

GLACIAL ISOSTATIC ADJUSTMENT AND ITS ROLE IN GEODESY

REBEKKA STEFFEN

GGOS DAYS 2023

NKG – NORDIC GEODETIC COMMISSION

Cooperation by researchers in geodesy within the Nordic countries

- national mapping authorities, universities and research institutes
- \Rightarrow most work is done within the working groups
 - WG of Reference Frames
 - WG of Height and Geoid
 - WG of Geodynamics and Earth Observation
 - WG of GNSS Positioning

⇒ addresses topics that are of common Nordic interest (e.g., glacial isostatic adjustment)

GLACIAL ISOSTATIC ADJUSTMENT (GIA)

Melting ice sheet

WHY IS GIA OF INTEREST FOR GEODESY?

kulty of Environmental Sciences, Chair of Geodetic Earth System Research

Martin Horwath

The ice sheets' contribution to sea-level rise

• Estima	ates
----------	------

- Uncertainties
- Processes

GGOS Days 2022 | 14-15 November 2022 | Munich

Conclusions

- The Greenland Ice Sheet and the Antarctic Ice Sheet contribute ~24% and ~ 9% to global mean sea-level rise over the last two decades.
- For Antarctica, acceleration of outlet glaciers (triggered by ice-ocean interaction) is the main mechanism of mass change.
- For Greenland, increased surface melt and glacier acceleration are about equally important.

- Antarctica bears the largest uncertainties for sea-level projections due to limited understanding of ice flow dynamics and its interactions with oceanic, atmospheric, and solid Earth processes.
- Major uncertainties in present-day volume and mass changes of ice and ocean are associated to core elements of geodetic data acquisition and analysis (hence to GGOS):
 - o degree-1 mass redistribution and geocenter motion
 - other low-degree components of the gravity field
 - reference frames
 - (glacial-isostatic adjustment).

GIA – OBSERVATIONS

A model that can describe all that (and more) will provide us the view into the future!

WHY DO WE NEED A GIA MODEL IN GEODESY?

$GIA \Longrightarrow$ signal vs. noise

GRACE trend

$GIA \Longrightarrow additional constraints$

Häkli et al. (2023)

Example for northern Europe – NKG2016LU (Vestøl et al., 2019)

Empirical model based on observations

Best-fitting GIA model (based on GNSS and RSL data)

Example for northern Europe – NKG2016LU (Vestøl et al., 2019)

Empirical model based on observations

Final land uplift model

APPLICATION OF GIA MODELS IN GEODESY Example for northern Europe – NKG RF17 vel (Häkli et al., 2019)

- Interpolation and extrapolation via leastsquares collocation
 - \Rightarrow Requires input parameters
 - \Rightarrow Covariance analysis

Example for northern Europe – NKG_RFI7_vel (Häkli et al., 2019)

 Covariance analysis without reducing a GIA model and doing a separate analysis for each horizontal GNSS component

EW component

NS component

Example for northern Europe – NKG RF17 vel (Häkli et al., 2019)

Covariance analysis without reducing a GIA model and doing a combined analysis of both horizontal GNSS components

Example for northern Europe – NKG_RFI7_vel (Häkli et al., 2019)

 Covariance analysis with reducing a GIA model and doing a combined analysis of both horizontal GNSS components

Example for northern Europe – NKG_RFI7_vel (Häkli et al., 2019)

Covariance analysis with reducing a GIA model and doing a combined analysis of both horizontal GNSS components

Without reducing the GIA model

Reducing the GIA model

GIA – MODELLING

Whitehouse (2018)

GIA – MODELLING

Uncertainties in GIA modelling

Ice model: ICE-6G

Earth model:VM5a

GIA – **VERTICAL VELOCITIES**

Steffen & Steffen (in prep.)

Ice model: ICE-6G

Earth model:VM5a

GIA – **VERTICAL VELOCITIES**

Steffen & Steffen (in prep.)

Compressible model

GIA – VERTICAL VELOCITIES

ncompressible mode

Earth model: ICE-6G GIA code: ICEAGE Ice model: ICE-6G Earth model: 90 km, $4 \cdot 10^{19} Pa \cdot s$, $2 \cdot 10^{21} Pa \cdot s$ GIA code: ICEAGE

Compressible mode

LANTMÄTERIET

-0.2

Incompressible mode

GIA – HORIZONTAL VELOCITIES

Ice model: ICE-6G Earth model:VM5a GIA code: ICEAGE

Steffen & Steffen (in prep.)

Compressible mode

GIA – HORIZONTAL VELOCITIES

incompressible

Ice model: ICE-6G Earth model:VM5a GIA code: ICEAGE Ice model: ICE-6G Earth model: 90 km, $4 \cdot 10^{19} Pa \cdot s$, $2 \cdot 10^{21} Pa \cdot s$ GIA code: ICEAGE

Incompressible

Compressible mode

Lower mantle viscosity: $4 \cdot 10^{21} Pa \cdot s$

GIA – MODEL CHOICE

GIA – MODEL CHOICE

Compressible best-fit model

Incompressible best-fit model

24

GLACIAL ISOSTATIC ADJUSTMENT (GIA) – OBSERVATIONS

A model that can describe all that (and more) will provide us the view into the future!

⇒GIA models are needed in various geoscientific fields, especially in geodesy Requires the availability of openly accessible model results, including uncertainty and details about the input parameters