effectiveness across different stages of recovery, long-term. In addition to this, the 

integration with alternative machine learning models for detecting body landmarks in 

seated individuals should be investigated. As the current study uses CoreML and Vision 

from Apple, it may be beneficial to explore the development of platform-independent 

models that are accessible for various operation systems and devices. 
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6. Conclusions   

 

This thesis demonstrates the potential for a mobile application, grounded in music therapy 

principles and utilizing machine learning techniques, to play a meaningful role in the 

upper-limb motor recovery of stroke survivors. The study found that participants 

generally rated the app as highly usable, with particularly positive feedback regarding its 

intuitive design and ease of exercises. Users also agree that the app has the potential to 

substitute a traditional percussive instrument in the context of music therapy for post-

stroke rehabilitation. The chosen machine learning framework for body landmark 

detection and pose estimation is CoreML, combined with Vision from Apple, which 

proved to be more accurate for seated positions compared to other tested frameworks such 

as MoveNet. This work also sheds light on the gap that there is in machine learning 

models regarding proper assessment of body pose detection in seated individuals.  

 

This research adds valuable insights to the field that merges music therapy, digital health 

technologies, and stroke recovery interventions. The results indicate that an application 

like the one developed in this thesis could be of great value to assist in the post-stroke 

recovery process, making rehabilitation more accessible and engaging for patients.
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A. Appendices 
 

a.  README file 
 

FuglMeyerApp is an iOS application that utilizes computer vision and audio playback to 

detect specific body movements included in the Fugl Meyer assessment for stroke 

recovery, and provide audio feedback when actions are completed. The app captures 

video from the device's front camera, processes it to estimate body positions, and plays 

corresponding audio sounds based on the detected movements. 

 

The codebase consists of three main components: 

 

1. **ViewController.swift**: This file contains the main view controller class 

responsible for managing the app's user interface and coordinating interactions 

with the video capture and prediction components. 

2. 2. **Predictor.swift**: The Predictor class is responsible for analyzing the body 

pose observations received from the video capture and making predictions about 

the detected actions. It utilizes a trained machine learning model (*FMClassifier*) 

to label the actions and calculates the confidence level for each prediction. It also 

delegates the recognized points to the ViewController for visualization. 

3. 3. **VideoCapture.swift**: The VideoCapture class handles the capture of video 

data from the device's front camera. It configures an AVCaptureSession to 

manage the input (camera) and output (video data) and sets up an 

AVCaptureVideoDataOutput to receive the video frames. It also delegates the 

received sample buffers to the Predictor for pose estimation. 

 

##Dependencies 

- AVFoundation: Used for capturing video data, audio playback, and managing 

AVAudioPlayer instances. 

- Vision: Provides support for body pose estimation using 

VNHumanBodyPoseObservation. 

- CoreML: Enables the integration and utilization of a trained machine learning model 

(FMClassifier) for action prediction. 
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##Getting Started 

To run the FuglMeyerApp, follow these steps: 

1. Clone the repository to your local machine. 

2. Open the project in Xcode. 

3. Build and run the app on your iOS device or simulator. 

4. Grant permission for the app to access the camera. 

 

##Behavior 

 

1. When the app is launched, the ViewController's `viewDidLoad()`method is called, 

triggering the setup of the video preview and audio file preloading. The 

AVCaptureVideoPreviewLayer is added as a sublayer to the view, allowing real-time 

video display. Audio files for ear and lateral sounds are preloaded using AVAudioPlayer. 

 

2. The `setupVideoPreview()`method initializes the video capture by starting the capture 

session and setting up the AVCaptureVideoPreviewLayer for previewing the captured 

video. 

 

3. The `preloadAudioFiles()`method loads the ear and lateral sound files into 

AVAudioPlayer instances to be played later during action detection. 

 

4. The ViewController conforms to the PredictorDelegate protocol, implementing the 

delegate methods `didFindNewRecognizedPoints()`and `didLabelAction()`. These 

methods are called by the Predictor when new recognized body points or labeled actions 

are available. 

 

5. The Predictor class estimates body poses by receiving CMSampleBuffer objects 

through the `estimation(sampleBuffer:)`method. It uses Vision and Core ML to process 

the video frames and extract VNHumanBodyPoseObservation instances. 



 

 

43 

6. For each received VNHumanBodyPoseObservation, the recognized body points are 

extracted and transformed to display coordinates. The transformed points are then passed 

to the ViewController using the delegate method `didFindNewRecognizedPoints()`. 

 

7. The Predictor maintains a window of VNHumanBodyPoseObservations for prediction 

purposes. When a new observation is received, it is added to the window, and the oldest 

observation is removed if the window reaches its maximum size 

(predictionWindowSize). 

 

8. The Predictor uses a trained machine learning model (FMClassifier) to label the actions 

based on the stored observations in the window. The labeled action and its confidence 

level are sent to the ViewController using the delegate method `didLabelAction()`. 

 

9. When an action is labeled and its confidence level exceeds the specified threshold, the 

ViewController triggers the corresponding behavior. If the action is "ear," the ear sound 

is played using the AVAudioPlayer for auditory feedback. If the action is "90lateral," the 

lateral sound is played. 

 

10. A delay of 3 seconds is introduced after an action is detected to prevent rapid and 

repeated action triggering. The corresponding flag (isClapDetected or isArmDetected) is 

reset after the delay to allow the detection of subsequent actions. 
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b. Appendix – Usability questionnaire 
 

1. General information: 

Age: 

Gender: 

Upper-limb restrained mobility (yes/no): 

2. Usability Evaluation: 

U1: On a scale of 1 to 5, rate the overall usability of the app, with 1 being very difficult 

to use and 5 very easy to use. 

U2: On a scale of 1 to 5, rate how easy to do were the exercises, with 1 being very difficult 

and 5 very easy. 

U3: On a scale of 1 to 5, rate the behaviour of the app, with 1 being that there were a lot 

of technical issues or bugs and 5 no technical issues or bugs. 

U4: On a scale of 1 to 5, rate how intuitive was the app to use, with 1 being not intuitive 

at all, 5 very intuitive. 

U5: On a scale of 1 to 5, rate the configuration information presented, with 1 being very 

poor information and 5 very clear information. 

U6: On a scale of 1 to 5, how fast was the app’s response, with 1 being really slow and 5 

very fast. 

3. Musical instrument Substitution: 

MI1: Agree, Slightly Agree, Slightly Disagree, Disagree. The app has the potential to 

substitute a traditional musical instrument. 

MI2: Agree, Slightly Agree, Slightly Disagree, Disagree. The use of the app is 

comparable to playing a traditional musical instrument. 

MI3: Do you think the exercises would be easier to do with a musical instrument? 
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c. Appendix – Usability Questionnaire Results 
 

QUESTIONNAIRE 

RESULTS

Volunteer Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Age 60 24 63 83 40 36 70 28 66 85 45 38 52 30 29 32 68 48 41 55 35

Gender F M M F F F F M F F M F M M M M F M F M M

Upper-limb 

limitation YES NO NO NO NO NO YES NO YES NO NO YES NO NO NO NO YES NO NO NO NO

U1 5 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 4 5 5 5 5

U2 4 5 5 5 5 5 4 5 4 5 5 4 5 5 5 5 4 5 4 5 5

U3 5 4 4 5 5 1 4 5 3 5 5 3 5 5 5 5 3 5 2 5 5

U4 5 5 5 4 4 3 4 5 4 4 5 3 5 5 5 5 4 5 3 5 5

U5 4 3 3 3 5 5 3 4 3 5 3 4 5 3 4 4 3 5 4 5 5

U6 5 4 4 5 3 3 4 5 4 5 4 3 5 5 5 5 4 4 3 5 5

MI1

Slightly 

Agree

Slightly 

Agree Agree

Slightly 

Agree Agree Agree

Slightly 

Agree Agree Agree

Slightly 

Agree

Slightly 

Agree

Slightly 

Agree Agree Agree

Slightly 

Agree Agree Agree

Slightly 

Agree Agree Agree Agree

MI2

Slightly 

Agree

Slightly 

Agree

Slightly 

Disagree

Slightly 

Agree Agree

Slightly 

Agree

Slightly 

Agree Agree

Slightly 

Disagree

Slightly 

Agree Agree

Slightly 

Agree

Slightly 

Agree Agree Agree Agree

Slightly 

Disagree

Slightly 

Agree

Slightly 

Agree

Slightly 

Agree Agree

MI3 NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO

Table 4: Questionnaire Results Table 
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d. Appendix –  MoveNet screen captures code 
 

import tensorflow as tf 

import tensorflow_hub as hub 

import cv2 

import os 

 

# Load the MoveNet "thunder" model from TensorFlow Hub 

#model_url = "https://tfhub.dev/google/movenet/singlepose/thunder/1" 

model_url = "https://tfhub.dev/google/movenet/singlepose/lightning/4" 

model = hub.load(model_url) 

 

def movenet(input_image): 

    input_tensor = tf.image.convert_image_dtype(input_image, 

dtype=tf.int32)[tf.newaxis, ...] 

    keypoints_with_scores = model.signatures['serving_default'](input_tensor) 

    return keypoints_with_scores['output_0'] 

 

def process_video(video_path): 

    cap = cv2.VideoCapture(video_path) 
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    while cap.isOpened(): 

        ret, frame = cap.read() 

        if not ret: 

            break 

        # Convert the BGR image to RGB 

        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

        #for thunder: 

        #frame_rgb = cv2.resize(frame_rgb, (256,256)) 

        #for lightning: 

        frame_rgb = cv2.resize(frame_rgb, (192,192)) 

        # Predict the pose 

        keypoints_with_scores = movenet(frame_rgb) 

        keypoints = keypoints_with_scores[0].numpy()[0, :, :2] 

         

        # Visualize the keypoints on the image 

        for kp in keypoints: 

            y, x = kp 
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            cv2.circle(frame, (int(x * frame.shape[1]), int(y * frame.shape[0])), 3, (0, 

255, 0), -1) 

         

        cv2.imshow("MoveNet Pose Estimation", frame) 

        if cv2.waitKey(1) & 0xFF == ord('q'): 

            break 

    cap.release() 

    cv2.destroyAllWindows() 

 

# Assuming your dataset is organized as "base_dir/ClassName/video_file.mp4" 

base_dir = "/Users/mireiadegracia/Documents/UNI/Fugl Recovery 

2/new_dataset_clips" 

for class_folder in os.listdir(base_dir): 

    if class_folder != '.DS_Store': 

 

        class_path = os.path.join(base_dir, class_folder) 

     

        for video_file in os.listdir(class_path): 

            if video_file != '.DS_Store': 
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                video_path = os.path.join(class_path, video_file) 

                process_video(video_path) 
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e. Appendix – Main APP Code Parts 

Predictor 

// 

//  Predictor.swift 

//  FuglMeyerApp 

// 

//  Created by Mireia de Gracia on 18/5/23. 

// 

 

import Foundation 

import Vision 

 

// typealias FMClassifier = fugl_meyer_test_1 

//typealias FMClassifier = MyActionClassifier_2 

//typealias FMClassifier = fugl_meyer_test_12 

//typealias FMClassifier = FuglMeyerActionClassifier_1_Iteration_40 

typealias FMClassifier = FuglMeyerActionClassifier_3_Iteration_60 

//typealias FMClassifier = Fugl_meyer_test_9_Iteration_40 

// typealias FMClassifier = Fugl_meyer_classifier_2 

 

protocol PredictorDelegate: AnyObject { 

    func predictor(_ predictor: Predictor, didFindNewRecognizedPoints points: 

[CGPoint]) 

    func predictor(_ predictor: Predictor, didLabelAction action: String, with 

confidence: Double) 

} 

 

class Predictor { 
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    let predictionWindowSize = 30 // Number of observations to keep in the 

posesWindow 

    var posesWindow: [VNHumanBodyPoseObservation] = [] // Window of 

VNHumanBodyPoseObservation objects 

     

    init() { 

        posesWindow.reserveCapacity(predictionWindowSize) // Reserve capacity 

for the posesWindow array 

    } 

     

    weak var delegate: PredictorDelegate? // Delegate to notify about recognized 

points and labeled actions 

     

    func estimation(sampleBuffer: CMSampleBuffer) { 

        let requestHandler = VNImageRequestHandler(cmSampleBuffer: 

sampleBuffer, orientation: .up) 

         

        let request = VNDetectHumanBodyPoseRequest(completionHandler: 

bodyPoseHandler) 

         

        do { 

            try requestHandler.perform([request]) // Perform the request to detect 

human body pose 

        } catch { 

            print("Unable to perform the request with error: \(error)") 

        } 

    } 
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    func prepareInputWithObservations(_ observations: 

[VNHumanBodyPoseObservation]) -> MLMultiArray? { 

        let numAvailableFrames = observations.count 

        let observationsNeeded = 30 

        var multiArrayBuffer = [MLMultiArray]() 

         

        for frameIndex in 0 ..< min(numAvailableFrames, observationsNeeded) { 

            let pose = observations[frameIndex] 

            do { 

                let oneFrameMultiarray = try pose.keypointsMultiArray() // Get the 

keypoints as a multi-array 

                multiArrayBuffer.append(oneFrameMultiarray) // Append the multi-

array to the buffer 

            } catch { 

                continue 

            } 

        } 

         

        if numAvailableFrames < observationsNeeded { 

            for _ in 0 ..< (observationsNeeded - numAvailableFrames) { 

                do { 

                    let oneFrameMultiArray = try MLMultiArray(shape: [1, 3, 18], 

dataType: .double) 

                    multiArrayBuffer.append(oneFrameMultiArray) 

                    try resetMultiArray(oneFrameMultiArray) 

                } catch { 

                    continue 

                } 
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            } 

        } 

         

        return MLMultiArray(concatenating: [MLMultiArray](multiArrayBuffer), axis: 

0, dataType: .float) // Concatenate the multi-arrays along axis 0 

    } 

     

    func resetMultiArray(_ predictionWindow: MLMultiArray, with value: Double = 

0.0) throws { 

        let pointer = try UnsafeMutableBufferPointer<Double>(predictionWindow) 

        pointer.initialize(repeating: value) // Set all values in the multi-array to the 

given value 

    } 

     

    func bodyPoseHandler(request: VNRequest, error: Error?) { 

        guard let observations = request.results as? 

[VNHumanBodyPoseObservation] else { return } 

         

        observations.forEach { 

            processObservation($0) // Process each observation and notify the 

delegate about recognized points 

        } 

         

        if let result = observations.first { 

            storeObservation(result) // Store the first observation in the 

posesWindow 
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            labelActionType() // Label the action type based on the stored 

observations 

        } 

    } 

     

    func labelActionType() { 

        guard let movementsClassifier = try? FMClassifier(configuration: 

MLModelConfiguration()), 

              let poseMultiArray = prepareInputWithObservations(posesWindow), 

              let predictions = try? movementsClassifier.prediction(poses: 

poseMultiArray) else { 

            return 

        } 

         

        let label = predictions.label // Get the predicted action label 

        let confidence = predictions.labelProbabilities[label] ?? 0 // Get the 

confidence of the predicted action 

         

        delegate?.predictor(self, didLabelAction: label, with: confidence) // Notify 

the delegate about the labeled action 

    } 

     

    func storeObservation(_ observation: VNHumanBodyPoseObservation) { 

        if posesWindow.count >= predictionWindowSize { 

            posesWindow.removeFirst() // Remove the oldest observation if the 

posesWindow is full 

        } 
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        posesWindow.append(observation) // Append the new observation to the 

posesWindow 

    } 

     

    func processObservation(_ observation: VNHumanBodyPoseObservation) { 

        do { 

            let recognizedPoints = try observation.recognizedPoints(forGroupKey: 

.all) // Get the recognized points for all groups 

             

            var displayedPoints = recognizedPoints.map { 

                CGPoint(x: $0.value.x, y: 1 - $0.value.y) // Adjust the coordinates of 

recognized points for display 

            } 

            delegate?.predictor(self, didFindNewRecognizedPoints: 

displayedPoints) // Notify the delegate about the recognized points 

        } catch { 

            print("error finding recognizedPoints") 

        } 

    } 

} 
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ViewController 

// 

//  ViewController.swift 

//  FuglMeyerApp 

// 

//  Created by Mireia de Gracia on 17/5/23. 

// 

 

import UIKit 

import AVFoundation 

import AudioToolbox 

 

class ViewController: UIViewController { 

    var audioPlayer: AVAudioPlayer? // Used for playing ear sound 

    var lateralAudioPlayer: AVAudioPlayer? // Used for playing lateral sound 

    var earSoundURL: URL! // URL of the ear sound file 

    var lateralSoundURL: URL! // URL of the lateral sound file 

    

    // to preview some actual data 

    let videoCapture = VideoCapture() // VideoCapture instance for capturing 

video 

     

    var previewLayer: AVCaptureVideoPreviewLayer? // Preview layer for 

displaying captured video 

    var isEarDetected = false // Flag to track if an ear movement is detected 

    var isArmDetected = false // Flag to track if an arm movement is detected 

    var pointsLayer = CAShapeLayer() // Layer for drawing recognized points 

     

    private func setupVideoPreview() { 
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        videoCapture.startCaptureSession() // Start the video capture session 

         

        previewLayer = AVCaptureVideoPreviewLayer(session: 

videoCapture.captureSession) // Create preview layer 

         

        do { 

            try AVAudioSession.sharedInstance().setCategory(.playback) // Set 

audio session category for playback 

            try AVAudioSession.sharedInstance().setActive(true) // Activate the 

audio session 

        } catch { 

            // Handle any errors that occur during audio session configuration 

            print("Failed to configure audio session: \(error.localizedDescription)") 

        } 

         

        // Ensure that the previewLayer is initialized 

        guard let previewLayer = previewLayer else { return } 

         

        view.layer.addSublayer(previewLayer) // Add preview layer to the view's 

layer 

        previewLayer.frame = view.frame // Set the frame of the preview layer 

         

        view.layer.addSublayer(pointsLayer) // Add points layer to the view's layer 

        pointsLayer.frame = view.frame // Set the frame of the points layer 

        pointsLayer.strokeColor = UIColor.green.cgColor // Set the stroke color of 

the points layer 

    } 

     



 

 

58 

    private func preloadAudioFiles() { 

        // Preload ear sound 

        if let earSoundPath = Bundle.main.path(forResource: "sound_test_ear", 

ofType: "wav") { 

            earSoundURL = URL(fileURLWithPath: earSoundPath) 

            do { 

                audioPlayer = try AVAudioPlayer(contentsOf: earSoundURL) 

                audioPlayer?.prepareToPlay() 

            } catch { 

                print("Failed to preload ear sound: \(error.localizedDescription)") 

            } 

        } 

         

        // Preload lateral sound 

        if let lateralSoundPath = Bundle.main.path(forResource: "sound_test_arm", 

ofType: "wav") { 

            lateralSoundURL = URL(fileURLWithPath: lateralSoundPath) 

            do { 

                lateralAudioPlayer = try AVAudioPlayer(contentsOf: 

lateralSoundURL) 

                lateralAudioPlayer?.prepareToPlay() 

            } catch { 

                print("Failed to preload lateral sound: \(error.localizedDescription)") 

            } 

        } 

    } 

     

    override func viewDidLoad() { 
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        super.viewDidLoad() 

        // Do any additional setup after loading the view. 

         

        setupVideoPreview() // Set up the video preview 

         

        videoCapture.predictor.delegate = self // Set the delegate for the video 

capture's predictor 

         

        preloadAudioFiles() // Preload audio files for playback 

    } 

} 

 

extension ViewController: PredictorDelegate { 

    func predictor(_ predictor: Predictor, didLabelAction action: String, with 

confidence: Double) { 

        // Action labeling delegate method 

        print(confidence) 

        print(action) 

        if (action == "ear_right" || action == "ear_left") && confidence > 0.80 && 

!isEarDetected{ 

            // If the action is "ear" and the confidence level is high enough, and no 

ear is currently detected 

             

            //print("ear detected") 

//            print(confidence) 

            isEarDetected = true // Set clap detected flag 

             

            DispatchQueue.main.async { 
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                if let audioPlayer = self.audioPlayer { 

                    audioPlayer.play() // Play the ear sound asynchronously 

                } 

            } 

             

            DispatchQueue.main.asyncAfter(deadline: .now() + 4) { 

                self.isEarDetected = false // Reset clap detected flag after a delay 

            } 

        } 

        else if (action == "90lateral_right" || action == "90lateral_left") && 

confidence > 0.80 && !isArmDetected{ 

            // If the action is "90lateral" and the confidence level is high enough, and 

no arm movement is currently detected 

 

//            print("arm detected") 

//            print(confidence) 

            isArmDetected = true // Set arm detected flag 

 

            DispatchQueue.main.async { 

                if let lateralAudioPlayer = self.lateralAudioPlayer { 

                    lateralAudioPlayer.play() // Play the lateral sound asynchronously 

                } 

            } 

 

            DispatchQueue.main.asyncAfter(deadline: .now() + 3) { 

                self.isArmDetected = false // Reset arm detected flag after a delay 

            } 

        } 
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    } 

     

    func predictor(_ predictor: Predictor, didFindNewRecognizedPoints points: 

[CGPoint]) { 

        // Point recognition delegate method 

         

        guard let previewLayer = previewLayer else { return } 

         

        let convertedPoints = points.map { 

            previewLayer.layerPointConverted(fromCaptureDevicePoint: $0) // 

Convert points to the layer's coordinate system 

        } 

         

        let combinedPath = CGMutablePath() // Create a combined path to draw 

recognized points 

         

        for point in convertedPoints { 

            let dotPath = UIBezierPath(ovalIn: CGRect(x: point.x, y: point.y, width: 

5, height: 5)) // Create an oval shape for each point 

            combinedPath.addPath(dotPath.cgPath) // Add the oval shape to the 

combined path 

        } 

         

        pointsLayer.path = combinedPath // Set the path of the points layer to the 

combined path 

         

        DispatchQueue.main.async { 
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            self.pointsLayer.didChangeValue(for: \.path) // Update the points layer 

asynchronously to reflect the changes made 

        } 

    } 

} 
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- VideoCapture 

// 

//  VideoCapture.swift 

//  FuglMeyerApp 

// 

//  Created by Mireia de Gracia on 17/5/23. 

// 

 

import Foundation 

import AVFoundation 

 

class VideoCapture: NSObject { 

    let captureSession = AVCaptureSession() // Capture session to manage input 

and output 

     

    let videoOutput = AVCaptureVideoDataOutput() // Output to capture video 

data 

     

    let predictor = Predictor() // Predictor for body position 

     

    override init() { 

        super.init() 

         

        // Specify the capture device (change default camera to front camera!!!) 

        // Create an AVCaptureDeviceInput to get data from the capture device 

        guard let captureDevice = 

AVCaptureDevice.DiscoverySession(deviceTypes: [.builtInWideAngleCamera], 

mediaType: .video, position: .front).devices.first, 

            let input = try? AVCaptureDeviceInput(device: captureDevice) else { 



 

 

64 

                return 

        } 

         

        // Configure the capture session 

        captureSession.sessionPreset = AVCaptureSession.Preset.high // Set 

data resolution to high 

        captureSession.addInput(input) // Add the input to the capture session 

        captureSession.addOutput(videoOutput) // Add the video output to the 

capture session 

        videoOutput.alwaysDiscardsLateVideoFrames = true // Discard late video 

frames to reduce latency 

    } 

     

    func startCaptureSession() { 

        captureSession.startRunning() // Start the capture session 

         

        // Set the VideoCapture class as the delegate for video output 

        videoOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: 

"videoDispatchQueue")) 

    } 

} 

 

extension VideoCapture: AVCaptureVideoDataOutputSampleBufferDelegate { 

    func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: 

CMSampleBuffer, from connection: AVCaptureConnection) { 

        predictor.estimation(sampleBuffer: sampleBuffer) // Perform body position 

estimation using the predictor 
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        // Additional code for processing the video data if needed 

        // let videoData = sampleBuffer 

        // print(videoData) 

    } 

} 
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f. Appendix – Action Classifier CoreML trained model 

structure 
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