Software Open Access

Amp: The Atomistic Machine-learning Package v0.6

Khorshidi, Alireza; El Khatib, Muammar; Peterson*, Andrew


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Khorshidi, Alireza</dc:creator>
  <dc:creator>El Khatib, Muammar</dc:creator>
  <dc:creator>Peterson*, Andrew</dc:creator>
  <dc:date>2017-07-31</dc:date>
  <dc:description>*Amp* is an open-source package designed to easily bring machine-learning to atomistic calculations. This project is being developed at Brown University in the School of Engineering, primarily by Andrew Peterson and Alireza Khorshidi, and is released under the GNU General Public License.  *Amp* allows for the modular representation of the potential energy surface, enabling the user to specify or create descriptor and regression methods.

This project lives at:
https://bitbucket.org/andrewpeterson/amp

Documentation lives at:
http://amp.readthedocs.org

Users' mailing list lives at:
https://listserv.brown.edu/?A0=AMP-USERS

If you would like to compile a local version of the documentation, see the README file in the docs directory.

*Corresponding author: andrew_peterson@brown.edu</dc:description>
  <dc:identifier>https://zenodo.org/record/836788</dc:identifier>
  <dc:identifier>10.5281/zenodo.836788</dc:identifier>
  <dc:identifier>oai:zenodo.org:836788</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.836787</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://opensource.org/licenses/GPL-3.0</dc:rights>
  <dc:title>Amp: The Atomistic Machine-learning Package v0.6</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>software</dc:type>
</oai_dc:dc>
616
140
views
downloads
All versions This version
Views 616613
Downloads 140140
Data volume 590.0 MB590.0 MB
Unique views 576574
Unique downloads 121121

Share

Cite as