Book section Open Access

Monitoring activities of daily living using audio analysis and a RaspberryPI: A use case on bathroom activity monitoring

Siantikos, Georgios; Giannakopoulos, Theodoros; Konstantopoulos, Stasinos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">audio analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">activities of daily living</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">health monitoring</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">remote monitoring</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">audio event recognition</subfield>
  </datafield>
  <controlfield tag="005">20190410041709.0</controlfield>
  <controlfield tag="001">835854</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Giannakopoulos, Theodoros</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Konstantopoulos, Stasinos</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1110964</subfield>
    <subfield code="z">md5:05d215a318805a531ef2891774666106</subfield>
    <subfield code="u">https://zenodo.org/record/835854/files/siantikos-etal-2017.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-07-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-radio</subfield>
    <subfield code="p">user-roboskel</subfield>
    <subfield code="o">oai:zenodo.org:835854</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Siantikos, Georgios</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Monitoring activities of daily living using audio analysis and a RaspberryPI: A use case on bathroom activity monitoring</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-radio</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-roboskel</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">643892</subfield>
    <subfield code="a">Robots in assisted living environments: Unobtrusive, efficient, reliable and modular solutions for independent ageing</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Attribution)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A framework that utilizes audio information for recognition of activities of daily living (ADLs) in the context of a health monitoring environment is presented in this chapter. We propose integrating a Raspberry PI single-board PC that is used both as an audio acquisition and analysis unit. So Raspberry PI captures audio samples from the attached microphone device and executes a set of real-time feature extraction and classification procedures, in order to provide continuous and online audio event recognition to the end user.&lt;br&gt;
Furthermore, a practical workflow is presented, that helps the technicians that setup the device to perform a fast, user-friendly and robust tuning and calibration procedure. As a result, the technician is capable of "training"' the device without any need for prior knowledge of machine learning techniques. The proposed system has been evaluated against a particular scenario that is rather important in the context of any healthcare monitoring system for the elder: In particular, we have focused on the "bathroom scenario" according to which, a Raspberry PI device equipped with a single microphone is used to monitor bathroom activity on a 24/7 basis in a privacy-aware manner, since no audio data is stored or transmitted. The presented experimental results prove that the proposed framework can be successfully used for audio event recognition tasks.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">https://link.springer.com/chapter/10.1007%2F978-3-319-62704-5_2</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">https://www.researchgate.net/publication/318550233</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="b">Springer</subfield>
    <subfield code="a">Germany</subfield>
    <subfield code="t">Revised Selected Papers of the 2nd Second International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE 2016). Communications in Computer and Information Science, vol. 736</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-62704-5_2</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">section</subfield>
  </datafield>
</record>
82
45
views
downloads
Views 82
Downloads 45
Data volume 50.0 MB
Unique views 72
Unique downloads 40

Share

Cite as