Conference paper Open Access

Daily activity recognition based on meta-classification of low-level audio events

Giannakopoulos, Theodoros; Konstantopoulos, Stasinos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ambient intelligence</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">remote monitoring</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">signal processing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">audio event recognition</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">audio sensors</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">activity recognition</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">fusion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Raspberry PI</subfield>
  </datafield>
  <controlfield tag="005">20191104071158.0</controlfield>
  <controlfield tag="001">836604</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">28-29 April 2017</subfield>
    <subfield code="g">ICT4AWE 2017</subfield>
    <subfield code="a">3rd International Conference on Information and Communication Technologies for Ageing Well and e-Health</subfield>
    <subfield code="c">Porto, Portugal</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Konstantopoulos, Stasinos</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">917907</subfield>
    <subfield code="z">md5:3cc92df274b1b5cebbbce09c0cc2aa21</subfield>
    <subfield code="u">https://zenodo.org/record/836604/files/audio-events-ICT4AWE.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.ict4ageingwell.org/?y=2017</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-05-28</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-05-28</subfield>
    <subfield code="b">ScitePress</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-radio</subfield>
    <subfield code="p">user-roboskel</subfield>
    <subfield code="o">oai:zenodo.org:836604</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Giannakopoulos, Theodoros</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Daily activity recognition based on meta-classification of low-level audio events</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-radio</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-roboskel</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">643892</subfield>
    <subfield code="a">Robots in assisted living environments: Unobtrusive, efficient, reliable and modular solutions for independent ageing</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Attribution)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper presents a method for recognizing activities taking place in a home environment. Audio is recorded and analysed realtime, with all computation taking place on a low-cost Raspberry PI. In this way, data acquisition, low-level signal feature calculation, and low-level event extraction is performed without transferring any raw data out of the device. This first-level analysis produces a time-series of low-level audio events and their characteristics: the event type (e.g., "music") and acoustic features that are relevant to further processing, such as "energy" that is indicative of how loud the event was. This output is used by a meta-classifier that extracts long-term features from multiple events and recognizes higher-level activities. The paper also presents experimental results on recognizing kitchen and living-room activities of daily living that are relevant to assistive living and remote health monitoring for the elderly. Evaluation on this dataset has shown that our approach discriminates between six activities with an accuracy of more than 90%, that our two-level classification approach outperforms one-level classification, and that including low-level acoustic features (such as energy) in the input of the meta-classifier significantly boosts performance.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=6XJt3+3V5P4%3d&amp;t=1</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isSupplementedBy</subfield>
    <subfield code="a">https://zenodo.org/record/376480</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5220/0006372502200227</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
15
29
views
downloads
Views 15
Downloads 29
Data volume 26.6 MB
Unique views 15
Unique downloads 29

Share

Cite as