
Asia Mathematika
Volume: 7 Issue: 2 , (2023) Pages: 57 – 70
Available online at www.asiamath.org

A perturbed elliptic problem involving the p(x)-Kirchhoff type triharmonic
operator

Eugenio Cabanillas Lapa1∗and Henry C. Zubieta Rojas2
1Instituto de Investigación, Facultad de Ciencias Matemáticas-UNMSM,

Lima-Perú. ORCID iD: 0000-0002-8941-4394
2Unidad de Posgrado, Facultad de Ciencias Matemáticas-UNMSM

Lima-Perú. ORCID iD: 0000-0001-9441-1369

Received: 19 Jul 2023 • Accepted: 06 Aug 2023 • Published Online: 31 Aug 2023

Abstract: This paper examines the existence of weak solutions for a nonlinear boundary value problem of p(x) -Kirchhoff
type involving the p(x) -Kirchhoff type triharmonic operator and perturbed external source terms. We establish our
results by using a Fredholm-type result for a couple of nonlinear operators, in the framework of variable exponent
Sobolev spaces.
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1. Introduction
The purpose of this work is to investigate the existence of weak solutions for the following nonlinear elliptic
problem involving the p(x) -Kirchhoff type triharmonic operator, with Navier boundary conditions

−M(L(u))∆3
p(x)u = fλ(x, u,∇u,∆u,∇∆u) en Ω,

u = ∆u = ∆2u = 0 en ∂Ω,
(1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω , and N ≥ 3 , p ∈ C(Ω) for any x ∈ Ω ;

M : R+ → R+ is a continuous function, L(u) =
∫
Ω

1
p(x) |∇∆u|p(x) dx , ∆3

p(x)u := div
(
∆

(
|∇∆u|p(x)−2 ∇∆u

))
is the so-called p(x) -triharmonic operator, p ∈ C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω} ;
1 < p− := minΩ p(x) ≤ p+ := maxΩ p(x) < N , fλ = f1 + λf2 , where f1, f2 are continuous functions and
λ ≥ 0 .

The study of differential and partial differential equations with variable exponent has received con-
siderable attention in recent years. This interest reflects directly into various range of applications. There
are applications concerning elastic mechanics [37], thermorheological and electrorheological fluids [3, 34], im-
age restoration [9] and mathematical biology [24]. In the context of the study of elliptic Navier boundary
problems, many results have been obtained, for example [10, 11, 28, 32]; however, there are few contribu-
tions to the study of the triharmonic problems with reaction term f(x, t, z, y, w) depending on on the gra-
dient, the Laplacian and the gradient of the Laplacian of the solution. We can cite [4, 5, 26, 31, 33, 35].
Recently, Mehraban et al. [30] considered the existence and multiplicity of solutions for the problem (1),
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with M(t) = 1, fλ(x, u,∇u,∆u,∇∆u) := µf(x, u) + λg(x, u) . We notice that if we choose the functional
L(u) =

∫
Ω

1
p(x) |∇u|p(x) dx then we have the problem

−M
(∫

Ω

1

p(x)
|∇u|p(x) dx

)
div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω, (2)

which is called the p(x) -Kirchhoff type equation. The problem (2) has some physical motivations as follows.
Indeed, it is related with a physical model

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx)∂2u

∂x2
= 0, (3)

which extends the classical D’Alembert’s wave equation, by considering the effect of the changing in the length
of the string during the vibration. A distinct feature is that the model (3) contains a nonlocal coefficient
P0

h + E
2L

∫ L

0
|∂u∂x |

2 dx which depends on the average 1
2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx , and hence the equation is no longer a pointwise
identity. Problem (3) has received a lot of attention after Lions [29] proposed an abstract framework for this
problem, see e.g. [2, 8] and [13]-[18]. The study of Kirchhoff type equations has already been extended to the
case involving the p -Laplacian (for details, see [13, 14, 18, 20]) and p(x) -Laplacian (see [12, 15–17, 25, 32, 40]).

Motivated by the above references, the results in Rahal [33] and the importance of sixth order elliptic
equation in the modeling of ulcers [38], viscous fluid, geometric design [39], in this paper we investigate the
existence of weak solutions of problem (1). Due to the presence of ∇u,△u and ∇△u in f the most usual
variational techniques can not used to study it; so we adapt topological tools: a Fredholm type theorem for a
couple of nonlinear operators due to Dinca [19]. As far as we know, our work is the first attempt to consider a
p(x) -Kirchhoff triharmonic problem with a (∇u,△u,∇△u) -dependent nonlinearity f . It is worth noting that,
in this work, f does not satisfies typical growth conditions. Also, we study the uniqueness of the weak solutions
under suitable assumptions on the nonlinearity.

This paper is organized as follows. In Section 2, we present some necessary preliminary knowledge on
variable exponent Sobolev spaces. In Section 3, we state and prove our main results.

2. Preliminaries
To discuss problem (1), we need some theory on W 1,p(x)(Ω) which is called variable exponent Sobolev space
(for details, see [21]). Denote by S(Ω) the set of all measurable real functions defined on Ω . Two functions in
S(Ω) are considered as the same element of S(Ω) when they are equal almost everywhere. Write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},

h− := min
Ω

h(x), h+ := max
Ω

h(x) for every h ∈ C+(Ω).

Define

Lp(x)(Ω) = {u ∈ S(Ω) :

∫
Ω

|u(x)|p(x) dx < +∞ for p ∈ C+(Ω)}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :

∫
Ω

|u(x)
λ

|p(x) dx ≤ 1},
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and
W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k}

with the norm
∥u∥k,p(x) ≡ ∥u∥Wk,p(x)(Ω) =

∑
|α|≤k

|Dαu|Lp(x)(Ω).

Proposition 2.1 ([21]). The spaces Lp(x)(Ω) and W k,p(x)(Ω) are separable and reflexive Banach spaces.

Proposition 2.2 ([21]). Set ρ(u) =
∫
Ω
|u(x)|p(x) dx . For any u ∈ Lp(x)(Ω) , then

(1) for u ̸= 0 , |u|p(x) = λ if and only if ρ(uλ ) = 1 ;

(2) |u|p(x) < 1 (= 1;> 1) if and only if ρ(u) < 1 (= 1;> 1) ;

(3) if |u|p(x) > 1 , then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x) ;

(4) if |u|p(x) < 1 , then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x) ;

(5) limk→+∞ |uk|p(x) = 0 if and only if limk→+∞ ρ(uk) = 0 ;

(6) limk→+∞ |uk|p(x) = +∞ if and only if limk→+∞ ρ(uk) = +∞ .

Proposition 2.3 ([21, 22]). If q ∈ C+(Ω) and q(x) ≤ p∗k(x) (q(x) < p∗k(x)) for x ∈ Ω , then there is a
continuous (compact) embedding W k,p(x)(Ω) ↪→ Lq(x)(Ω) , where

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

The space W
1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(x)(Ω) . We denote by

X = W
1,p(x)
0 (Ω) ∩W 3,p(x)(Ω)

and define a norm ∥.∥X by
∥u∥X = ∥u∥1,p(x) + ∥u∥2,p(x) + ∥u∥3,p(x).

Moreover, the norms ∥u∥X and ∥∇△u∥p(x) are equivalent on X . Let

∥u∥ = inf

{
µ > 0 :

∫
Ω

∣∣∣∣∇△u

µ

∣∣∣∣p(x) dx ≤ 1

}

for any u ∈ X . Hence, we see that ∥u∥ is equivalent to the norms ∥u∥X and ∥∇△u∥p(x) in X . From now on,
we will use ∥.∥ instead of ∥u∥X on X .

Proposition 2.4 ([21, 23]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω) , where 1
q(x) +

1
p(x) = 1 holds a.e. in

Ω . For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) , we have the following Hölder-type inequality

∣∣ ∫
Ω

uv dx
∣∣ ≤ (

1

p−
+

1

q−
)|u|p(x)|v|q(x).
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Proposition 2.5 ([21, 23]). Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and 1 ≤
p(x)q(x) ≤ ∞, for a.e.x ∈ Ω . Let u ∈ Lq(x)(Ω), u ̸= 0 . Then, we have

i)For |u|p(x)q(x) ≤ 1, |u|p
+

p(x)q(x) ≤||u|p(x)|q(x) ≤ |u|p
−

p(x)q(x)

ii)For |u|p(x)q(x) > 1, |u|p
−

p(x)q(x) ≤||u|p(x)|q(x) ≤ |u|p
+

p(x)q(x)

Proposition 2.6 ([21, 23]). Set Ψp(x)(u) =
∫
Ω
|∇△u|p(x) dx for any u ∈ X . Then, we have

(1) if ∥u∥ ≥ 1 , then ∥u∥p− ≤ Ψp(x)(u) ≤ ∥u∥p+ ;

(4) if ∥u∥ ≤ 1 , then ∥u∥p+ ≤ Ψp(x)(u) ≤ ∥u∥p− .

Theorem 2.1 ([19]). Let X and Y be real Banach spaces and two nonlinear operators T, S : X → Y such that

1. T is bijective and T−1 is continuous.

2. S is compact.

3. Let µ ≠ 0 be a real number such that: ∥(µT − S)(x)∥ → +∞ as ∥x∥ → +∞ ;

4. There is a constant R > 0 such that
∥(µT − S)(x)∥ > 0 if ∥x∥ ≥ R , dLS(I − T−1(Sµ ), B(θ,R), 0) ̸= 0 .

Then µI − S is suryective from X onto Y .

Here dLS(G,B, 0) denotes the Leray-Schauder degree.

Definition 2.1. A function u ∈ X is said to be a weak solution of (1) if

(Pλ) M

(∫
Ω

1

p(x)
|∇∆u|p(x) dx

)∫
Ω

|∇∆u|p(x)−2 ∇∆u · ∇∆v dx =∫
Ω

fλ(x, u,∇u,∆u,∇∆u)v dx

for all v ∈ X .

Suppose that M and fλ satisfy the following hypotheses:

(M0 ) M : [0,+∞[→ [m0,+∞[ is a continuous and nondecreasing function with m0 > 0 .

(F1 ) fλ = f1 + λf2, λ ≥ 0 , fi ∈ C (Ω× R× Rn × R× Rn;R) , i = 1, 2 and there exists a

positive constant c1 such that

|fi(x, s, ξ, t, ζ)| ≤ c1(σi(x) + |s|ηi(x) + |ξ|δi(x) + |t|δi(x) + |ζ|δi(x)), ∀x ∈ Ω,

∀s, t ∈ R, ζ, ξ ∈ Rn, where ηi, δi ∈ C(Ω), q ∈ C+(Ω),
1

p(x)
+

1

p′(x)
= 1,

σi ∈ Lp′(x)(Ω), 0 ≤ η1(x) < p(x)− 1, 0 ≤ δi(x) <
p(x)− 1

p′(x)
, i = 1, 2;

p− + 1 ≤ η2(x) < p+ + 1 for x ∈ Ω.
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3. Existence of solutions
In this section we will discuss the existence of weak solutions of (1). Our first result is as follows.

Theorem 3.1. Assume λ = 0 and that (M0 ) and (F1 ) hold. Then (1) has a weak solution in X .

Proof. In order to apply theorem (2.1), we take Y = X ′ and the operators T, Sλ : X → X ′ in the following
way

⟨Tu, v⟩ = M

(∫
Ω

1

p(x)
|∇∆u|p(x) dx

)∫
Ω

|∇∆u|p(x)−2 ∇∆u · ∇∆v dx,

⟨Sλu, v⟩ =
∫
Ω

fλ(x, u,∇u,∆u,∇∆u)v dx,

for all u, v ∈ X .
Then u ∈ X is a solution of (1) if and only if

Tu = Sλu in X ′.

In what follows, for simplicity we denote S ≡ S0, f ≡ f1, η ≡ η1, δ ≡ δ1 .
Take λ = 0 . For the convenience of the reader, we will divide the proof into five steps.

Step1. We prove that T is an injection.
First we observe that

Φ(u) = M̂
(
L(u)

)
, where M̂(s) =

∫ s

0

M(t) dt,

is a continuously Gâteaux differentiable function whose Gâteaux derivative at the point u ∈ X is the functional
Φ′(u) ∈ X ′ given by

⟨Φ′(u), v⟩ = ⟨T (u), v⟩ for all v ∈ X.

On the other hand, by applying a standard argument, we can show that L ∈ C1(X,R) and

⟨L′(u), v⟩ =
∫
Ω

|∇∆u|p(x)−2 ∇∆u.∇∆vdx, for all u, v ∈ X.

for all u, v ∈ X.

By taking into account the inequality [36, (2.2)]

⟨|x|p−2x− |y|p−2y, x− y⟩ ≥

{
Cp|x− y|p if p ≥ 2

Cp
|x−y|2

(|x|+|y|)p−2 , (x, y) ̸= (0, 0) if 1 < p < 2,
(4)

for all x, y ∈ RN , we obtain

⟨L′(u)− L′(v), u− v⟩ > 0 for all u, v ∈ X with u ̸= v,

that is, L′ is strictly monotone and thus, by [41, Prop. 25.10], L is strictly convex. Furthermore, as M is

nondecreasing, M̂ is convex in [0,+∞[ . Consequently, for every u, v ∈ X with u ̸= v , and every s, t ∈ (0, 1)

with s+ t = 1 , one has

M̂(L(su+ tv)) < M̂(sL(u) + tL(v)) ≤ sM̂(L(u)) + tM̂(L(v)).
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This shows that Φ is strictly convex, and as Φ′(u) = T (u) in X ′ it follows that T is strictly monotone in X ,
consequently T is an injection.
Step2. We prove that the inverse T−1 : X ′ → X of T is continuous.
For any u ∈ X with ∥u∥ > 1 , one has

⟨T (u), u⟩
∥u∥

=
M

( ∫
Ω

1
p(x) |∇∆u|p(x) dx

) [∫
Ω
|∇∆u|p(x) dx

]
∥u∥

≥ m0∥u∥p
−−1,

from which we have the coercivity of T .
Since T is the Fréchet derivative of Φ , T is continuous. Thus, in view of the well known Minty Browder

theorem T is a surjection and so T−1 : X ′ → X and it is bounded.
Now we prove the continuity of T−1 .
First, we verify that T is of type (S+) . In fact, if uν ⇀ u in V (so there exists R > 0 such that

∥uν∥ ≤ R ) and the strict monotonicity of T we have

0 = lim sup
ν→∞

⟨Tuν − Tu, uν − u⟩ = lim
ν→∞

⟨Tuν − Tu, uν − u⟩

Then
lim
ν→∞

⟨Tuν , uν − u⟩ = 0

That is

lim
ν→∞

M
(
L(uν)

)∫
Ω

|∇△uν |p(x)−2∇△uν .(∇△uν −∇△u) dx = 0 (5)

Now, we have

|L(uν)| ≤
1

p−

∫
Ω

|∇△uν |p(x) dx ≤ 1

p−
(∥uν∥p

+

+ 1) ≤ C (6)

So, (L(uν))ν≥1 is bounded.

Then, since M is continuous, up to a subsequence there is t0 ≥ 0 such that

M
(
L(uν)

)
→ M(t0) ≥ m0 as ν → ∞

This and (5) imply

lim
ν→∞

∫
Ω

|∇△uν |p(x)−2∇△uν .(∇△uν −∇△u) dx = 0

By proceeding similarly to [[1], Proposition 2.5], one can obtain

lim
ν→∞

∫
Ω

|∇△uν −∇△u|p(x) dx = 0.

Therefore, by the equivalence of norms on X one has

uν → u strongly in X as ν → ∞.
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So, T is of type (S+) . Then, in view of [[6], Lemma 5.2 ], T−1 is continuous.
Step3 We prove that S is a compact operator.

1.- The Nemytskii operator Ψ : X ⊆ Lp(x)(Ω) → Lp′(x)(Ω) defined by

Ψ(u)(x) = f(x, u(x),∇u(x),△u(x),∇△u(x)) a.e in Ω (7)

is bounded and continuous. In fact, using (F1) for all u in X we get

|f(x, u(x),∇u(x),△u(x),∇△u(x))|p
′(x)

≤ c1
∣∣σ(x) + |u(x)|η(x) + |∇u(x)|δ(x) + |△u(x)|δ(x) + |∇△u(x)|δ(x)

∣∣p′(x)

≤ c′1

(
|σ(x)|p

′(x) + |u(x)|η(x)p
′(x) + |∇u(x)|δ(x)p

′(x) + |△u(x)|δ(x)p
′(x) + |∇△u(x)|δ(x)p

′(x)
)

Since 0 ≤ η(x) ≤ p(x)− 1 , we have 0 ≤ η(x)p′(x) < p(x) , then

|f(x, u,∇u,△u,∇△u)|p′(x) ≤
(∫

Ω

|f(x, u(x),∇u(x),△u(x),∇△u(x))|p
′(x) dx

)1/α

≤ c′1

[ ∫
Ω

(
|σ(x)|p

′(x) + |u(x)|η(x)p
′(x) + |∇u(x)|δ(x)p

′(x) + |△u(x)|δ(x)p
′(x)

+ |∇△u(x)|δ(x)p
′(x)

)
dx

]1/α
≤ C

(
1 + c

β/α
ηp′ ∥u∥β/α + c

θ/α
δp′ ∥u∥θ/α

)
where

α =

{
p′−, if |f(x, u,∇u)|p′(x) > 1,

p′+, if |f(x, u,∇u)|p′(x) ≤ 1,
, β =

{
(ηp′)+, if |u|η(x)p′(x) > 1,

(ηp′)−, if |u|η(x)p′(x) ≤ 1
, and

θ =

{
(δp′)+, if |∇u|δ(x)p′(x) > 1,

(δp′)−, if |∇u|δ(x)p′(x) ≤ 1,
.

On the other hand, if uν → u in X up to a subsequence we have

uν → u,∇uν → ∇u,△uν → △u and ∇△uν → ∇△u a.e. in Ω

|uν(x)| ≤ k(x), |∂uν(x)/∂xj | ≤ wj , |∂2uν(x)/∂x
2
j | ≤ zj ,

|∂3uν(x)/∂xi∂x
2
j | ≤ lij a.e. x ∈ Ω,

for some k,wj , zj , lij ∈ Lp(x)(Ω) (8)

Then
Ψ(uν)(x) → Ψ(u)(x) a.e. x ∈ Ω (9)

But, it follows from (F1) and (8) that

∣∣∣Ψ(uν)(x)−Ψ(u)(x)
∣∣∣p′(x)

≤ C2(p
′)+

[
|Ψ(uν)(x)|(p

′)(x) + |Ψ(u)(x)|(p
′)(x)

]
≤ h(x) a.e. x ∈ Ω

(10)
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where h = h(k,wj , zj , lij) ∈ L1(Ω) . Applying the Dominated Convergence Theorem with (9)-(10), we obtain

lim
ν→∞

∫
Ω

∣∣∣Ψ(uν)(x)−Ψ(u)(x)
∣∣∣p′(x)

dx = 0

This implies that

lim
ν→∞

∣∣∣Ψ(uν)(x)−Ψ(u)(x)
∣∣∣
p′(x)

= 0.

2.- S is well defined. Indeed

|⟨Su, v⟩| ≤
∫
Ω

|Ψ(u)(x)||v| dx

≤ C|Ψ(u)|p′(x)|v|p(x) ≤ C|Ψ(u)|p′(x)∥v∥ < ∞.

3.- S = I∗2 ◦Ψ ◦ I1 , where I1 : X → Lp(x)(Ω)× Lp(x)(Ω;Rn)× Lp(x)(Ω)× Lp(x)(Ω;Rn) is given by

I1(u) = (u,∇u,△u,∇△u),

Ψ is the Nemytskii operator in (7) and I2 : X ↪→ Lp′(x)(Ω) whose adjoint operator I∗2 : Lp(x)(Ω) → X ′ is given
by

(I∗2v) (u) =

∫
Ω

vu dx.

Since I1 is linear and bounded, Ψ is continuous and I∗2 is continuous and compact, we conclude that S is
continuous and compact.

Step4
∥(T − S)(u)∥ → ∞ as ∥u∥ → ∞ for u ∈ X.

In fact, after some computations we get

∥Tu∥ ≥ m0∥u∥p
−−1 for all u ∈ X with ∥u∥ > 1

and, since ∫
Ω

Ψ(u)(x)v dx ≤ Cp

(∫
Ω

|Ψu)(x)|p
′(x) dx

)1/α

∥v∥ for all u, v ∈ X,

we get

∥Su∥ ≤ C1

(
∥u∥θ + ∥u∥ϑ

)1/α
+ C2 for all u ∈ X

for some θ ∈ [(ηp′)−, (ηp′)+] and ϑ ∈ [(δp′)−, (δp′)+] .
Combining the above inequalities, we obtain

∥(T − S)(u)∥ ≥ ∥Tu∥ − ∥Su∥ ≥ C0∥u∥p
−−1 − C ′

1∥u∥θ/α − C ′
2∥u∥ϑ/α − C3. (11)

Here, we note that

0 ≤ θ

p′+
<

p− − 1

p′+
, 0 ≤ θ

p′−
<

p− − 1

p′−
,
p− − 1

p′+
≤ p− − 1

p′−
.
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So, we have

0 ≤ θ

α
<

p− − 1

p′−
< p− − 1

and, similarly we obtain 0 ≤ ϑ
α < p− − 1 .

Since
lim
t→∞

(C0t
p−−1 − C ′

1t
θ
α − C ′

2t
ϑ
α − C3) = ∞

and from (11) we conclude that ∥(T − S)(u)∥ → ∞ as ∥u∥ → ∞ .
Moreover, there exists r0 > 1 such that ∥(T − S)(u)∥ > 1 for all u ∈ X , with ∥u∥ > r0 .
Step5 Set

W = {u ∈ X : ∃t ∈ [0, 1] such that u = tT−1(Su)}.

Next, we prove that W is bounded in V .
For u ∈ W \ 0 , i.e. u = tT−1(Su) for some t ∈ [0, 1] we have

∥T (u
t
)∥ = ∥Su∥ ≤ C ′

1∥u∥θ/α + C ′
2∥u∥ϑ/α + C3 with t > 0. (12)

Then, there exist three constants a, b, c > 0 such that

m0∥u∥p
+−1 ≤ a∥u∥η

−
+ b∥u∥δ

−
+ c if 0 < ∥u∥ < t,

m0∥u∥p
−−1 ≤ a∥u∥η

−
+ b∥u∥δ

−
+ c if t ≤ ∥u∥ ≤ 1,

m0∥u∥p
−−1 ≤ a∥u∥η

+

+ b∥u∥δ
+

+ c if 1 < ∥u∥.

Let g1, g2 : [0, 1] → R and g3 :]1,∞[→ R be defined by

g1(t) = m0t
p+−1 − atη

−
− btδ

−
− c, g2(t) = m0t

p−−1 − atη
−
− btδ

−
− c,

g3(t) = m0t
p−−1 − atη

+

− btδ
+

− c.

The sets {t ∈ [0, 1] : g1(t) ≤ 0}, {t ∈ [0, 1] : g2(t) ≤ 0} and {t ∈]1,∞[: g3(t) ≤ 0} are bounded in R .
From the above inequalities and (12) we infer that W is bounded in X , so

W ⊆ B(0, r1) for some r1 > 0.

Now, taking R = max{r0, r1} , it follows from [27, theorem 1.8] that

dLS(I − tT−1(S), B(0, R), 0) = 1 for all t ∈ [0, 1].

In particular
dLS(I − T−1(S), B(0, R), 0) = 1.

Thus, the couple of nonlinear operators (T, S) satisfies the hypotheses of theorem (2.1) for µ = 1 .Then
T − S : X → X ′ is surjective.Therefore, there exists u ∈ X such that

(T − S)u = 0 in X ′.

With this step the proof of Theorem (3.1) is concluded.
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We are now in a position to give the proof of our main result.

Theorem 3.2. Assume that hypotheses (M0 ) and (F1 ) hold. If λ > 0 is small enough, then (1) has a weak
solution in X .

Proof. Thanks to the proof of Theorem (3.1), we have that all the solutions of (P0) are in B(0, R) . Hence

u− T−1S0(u) ̸= 0, ∀u ∈ ∂B(0, R)

From this, we have that
ρ := inf

u∈∂B(0,r)
∥Tu− S0u∥X′ > 0

In fact, arguing by contradiction, assume that there exists a sequence {uν} ⊂ ∂B(0, R) such that

∥Tuν − S0uν∥X′ → 0 as ν → +∞. (13)

By construction, the sequence {uν} is bounded in X and so (up to a subsequence) converge to some u0

weakly in X

Hence, by the compactness of S , {S0uν} has a strong convergent subsequence in X ′ (still denoted
{S0uν}) such that

∥S0uν − S0u0∥X′ → 0 as ν → +∞.

Then, we get
∥Tuν − S0u0∥X′ ≤ ∥Tuν − S0uν∥X′ + ∥S0uν − S0u0∥X′ → 0

as ν → +∞ . Now, the continuity of T−1 implies that uν → T−1S0u0 in X ; thus we obtain

uν → u0 in X (14)

(because uν ⇀ u0 ). From (13) and (14) we have

∥Tu0 − S0u0∥X′ = 0.

So, u0 solves (P0) and ∥u0∥ = R , which is a contradiction. Therefore ρ > 0 .
Since the Nemytskii operator Nf2 is bounded and continuous from X to X ′ , there exists ε > 0 such

that
∥Nf2(u)∥X′ ≤ ε ∀u ∈ B(0, R).

Set λ∗ = ρ
ε , then for any λ ∈ [0, λ∗[ we have

∥Tu− Sλu∥X′ = ∥Tu− S0u+ S0u− Sλu∥X′

≥ ∥Tu− S0u∥X′ − ∥S0u− Sλu∥X′

> ρ− ρ

ε
.ε = 0, ∀u ∈ ∂B(0, R).

Hence Tu − Sλu = 0 does not have solution on ∂B(0, R) for any λ ∈ [0, λ∗[ . It follows that the
Leray-Schauder degree dLS(I − T−1Sσλ, B(0, R), 0) is well defined for σ ∈ [0, 1] , and

dLS(I − T−1Sλ, B(0, R), 0) = dLS(I − T−1S0, B(0, R), 0) = 1,

where the last equality is due to that the equation Tu = S0u has solution in X .Thus Tu = Sλu has a
solution.
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In the last part of this section, we will show that the solution of problem (1), for λ = 0 , is unique. To
this end, we also need the following hypotheses on the nonlinearity f .

(F2 ). There exists β2 ≥ 0 such that

(f(x, s1, ξ, t, ζ)− f(x, s2, ξ, t, ζ)) (s1 − s2) ≤ β2|s1 − s2|p(x)

for a.e x ∈ Ω and all s1, s2 ∈ R , (ξ, t, ζ) ∈ Rn × R× Rn .
(F3 ). There exists β3 ≥ 0 such that

∣∣∣f(x, s, ξ, t, ζ)− f(x, s, ξ̂, t̂, ζ̂)
∣∣∣ ≤ β3|ζ − ζ̂|p(x)−1

for a.e x ∈ Ω and all s1, s2 ∈ R , (ξ, t, ζ) ∈ Rn × R× Rn .

Theorem 3.3. Let M : [0,+∞[→ [m0,m1] be a function satisfying (M0) with m1 > m0 > 0 and, moreover
(F2)− (F3) hold. If, in addition 2 ≤ p(x) for all x ∈ Ω̄ , then (1) has a unique weak solution provided that

p+

m0

[(
β2 +

β3

p−

)
λ−1
∗ + β3

p+ − 1

p−

]
< 1 (15)

where

λ∗ = inf
u∈X\{0}

∫
Ω
|∇△u|p(x) dx∫
Ω
|u|p(x) dx

> 0.

Proof. Theorem 3.1 gives a weak solution u ∈ X . It is enough to prove that T − S : X → X ′ is injective. Let
u1, u2 be two weak solutions of (1) such that (T − S)(u1) = (T − S)(u2) . Hence

⟨T (u1)− T (u2), u1 − u2⟩ = ⟨S(u1)− S(u2), u1 − u2⟩. (16)

But, in view of Lemma 3 in [7], assumptions (M0) , (F2) and (F3) , we get from (16) and the Young inequality
that

m0

p+

∫
Ω

|∇△u1 −∇△u2|p(x) dx ≤ m0

∫
Ω

1

p(x)
|∇△u1 −∇△u2|p(x) dx

≤⟨T (u1)− T (u2), u1 − u2⟩ ≤ |⟨S(u1)− S(u2), u1 − u2⟩|

≤
∫
Ω

|Ψ(u1)(x)−Ψ(u2)(x)||u1 − u2| dx

≤
∫
Ω

(f(x, u1,∇u1,△u1,∇△u1)− f(x, u2,∇u1,△u1,∇△u1))(u1 − u2) dx

+

∫
Ω

|f(x, u2,∇u1,△u1,∇△u1)− f(x, u2,∇u2,△u2,∇△u2)||u1 − u2| dx
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≤β2

∫
Ω

|u1 − u2|p(x) dx+ β3

∫
Ω

|∇△(u1 − u2)|p(x)−1|u1 − u2| dx

≤β2λ
−1
∗

∫
Ω

|∇△(u1 − u2)|p(x) dx+ β3
p+ − 1

p−

∫
Ω

|∇△(u1 − u2)|p(x) dx

+
β3

p−
λ−1
∗

∫
Ω

|∇△(u1 − u2)|p(x) dx

=

[(
β2 +

β3

p−

)
λ−1
∗ + β3

p+ − 1

p−

] ∫
Ω

|∇△(u1 − u2)|p(x) dx.

Therefore, we obtain ∫
Ω

|∇△(u1 − u2)|p(x) dx = 0 (by (15)).

So, u1 = u2 . The proof is complete.
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