
Zenodo. https://zenodo.org/record/8353418 DOI: https://doi.org/10.5281/zenodo.8353418

Cite as: Saeed, T., Kazmi, S.Z., Ali, A., & Zafar, S. (2023). Demystifying ANN with Mathematical and Graphical Insights: An
Algorithmic Review for Beginners (Version 2). Zenodo. https://doi.org/10.5281/zenodo.8353418 [Sep. 17, 2023]

Demystifying ANN with Mathematical and Graphical Insights:

An Algorithmic Review for Beginners

Tayyaba Saeed, Syeda Zahra Kazmi, Amjad Ali*, Salma Zafar

Centre for Advanced Studies in Pure and Applied Mathematics (CASPAM)

Bahauddin Zakariya University (BZU), Multan, Pakistan.

*
amjadali@bzu.edu.pk

Abstract

Developments in deep learning with ANNs (Artificial Neural Networks) are paving the way for

revolutionizing all application areas, especially related to non-linear regression and classification

problems of predictive modelling and forecasting. Although their explainability is more complicated

and challenging, deep neural networks are preferred over conventional machine learning methods for

high accuracy in non-linear and complex problems. However, machine learning and data science

practitioners often use ANN like a black-box. The present article concisely overviews the mathematics

and computations involved in simple feed-forward neural networks (FNNs) or multilayer perceptrons

(MLPs). The purpose is to spot light on what deep neural networks’ learning (or training) is and how it

works. The article includes simplified derivations of the expressions for the main workhorse of neural

networks (the backpropagation) and an example to explain how it works with graphical insights. An

algorithm for a basic ANN application is presented in both component-form and matrix-form, together

with a detailed note on the relevant data structures, to elaborate the scheme comprehensively. Python

implementation of the basic algorithm is presented, and its performance results are compared with those

produced using the TensorFlow library functions that implement the neural networks. The article

discusses various techniques to improve the generalization capability of neural networks and how to

address various training challenges. Finally, some well-established optimization approaches based on

the Gradient Descent method are also discussed. The article may serve as a comprehensive premiere

for a sound understanding of deep learning for undergraduate and graduate students before indulging in

the relevant industry practices so that they can step into sustainable progress in the field.

Keywords: Artificial Neural Networks; ANN; Feed Forward Neural Networks; Deep Neural Networks;

Deep Learning; Backpropagation; Gradient Descent; Pseudo Code of ANN; Hyperparameter Tuning;

Regularization; Learning Curves; Batch Normalization; Adaptive Learning Rate

ACM Classification Codes (ccs98): I.2.6; I.5.1; K.3.2. MSC Codes (2020): 68T07

1. Introduction

Artificial Neural Networks (ANNs) are machine learning (ML) algorithms modelled after the human

brain's structure and function. The use of ANN has proliferated in recent years, fuelled by advancements

in computational power, data availability, and algorithm development. As a result, ANNs have

revolutionized various fields, including speech recognition, natural language processing, image

recognition, computer vision, anomaly detection, recommender systems, and autonomous driving. The

developments are ongoing, and the foreseeable future is expected to be even more promising. The

success of ANNs in these applications is due to their ability to learn complex patterns in data and make

accurate predictions or perform other deep learning tasks.

https://zenodo.org/record/8353418
https://doi.org/10.5281/zenodo.8353418
https://doi.org/10.5281/zenodo.8353418

2

The history of ANNs can be traced back to the pioneering work of McCulloch and Pitts in the 1940s

(McCulloch & Pitts, 1943), who proposed a simple mathematical model of a neuron that could perform

logical operations. Rosenblatt (1958) developed a perceptron that was capable of learning from data

and recognizing patterns in images. However, the limitations of the Perceptron were later discovered,

leading to a decline in interest in ANNs in the 1970s. Nonetheless, researchers continued to work on

improving the algorithms and architectures of ANNs, leading to a breakthrough in the development of

the Backpropagation algorithm in the 1980s (Rumelhart et al., 1986). This renewed interest in ANNs in

the 1990s and led to the development of deep neural networks in the 2000s and onward. Now, neural

networks have achieved remarkable results in various fields and gained wider acceptance as a powerful

tool for deep learning.

ANNs are composed of multiple interconnected processing nodes or units, called neurons, that work

together to learn from data and do ML tasks. For supervised learning, this is achieved by training the

network using a set of labelled data and adjusting the connections between neurons to minimize the

error between the predicted output and the target output. The neurons are arranged in multiple

interconnected layers, which hierarchically represent the patterns in the data. These layers can be seen

as a sequence of non-linear transformations that map the input data to a higher-level representation,

which captures or extracts increasingly complex features and patterns from raw data without requiring

explicit feature engineering. Other ML algorithms, such as decision trees or support vector machines,

often require hand-crafted features that are specifically designed for the task at hand. In contrast, neural

networks can learn these features directly from the data, allowing them to generalize better and perform

well on a wide range of tasks. Neural networks can also handle large amounts of data and are capable

of learning from unstructured and high-dimensional data such as images, audio, and text. This makes

them well-suited for tasks such as image classification, speech recognition, and natural language

processing. Thus, ANNs give rise to the field of deep learning. The distinguishing peculiarity of neural

networks from conventional machine learning algorithms is their ability to learn directly from the raw

data. Machine learning techniques consist of a series of steps: pre-processing, feature extraction, feature

selection, and prediction (classification or whatever task is at hand). The model’s accuracy depends on

the quality of these handcrafted features, and expert knowledge plays a crucial role in generalization.

On the other hand, deep learning using neural networks can automatically learn/extract complex and

hierarchical features through multiple layers of computation. This eliminates the need for manual

feature engineering, as the model learns representations directly from the raw data. This concept is

depicted in Fig. 1.1.

Fig. 1.1: Machine Learning versus Deep Learning: Binary classification of appropriately pre-

processed images of a car and a van.

3

The input layer of a neural network receives the raw data, which is then passed through one or more

hidden layers, where the neurons perform a weighted sum of their inputs, followed by the application

of an activation function. The resulting output of each neuron is then passed to the next layer as input.

By chaining multiple layers together, the network can learn to represent the input data at different levels

of abstraction. The process of learning in a neural network involves adjusting the model parameters to

minimize a loss function that measures the difference between the predicted output of the network and

the target output. The learning is essentially an iterative optimization process involving the workhorse

of the backpropagation method for finding the gradients of the loss with respect to the network’s

parameters (weights and biases). Neural networks can also incorporate regularization techniques to

prevent overfitting or other learning issues and improve generalization.

One of the most influential ANN architectures for deep learning is the convolutional neural network

(CNN) (Ali et al., 2023), which has been widely used in image and speech recognition tasks. CNNs are

inspired by the organization of the visual cortex in the brain, with each layer of neurons processing

increasingly complex features. Another important ANN architecture is the recurrent neural network

(RNN), designed to handle sequential data (time series) such as text or speech. RNNs use feedback

connections to enable the network to retain information over time, allowing them to model temporal

dependencies in the data. In addition to the variants of these deterministic/supervised neural network

architectures, the realm of generative neural network architectures is rapidly expanding, offering vast

opportunities and applications in the field of generative AI.

To become an expert in deep learning with neural networks, firstly, a sound understanding of

multivariate calculus, linear algebra, approximation theory, optimization, statistics, and probability is

essential. Next, mathematical insights into the architectures and working of the neural networks are

vital for innovative algorithm development. However, it is not uncommon for practitioners to use neural

network models as a black box using pre-built tools, such as Keras (Chollet et al., 2015) and TensorFlow

(Abadi et al., 2016). There are various newer and older well-reputed texts and articles available in the

literature to explain the NN, including Bishop (2006), Hastie et al. (2016), Hagan et al. (2014), LeCun

et al. (2015), Nielsen (2015), Schmidhuber (2015), Goodfellow et al. (2016), Vidal (2017), Aggarwal

(2018), Marcus (2018), Higham & Higham (2019), Strang (2019), Dawani (2020), Sarker (2021),

Kutyniok (2022), and Alexender (2023). However, an elaborative style of mathematical derivation of

backpropagation with some visual representation was somewhat lacking. Moreover, a complete

elaboration of the basic ANN algorithm (for both element-wise and vectorized implementation) in one

place was lacking. The present article attempts to fill the gap and serve as a comprehensive yet compact

premier for ML professionals and students to clearly understand the internal working of neural networks

to achieve sustainable progress in the field.

This article provides a comprehensive overview of the mathematical and computational working of

ANN, in particular for Feed-Forward Neural Networks (FNNs) without convolution or recurrent layers.

Discussions about the neuron model, network architecture, forward pass, backpropagation, training

process, regularization techniques to prevent overfitting, and optimization algorithms to improve the

training process are presented. The article explains the underlying principles and mechanisms that drive

the training and optimization of ANNs, from the basics of the neuron model to deep learning

architectures. To illustrate the concepts, the article also presents pseudo codes of scalar and vectorized

implementation for an ANN application for classification. The pseudo codes demonstrate the step-by-

step process for implementing the method in a ready-to-code fashion. By providing intrinsic

explanations and pseudo codes, we expect to help readers better understand the practical considerations

crucial for success with ANNs.

4

The following sections explain the structure of the neural network, the forward pass, backpropagation,

optimization algorithms used for computing the output, regularization techniques to prevent overfitting,

and adaptive approaches in the optimization method. A detailed listing of the upcoming sections is as

follows.

2. Schematic Structure of Simple ANNs

2.1. A Perceptron (A Single Neuron)

2.2. A Multi-Layer Perceptron (MLP) or a Simple Feed-Forward Neural Network (FNN)

2.3. Forward Pass: Finding Neuron Values in a Simple Artificial Neural Network (FNN)

2.4. Calculating the Cost Function (Loss Function)

3. Derivation of the Expressions for the Gradients using the Backpropagation

4. Learning of the Neural Network Model through Optimization

4.1. The Gradient Descent (GD) method for Multivariable Optimization

4.2. Computation of the Gradients for Optimization: Variants of the GD Method

4.2.1. The Batch Gradient Descent Method

4.2.2. The Stochastic Gradient Descent Method

4.2.3. The Mini-Batch Stochastic Gradient Descent Method

4.3. Updating the Parameters (Weights and Biases): The Learning of the Model

5. Illustrating the Neural Networks Model Training: A Flow Chart

6. Illustrating ANN Computations by Working-out a Classification Example

6.1. Problem Description

6.2. Standardization of the Dataset

6.3. Selection of the Network Structure

6.4. Initializing Weights and Biases

6.5. The Forward Pass (Finding the Neuron Values)

6.6. Calculating the Cost Function (Error in the Calculated Output)

6.7. Learning Phase: Computing the Gradients through Backpropagation

6.8. Learning Phase: Updating the Parameters (Weights and Biases)

7. Algorithm for ANN Computations with Vectorized Implementation

7.1. Description of the Algorithm Variables

7.2. The Procedure

7.2.1. Scalar Implementation in Component-Form

7.2.2. Vectorized Implementation in Matrix-Form

7.3. Test Case: Predicting Stock Price Using Time Series Data in Python

7.3.1. Vectorized Implementation of the ANN Algorithm in Python

7.3.2. Vectorized Implementation of the ANN Algorithm in Python using TensorFlow

8. Practical Considerations for Improved Neural Network Training

8.1. Challenges in training the Neural Network

8.2. Data Collection (or Data Generation)

8.3. Data Pre-processing and Feature Engineering

8.4. Designing the Neural Network Architecture

5

8.5. Initialization Techniques

8.6. Hyperparameter Tuning and Model Validation

8.6.1. Holdout Validation Technique

8.6.2. 𝑘-fold Cross-Validation Technique

8.7. Regularization

8.7.1. L2-Regularization

8.7.2. L1-Regularization

8.7.3. Dropout Regularization

8.7.4. Early Stopping Regularization

8.7.5. Data Augmentation (Dataset Augmentation)

8.8. Batch Normalization of Each Layer

9. Some Advanced Gradient Descent Strategies for Improved Training

9.1. Gradient Descent with Momentum

9.2. Gradient Descent with Nesterov Momentum

9.3. Gradient Descent with Adaptive Learning Rates

9.3.1. AdaGrad (The Adaptive Gradient Technique)

9.3.2. RMSProp (The Root Mean Square Propagation Technique)

9.3.3. AdaDelta (The Adaptive Delta Technique)

9.3.4. Adam (The Adaptive Moment Estimation Technique)

10. Enhancing the Model Performance for the Test Case

2. Schematic Structure of Simple Artificial Neural Networks (ANNs)

2.1. A Perceptron (A Single Neuron)

In Artificial Neural Networks (ANNs), a perceptron is a fundamental unit of computation that takes

input values, multiplies them by corresponding weights, and applies a threshold function to produce an

output. A perceptron is often referred to as an artificial neuron because it is modelled after the structure

and function of a biological neuron, as depicted in Fig. 2.1.

Fig. 2.1: A depiction of a perceptron architecture.

6

In a computational sense, a schematic diagram of a perceptron is shown in Fig. 2.2. The three input

neurons (𝑥1, 𝑥2, and 𝑥3) together with the weights (𝑤1, 𝑤2, and 𝑤3) are used to create an intermediate

value, 𝑧, of the output neuron as follows:

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

The final value, �̂� = 𝜙(𝑧), at the output neuron is obtained by applying an appropriate non-linear

activation function on 𝑧.

Fig. 2.2: A schematics diagram of a perceptron.

2.2. A Multi-Layer Perceptron (MLP) or a Feed-Forward Neural Network (FNN)

Multi-Layer Perceptron (MLP), specifically a simple Feed-Forward Neural Network (FNN), are the

simplest of the ANNs. These are composed of multiple nodes, which imitate the biological neurons of

the human brain. The neurons are arranged in multiple layers such that the neurons of consecutive layers

are connected by links for passing on the values. A neuron receives values from the neurons in the

previous layer and performs some operations to produce a new value, which is passed on to the neurons

in the next layer. The input or output of each neuron is a numerical value, and the computation

performed by the neuron is determined by a set of adjustable model parameters called weights and

biases.

Typically, a multilayer neural network has one input layer (numbered as, say 𝑙 = 0) and 𝐿 other layers,

where 𝐿 is a positive integer, such that the layers are numbered as 𝑙 = 1 to 𝑙 = 𝐿. Each of the layers

numbered from 𝑙 = 1 to 𝑙 = 𝐿 − 1 is called a hidden layer, and the layer 𝑙 = 𝐿 is called the output

layer. The input layer contains input neurons that send information to the hidden layer next to it. Each

neuron in the input layer represents one feature or attribute of the input data. The hidden layer contains

information from the input layer and performs some operations on the data. The hidden layers allow the

ANN to learn and extract features from the input data that are not directly observable. In other words,

hidden layers can identify complex patterns and relationships within the input data that can be used to

make accurate predictions or classifications. The number of hidden layers and number of neurons in an

ANN can vary, depending on the complexity of the problem being solved. Generally, the more complex

the problem, the more hidden layers are needed to learn the necessary features and relationships in the

7

data. The complexity of the network increases with the number of layers and neurons in any layer. The

output of the last hidden layer is then passed to an output layer for computing the final output of the

network. The present article discusses mainly simple FNNs with no convolution or recurrent layers. We

frequently call these as ANNs in the present document. Moreover, we confine the discussion in this

document to supervised learning.

In a layer 𝑙 , for 𝑙 = 1,2,3,⋯ , 𝐿 , the number of neurons can be denoted by 𝑛𝑙 . In the subsequent

discussion, the superscript [𝑙] is used to denote that the concerning value is for layer 𝑙. To form the

values at the 𝑛𝑙 neurons in a layer 𝑙, we define the notations as follows.

• The vector of input values at 𝑛𝑙−1 neurons from the previous layer (𝑙 − 1) is denoted by

𝑋[𝑙−1] =

[

 𝑥1

[𝑙−1]

𝑥2
[𝑙−1]

⋮

𝑥𝑛𝑙−1

[𝑙−1]
]

𝑛𝑙−1×1

Here, 𝑋[𝑙−1] ∈ ℝ𝑛𝑙−1×1.

• The vector of weights for generating the value at 𝑗th neuron (in the layer 𝑙), for 𝑗 = 1,2,⋯ , 𝑛𝑙,

are denoted by

𝑊𝑗
[𝑙] =

[

 𝑤𝑗,1

[𝑙]

𝑤𝑗,2
[𝑙]

⋮

𝑤𝑗,𝑛𝑙−1

[𝑙]
]

𝑛𝑙−1×1

Here, 𝑊𝑗
[𝑙]

∈ ℝ𝑛𝑙−1×1. A collective matrix of all the weights required to produce the 𝑛𝑙 neurons

is given by

�̅̅̅�[𝑙] =

[

 𝑤1,1

[𝑙] 𝑤1,2
[𝑙] ⋯ 𝑤1,𝑛𝑙−1

[𝑙]

𝑤2,1
[𝑙] 𝑤2,2

[𝑙] ⋯ 𝑤2,𝑛𝑙−1

[𝑙]

⋮

𝑤𝑛𝑙,1
[𝑙] 𝑤𝑛𝑙,2

[𝑙] ⋯ 𝑤𝑛𝑙,𝑛𝑙−1

[𝑙]
]

=

[

 —— 𝑊1

[𝑙]𝑇 ——

—— 𝑊2
[𝑙]𝑇——

⋮

—— 𝑊𝑛𝑙

[𝑙]𝑇——]

𝑛𝑙×(𝑛𝑙−1)

Here, �̅̅̅�[𝑙] ∈ ℝ𝑛𝑙×𝑛𝑙−1.

• The vector of biases for generating the values at 𝑛𝑙 neurons in the layer 𝑙, is denoted by

𝐵[𝑙] =

[

 𝑏1

[𝑙]

𝑏2
[𝑙]

⋮

𝑏𝑛𝑙

[𝑙]
]

𝑛𝑙×1

Here, 𝐵[𝑙] ∈ ℝ𝑛𝑙×1.

8

• The vector 𝑍[𝑙] = �̅̅̅�[𝑙]𝑋[𝑙−1] + 𝐵[𝑙] , or element-wise: 𝑧𝑗
[𝑙] = 𝑊𝑗

[𝑙] ∙ 𝑋[𝑙−1] + 𝑏𝑗
[𝑙]

, for 𝑗 =

1,2,⋯ , 𝑛𝑙, for generating the values at 𝑛𝑙 neurons in the layer 𝑙, is denoted by

𝑍[𝑙] =

[

 𝑧1

[𝑙]

𝑧2
[𝑙]

⋮

𝑧𝑛𝑙

[𝑙]
]

𝑛𝑙×1

Here, 𝑍[𝑙] ∈ ℝ𝑛𝑙×1.

• The vector �̂�[𝑙] = 𝝓(𝑍[𝑙]) , written component-wise: �̂�𝑗
[𝑙]

= 𝜙 (𝑧𝑗
[𝑙]

) , of output values

generated at the 𝑛𝑙 neurons in the layer 𝑙 is denoted by

�̂�[𝑙] =

[

 �̂�1

[𝑙]

�̂�2
[𝑙]

⋮

�̂�𝑛𝑙

[𝑙]
]

𝑛𝑙×1

Here, �̂�[𝑙] ∈ ℝ𝑛𝑙×1 . Note that the output from a layer l − 1 is the input to the layer l, i.e.,

�̂�𝑖
[𝑙−1]

= 𝑥𝑖
[𝑙−1]

.

• The vector of target/true values or labels at the 𝑛𝐿 neurons in the output layer 𝐿 is denoted by

𝑌 =

[

𝑦1

𝑦2

⋮

𝑦𝑛𝐿]

𝑛𝐿×1

Here, 𝑌 ∈ ℝ𝑛𝐿×1.

A schematic diagram of an ANN architecture is given in Fig. 2.3. In general, any the value at 𝑗th neuron

of the layer 𝑙 is formed as:

�̂�𝑗
[𝑙] = 𝜙 (𝑧𝑗

[𝑙]) = 𝜙 (𝑊𝑗
[𝑙] ∙ �̂�[𝑙−1] + 𝑏𝑗

[𝑙])

2.3. Forward Pass: Finding Neuron Values in an Artificial Neural Network

Once a network architecture has been designed, by deciding the number of layers and number of neurons

in each layer, also having initialized the network parameters (weights and biases), the computations

across the network are performed. In the forward pass, the following three steps are performed.

Step 1 (Finding the Dot product of the Input Values and Weights):

Suppose that there are 𝑛0 neurons in the input layer, where each neuron corresponds to an input feature

of the dataset. The neuron values in the input layer are denoted by 𝑥𝑖
[0]

, for 𝑖 = 1,2,⋯ , 𝑛0. These values

form a vector, say 𝑋[0], which is used to compute 𝑛1 neuron values of the first hidden layer 𝑙 = 1. First,

9

for each neuron 𝑗, for 𝑗 = 1,2,⋯ , 𝑛1, of layer 1, the dot product of 𝑋[0] with the vector of the weights

𝑊𝑗
[1]

, having components 𝑤𝑗,𝑖
[1]

 for 𝑖 = 1,2,⋯ , 𝑛0, is computed. In general, for each neuron 𝑗, for 𝑗 =

1,2,⋯ , 𝑛𝑙, in a layer 𝑙, the dot product of 𝑋[𝑙−1] with the vector of the weights 𝑊𝑗
[𝑙]

, having components

𝑤𝑗,𝑖
[𝑙]

, for 𝑖 = 1,2,⋯ , 𝑛𝑙−1, is computed. That said,

𝑊𝑗
[𝑙]

∙ 𝑋[𝑙−1] = 𝑋[𝑙−1] ∙ 𝑊𝑗
[𝑙]

= 𝑊𝑗
[𝑙]𝑇

𝑋[𝑙−1] = ∑ 𝑤𝑗,𝑖
[𝑙]

× 𝑥𝑖
[𝑙−1]

𝑛𝑙−1

𝑖=1

 − − −(𝐹. 1)

Here, 𝑙 is the layer number: 𝑙 = 1,2,⋯ , 𝐿. Note that the weight represents the strength of the connection

between the neurons and decides how much influence the given input will have on the output.

Fig. 2.3: A schematics diagram of a multilayer perceptron or FNN

Step 2 (Adding Biases):

Next, for each neuron 𝑗 , for 𝑗 = 1,2,⋯ , 𝑛𝑙 , in the layer 𝑙 , a bias 𝑏𝑗
[𝑙]

 is added to the dot product

mentioned in (𝐹. 1) to calculate the pre-activation/intermediate value, which represents a line. The result,

denoted by 𝑧𝑗
[𝑙]

, can be expressed as:

10

𝑧𝑗
[𝑙] = 𝑊𝑗

[𝑙] ∙ 𝑋[𝑙−1] + 𝑏𝑗
[𝑙] = (∑ 𝑤𝑗,𝑖

[𝑙] × 𝑥𝑖
[𝑙−1]

𝑛𝑙−1

𝑖=1

) + 𝑏𝑗
[𝑙], for 𝑗 = 1,2,3,⋯ , 𝑛𝑙 (𝐹. 2)

The pre-activation value, 𝑧𝑗
[𝑙]

, the so-called linear neuron, is used to compute a non-linear output neuron.

The bias is the offset, which is necessary in most cases, to move the pre-activation function or line to the

left or right to generate the required output values. Using biases the neural network helps the model to

make a better prediction by allowing the model to fit the training data more closely. It allows the model

to have non-zero output when the input is zero. This is important in specific problems, such as image

classification, where the input data may have zero mean. It can also be used to break the symmetry in

the model, which can help with optimization during training. Without bias, multiple neurons could have

the same weight and produce the same output, preventing the model from learning.

Step 3 (Applying Activation Function):

The 𝑗th neuron’s output at layer 𝑙, i.e., �̂�𝑗
[𝑙]

, is obtained by applying the activation function 𝜙:ℝ → ℝ to

the pre-activation value 𝑧𝑗
[𝑙]

:

�̂�𝑗
[𝑙] = 𝜙 (𝑧𝑗

[𝑙]) − − −(𝐹. 3)

Conclusively, the 𝑗𝑡ℎ artificial neuron in layer 𝑙 with a vector of weights 𝑊𝑗
[𝑙] ∈ ℝ𝑛𝑙−1×1, bias 𝑏𝑗

[𝑙] ∈ ℝ

and an activation function 𝜙:ℝ → ℝ can be defined as a function 𝑓:ℝ𝑛𝑙−1×1 → ℝ

𝑓 (𝑥1
[𝑙−1]

, 𝑥2
[𝑙−1]

, ⋯ , 𝑥𝑛𝑙−1

[𝑙−1]
) = 𝜙 (𝑊𝑗

[𝑙]
∙ 𝑋[𝑙−1] + 𝑏𝑗

[𝑙]
) = 𝜙 ((∑ 𝑤𝑗,𝑖

[𝑙]
× 𝑥𝑖

[𝑙−1]

𝑛𝑙−1

𝑖=1

) + 𝑏𝑗
[𝑙]

)

− − −(𝐹. 4)

An activation function, applied to the pre-activation linear neuron, introduces non-linearity into the

neural network. This allows neural networks to learn complex and non-linear relationships between the

input and output, which are inevitable in reality. Without non-linear activation functions, a neural

network would act like a linear regression model that can only model linear relationships. Activation of

a neuron determines whether the neuron should fire (i.e., output a signal) based on the input it receives

from the previous layer. That said, the activation function decides whether the information the neuron

receives is relevant or should be ignored.

Several definitions of the activation functions are available in the literature, each with its unique

properties and advantages. Examples include the Threshold, Sigmoid, Tanh, ReLU, Leaky ReLU,

Softmax functions, etc. Some of the well-known activation functions are listed in Table 2.1. The choice

of activation function can have a significant impact on the performance of the model. The choice

depends on the problem and data at hand and the characteristics of the data. Therefore, experimenting

with different activation functions is often a good practice to see which works best. Research

contributions proposed several other activation functions and demonstrated improved performance on

some benchmarks. Agostinelli et al. (2015) proposed adaptive piecewise linear activation functions.

Hendrycks and Gimpel (2020) proposed a high performance activation function, the Gaussian Error

Linear Unit (GELU) as a variant to ReLU and ELU.

11

Function 𝜙(𝑧)

and its derivative, 𝜙′(𝑧)
Description Graph

Linear/Identity Function:

𝜙(𝑧) = 𝑧

𝜙′(𝑧) = 1

Ranges:

𝜙(𝑧) ∈ (−∞ , +∞)

𝜙′(𝑧) ∈ {1}

It produces an output that is

directly proportional to its input.

This means that for every unit

change in the input, there is a

corresponding unit change in the

output. Due to its simplicity and

linearity, it is rarely used in hidden

layers of neural networks, as it

lacks the expressive power to

capture complex patterns.

However, it finds utility in specific

scenarios, such as regression tasks,

where the output values are not

bounded, and a direct, linear

relationship between input and

output is desired.

Binary Step Function:

𝜙(𝑧) = {
0, 𝑧 < 0
1, 𝑧 ≥ 0

𝜙′(𝑧) = {
0, 𝑧 ≠ 0
∞, 𝑧 = 0

Ranges:

𝜙(𝑧) ∈ {0 , 1}

𝜙′(𝑧) ∈ {0}

It maps its input to one of two

discrete values: 0 or 1. Its gradient

is nearly zero across the input

space, which presents a challenge

in parameter updates during

training. Its binary nature makes it

suitable for scenarios where a

binary decision or activation is

required, such as in binary

classification problems. However,

the near-zero gradient can impede

gradient-based optimization

methods, potentially leading to

slow convergence or getting stuck

in local minima. Therefore, it is

often used sparingly in neural

networks, with alternative

activation functions preferred for

tasks demanding smoother

gradients and more efficient

optimization.

Sigmoid/ Logistic Function:

𝜙(𝑧) =
1

1 + 𝑒−𝑧

𝜙′(𝑧) = 𝜙(𝑧)(1 − 𝜙(𝑧))

Ranges:

𝜙(𝑧) ∈ (0 , 1)

𝜙′(𝑧) ∈ (0 , 0.25]

It transforms input values into a

bounded range between 0 and 1,

representing the likelihood or

probability of belonging to a

specific class in classification

tasks. By compressing the output

values into a probabilistic scale, it

facilitates binary decisions, such as

classifying objects as ‘yes’ or ‘no.’

Its smooth and differentiable nature

allows for effective gradient-based

optimization during neural network

12

training. However, its vanishing

gradients can hinder learning in

deep networks. Despite this

limitation, the sigmoid function

remains a fundamental choice for

binary classification problems and

as a component in more complex

activation functions like the

hyperbolic tangent. (Rumelhart et

al., 1986)

Hyperbolic Tangent (Tanh)

Function:

𝜙(𝑧) =
2

1 + 𝑒−2𝑧
− 1

𝜙′(𝑧) = 1 − (𝜙(𝑧))
2

Ranges:

𝜙(𝑧) ∈ (−1 , 1)

𝜙′(𝑧) ∈ (0 , 1]

It is akin to the sigmoid function

but extends its range from −1 to 1.

This characteristic makes it

suitable for a broad spectrum of

tasks, including classification and

regression. Like the sigmoid, tanh

offers smooth and differentiable

behavior, enabling efficient

gradient-based optimization during

neural network training. It is useful

in scenarios where data varies both

positively and negatively around a

mean. Its centered nature, with a

mean at 0, aids in mitigating

vanishing gradient problems and

contributes to its versatility in

diverse network architectures.

(Rumelhart et al., 1986)

Rectified Linear Unit (ReLU)

Function:

𝜙(𝑧) = max(0, 𝑧)

𝜙′(𝑧) = {
0, 𝑧 ≤ 0
1, 𝑧 > 0

Ranges:

𝜙(𝑧) ∈ [0 ,∞)

𝜙′(𝑧) ∈ {0 , 1}

It is known for its computational

efficiency, making it a popular

choice in neural networks. It

introduces non-linearity by

returning the input for positive

values and zero for negative values

(Hahnloser, 2000). ReLU may face

the “dying ReLU” problem, where

some neurons may become

permanently inactive during

training if they consistently output

zero. This issue can be mitigated

with variants like Leaky ReLU and

Parametric ReLU, which introduce

small slopes for negative inputs,

ensuring gradients flow and

maintaining the ability of neurons

to learn effectively.

Leaky ReLU Function and

Parametric ReLU Function:

𝜙(𝑧) = max(𝛼𝑧, 𝑧)

𝜙′(𝑧) = {
𝛼, 𝑧 ≤ 0
1, 𝑧 > 0

Here, 𝛼 is a small positive

constant,

These are designed to mitigate the

“dying ReLU” issue. They allow

small negative values to be passed

through the activation function

instead of being zero, preventing

neuron inactivity. This enables

parameter updates during

backpropagation, even for negative

inputs. This promotes more

effective learning in deep neural

13

For the Leaky-ReLU function,

𝛼 is typically set to a small

value like 0.01 or 0.2.

For the Parametric-ReLU

function, 𝛼 is a learnable

parameter that can be adjusted

during training.

Ranges:

𝜙(𝑧) ∈ (−∞ , +∞)

𝜙′(𝑧) ∈ {𝛼 , 1}

networks. (Xu et al., 2015; He et

al., 2015)

Exponential Linear Unit

(ELU) Function:

𝜙(𝑧) = {
𝛼(𝑒−𝑧 − 1), 𝑧 < 0

𝑧, 𝑧 ≥ 0

𝜙′(𝑧) = {
𝜙(𝑧) + 𝛼 𝑧 ≤ 0

1, 𝑧 > 0

Ranges:

𝜙(𝑧) ∈ (−𝛼 , +∞)

𝜙′(𝑧) ∈ (0 , 1]

It is an extension of the parametric

ReLU that combines the benefits of

ReLU with smoothness (Clevert,

2016). Like ReLU, it is

computationally efficient and helps

mitigate the vanishing gradient

problem. However, it introduces

smoothness to the activation

output, making it more stable

during optimization.

SoftPlus Function:

𝜙(𝑧) = log (1 + 𝑒𝑧)

𝜙′(𝑧) =
1

1 + 𝑒−𝑧

Ranges:

𝜙(𝑧) ∈ (0 ,∞)

𝜙′(𝑧) ∈ (0 , 1)

It is a smooth and differentiable

choice, well-suited for neural

networks. It transforms input

values into a positive range,

offering benefits in terms of

smooth gradients for optimization

(Dugas et al., 2001). It is favored in

scenarios where continuous and

differentiable activations are

crucial for network stability and

training. Its output range spans

from 0 to positive infinity, making

it particularly useful for models

requiring positive and unbounded

outputs while maintaining

differentiability.

SoftMax Function:

It is integral in the output layer of

neural networks, particularly in

multi-class classification tasks. Its

role is pivotal in learning intricate

decision boundaries. By producing

a smooth and continuous output, it

14

𝜙(𝑧) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑘
𝑗=1

∈ (0 , 1)

𝜙′(𝑧) = 𝜙(𝑧𝑖) (𝛿𝑖,𝑗 − 𝜙(𝑧𝑗))

𝛿𝑖,𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

fosters stable and robust training

processes. It transforms raw scores

or logits into class probabilities,

allowing the network to assign a

probability to each class. The class

with the highest probability is

selected as the final prediction

(Bishop, 2006). Its output is well-

suited for scenarios where data

belongs to one of several mutually

exclusive classes, making it a

fundamental component of neural

network architectures for

classification.

Swish Function:

𝜙(𝑧) = 𝑧 ∙ sigmoid(𝑧)

𝜙′(𝑧) = 𝜙(𝑧)

+ sigmoid(𝑧)(1 − 𝜙(𝑧))

Range:

𝜙(𝑧) ∈ [−0.278,∞)

𝜙′(𝑧) ∈ [−0.0998, 1.0998]

it is a smooth and continuously

differentiable activation function

that exhibits a unique non-

monotonic behavior, effectively

addressing the vanishing gradient

problem in deep neural networks.

Bounded within the range of

(−1,∞), it offers robust protection

against the exploding gradient

problem (Ramachandran, 2017).

Swish has gained prominence for

its potential to accelerate

convergence and enhance

generalization in neural network

models.

Table 2.1: Some commonly used activation functions

Now, we present the expressions using vector notations for generating values for the whole of the layer

𝑙. All the dot products of input values and the weights collectively for each neuron in layer 𝑙 can be

expressed as:

�̅̅̅�[𝑙]𝑋[𝑙−1]

Adding the biases into it, the pre-activation values for 𝑛𝑙 neuron in the layer 𝑙 are expressed in vector

form as:

𝑍[𝑙] = �̅̅̅�[𝑙]𝑋[𝑙−1] + 𝐵[𝑙] − − −(𝐹. 5)

Here, �̅̅̅�[𝑙] ∈ ℝ𝑛𝑙−1×𝑛𝑙 is the weight matrix and 𝐵[𝑙] ∈ ℝ𝑛𝑙−1×1 is the vector of bias of layer 𝑙 . The

vector 𝑌[𝑙] of 𝑛𝑙 neurons in the layer 𝑙 is obtained through application of activation function:

�̂�[𝑙] = 𝝓(𝑍[𝑙]) ∈ ℝ𝑛𝑙×1 − − −(𝐹. 6)

Here, 𝝓 is in the vector form. The computations across the whole network produce the predicted output,

reaching the layer 𝐿 . This constitutes a neural network model as a computational framework.

Interestingly, the whole neural network architecture can be expressed as the function 𝚽:ℝ𝑛0×1 →

ℝ𝑛𝐿×1 that maps the input data to the predicted output:

15

𝚽(𝑋[0]) = 𝝓(𝑍[𝐿]𝝓(𝑍[𝐿−1]𝝓(⋯𝝓(𝑍[1])))) − − −(𝐹. 7)

Here, 𝑋[0] ∈ ℝ𝑛0×1.

The function Φ can serve as a universal function approximator means that, theoretically, a neural

network with a sufficiently large number of hidden neurons or layers can approximate any continuous

function, given enough training data and proper optimization. In other words, neural networks have the

capacity to learn and represent a wide range of complex functions, making them versatile tools for

various machine learning tasks. This concept is based on the Universal Approximation Theorem

(Cybenko, 1989). The theorem essentially states that a feedforward neural network with a single hidden

layer containing a finite number of neurons can approximate any continuous function on a closed and

bounded input domain, provided that the network has the appropriate activation function and given

sufficient data and proper training. Some more descriptions about the concept of the universal function

approximator can be found in (Hornik, 1991; Mhaskar et al., 2016; Zhou, 2018; Rolnick and Tegmark,

2018; Strang, 2019).

2.4. Calculating the Cost Function (Loss Function)

A Loss function for the neural network is an important parameter determining how well a model

performs for a given instance. The average of the loss function values for all the training instances under

consideration (in an iteration of the learning process) is called the Cost function. However, in machine

learning literature, using the term loss function and cost function interchangeably is common. The loss

function gives a scalar value as the difference/distance/norm between the vector of labels or target values

𝑌(𝑝) and the vector of predicted output values �̂�[𝐿](𝑝) in the output layer 𝐿 of the network for an

instance 𝑝. The cost function is obtained as the average of the loss functions for all the training instances

in an iteration of the learning process. The learning of the model occurs in the form of optimizing the

network parameters (weights and biases). The neural network, together with optimal parameters, predicts

the output for a given input more accurately. The parameters are modified carefully in a mathematically

justified way to reduce the error or cost function. To find an update of the network parameters for

optimization, the gradients of the cost function (i.e., the average of the gradients of the loss functions)

with respect to each parameter are used. The iterative process of updating the parameters continues until

a permissible prediction error is obtained. Section 3 discusses how to find the gradients of the cost

function. Section 4 discusses using the gradients in an optimization method that updates the network

parameters.

There are several loss/cost functions in literature, such as the Squared Error (or Quadratic Loss), Mean-

Squared Error (MSE), Mean-Absolute Error (MAE), Binary Cross-Entropy, Multi-Class Cross-Entropy,

Hinge Loss, Huber Loss, Focal Loss, etc. Table 2.2 lists some commonly used definitions of the cost

functions for neural networks. The choice of the loss function depends on the problem at hand, the

characteristics of the available dataset, and the desired properties of the solution.

Suppose that there is a sample of 𝑚 instances under consideration (for an iteration of the model training

process) from a population (dataset) of 𝑁 instances. The loss function for the 𝑝th instance, where 𝑝 =

1, 2, 3,⋯ ,𝑚, can be denoted by 𝑐(𝑝) or 𝑐𝑝 . If there are 𝑛𝐿 neurons in the output layer 𝐿, then the

Quadratic Loss function or MSE is expressed in element-wise form as,

16

𝑐𝑝 =
1

2
∑(𝑦𝑗 − �̂�𝑗

[𝐿]
)
2

𝑛𝐿

𝑗=1

 − − −(𝐵. 1𝑎)

In vector-notation,

𝑐𝑝 =
1

2
‖𝑌(𝑝) − �̂�[𝐿](𝑝)‖

2

2
 − − −(𝐵. 1𝑏)

The Binary Cross-Entropy Loss function is given by

𝑐𝑝 = −∑[𝑦𝑗 ln �̂�𝑗
[𝐿]

+ (1 − 𝑦𝑗) ln (1 − �̂�𝑗
[𝐿]

)]

𝑛𝐿

𝑗=1

 − − −(𝐵. 2𝑎)

Note that each �̂�𝑗
[𝐿]

∈ (0,1), for 𝑗 = 1,2,⋯ , 𝑛𝐿 is a probability (possibly estimated using the Sigmoid

function) for instance 𝑝 to belong to a particular class. The instance 𝑝 will belong to the class

corresponding to the 𝐾th neuron (𝐾th component in the vector of the target classes) such that

�̂�𝐾
[𝐿]

= max
1≤𝑗≤𝑛𝐿

(�̂�𝑗
[𝐿]

)

In vector form,

𝑐𝑝 = −[𝑌(𝑝) ∙ ln (�̂�[𝐿](𝑝)) + (𝐼 − 𝑌(𝑝)) ∙ ln (𝐼 − �̂�[𝐿](𝑝))] − − −(𝐵. 2𝑏)

Here I is an 𝑛𝐿 × 1 vector with all values as 1.

The cost function (average of the loss function values for 𝑚 training instances) can be calculated as:

𝐶 =
1

𝑚
∑ 𝑐𝑝

𝑚

𝑝=1

 − − −(𝐵. 3)

Cost Function, 𝐸(𝑌(𝑝), �̂�[𝐿](𝑝)) Description

Quadratic Cost or

MSE (Mean Squared Error):

1

2𝑚
∑‖𝑌(𝑝) − �̂�[𝐿](𝑝)‖

2

2
𝑚

𝑝=1

=
1

2𝑚
∑ ∑(𝑦𝑗

(𝑝)
− �̂�𝑗

[𝐿](𝑝)
)

2
𝑛𝐿

𝑗=1

𝑚

𝑝=1

The quadratic cost function, also known as mean

squared error (MSE), is commonly used for regression

problems. It calculates the average of the squared

differences between the predicted and target values. The

advantage of MSE is its differentiability, making it

suitable for gradient-based optimization algorithms. It

also emphasizes larger errors, encouraging accurate

predictions. However, it is sensitive to outliers; the

squared difference will be much larger than the squared

differences of the other data point, which can

significantly increase the cost. Moreover, the parabolic

shape of MSE near the minimum can cause the

derivative to approach zero, leading to slow

convergence and requiring more iterations for the

weights and biases to reach optimal values.

RMSE (Root Mean Squared Error):

RMSE stands for Root Mean Squared Error. It is a

commonly used metric in regression analysis to measure

the average deviation between predicted and actual

values. The RMSE is calculated by taking the square

root of MSE. By squaring the differences, RMSE

17

√
1

2𝑚
∑‖𝑌(𝑝) − �̂�[𝐿](𝑝)‖

2

2
𝑚

𝑝=1

= √
1

2𝑚
∑ ∑(𝑦𝑗

(𝑝)
− �̂�𝑗

[𝐿](𝑝)
)

2
𝑛𝐿

𝑗=1

𝑚

𝑝=1

emphasizes larger errors and provides a measure of the

overall accuracy of the predictions. The RMSE is

particularly useful when the magnitude of errors is a

concern and when comparing the performance of

different models.

Mean Absolute Error (MAE):

1

𝑚
∑‖𝑌(𝑝) − �̂�[𝐿](𝑝)‖

1

𝑚

𝑝=1

=
1

𝑚
∑ ∑ |𝑦𝑗

(𝑝)
− �̂�𝑗

[𝐿](𝑝)
|

𝑛𝐿

𝑗=1

𝑚

𝑝=1

MAE measures the average absolute difference between

the predicted and target values in regression problems.

It measures the error, regardless of their direction

(positive or negative). MAE is preferred over MSE

when the dataset contains significant outliers, and

minimizing the impact of outliers is crucial. In MSE, the

squared difference for an outlier may be much larger

than that for the other data points, which can

significantly impact the overall error.

Binary Cross-Entropy:

−
1

𝑚
∑ [𝑌

(𝑝)
ln (�̂�

[𝐿](𝑝)
) + (𝐼 − 𝑌

(𝑝)
) ln (𝐼 − �̂�

[𝐿](𝑝)
)]

𝑚

𝑝=1

= −
1

𝑚
∑ ∑[𝑦𝑗

(𝑝)
ln(�̂�𝑗

[𝐿](𝑝)
) + (1 − 𝑦𝑗

(𝑝)
) ln(1 − �̂�𝑗

[𝐿](𝑝)
)]

𝑛𝐿

𝑗=1

𝑚

𝑝=1

The Binary Cross-Entropy function, also known as Log

Loss, is typically used for binary classification tasks. Its

formula penalizes the model based on the divergence

between the predicted probabilities and the true labels

for the two classes. It encourages the model to assign

high probabilities to the correct class and low

probabilities to the other classes. It is preferred over

quadratic loss function in classification problems

because it directly optimizes the likelihood of the correct

class prediction.

Categorical or Multi-class Cross-Entropy:

−
1

𝑚
∑[𝑌(𝑝) ln(�̂�[𝐿](𝑝))]

𝑚

𝑝=1

= −
1

𝑚
∑ ∑[𝑦𝑗

(𝑝)
ln (�̂�𝑗

[𝐿](𝑝)
)]

𝑛𝐿

𝑗=1

𝑚

𝑝=1

The Categorical or Multi-class Cross-Entropy function

is used for multi-class classification problems. It

captures the contribution of each class to the overall cost

and encourages the model to assign higher probabilities

to the true class and lower probabilities to the other

classes.

Hinge Loss:

1

𝑚
∑ max(0, 1 − �̂�[𝐿](𝑝) ∙ 𝑌(𝑝))

𝑚

𝑝=1

=
1

𝑚
∑ max

1≤𝑗≤𝑛𝐿

(0, 1 − �̂�𝑗
[𝐿](𝑝)

𝑦𝑗
(𝑝)

)

𝑚

𝑝=1

The Hinge loss function is commonly used in support

vector machines (SVMs) for binary classification tasks.

When dealing with linearly separable datasets, it is

advantageous and aims to find a decision boundary that

maximizes the margin while correctly classifying the

training samples. The Hinge loss penalizes

misclassifications, assigning a non-zero loss only when

a sample is on the wrong side of the decision boundary.

The loss increases linearly with the magnitude of the

incorrect prediction, encouraging the model to classify

samples with a margin of at least one correctly. Unlike

the other loss functions, such as the Binary Cross-

Entropy, the Hinge loss does not directly optimize the

predicted probabilities but focuses on maximizing the

margin between the classes.

Table 2.2: Some commonly used loss/cost functions for neural networks.

18

3. Derivation of the Expressions for the Gradients using the

Backpropagation

The learning phase of a neural network model consists of two phases: backpropagation and optimization.

The backpropagation is a well-accepted and crucial algorithm for finding the gradients of the cost

function with respect to the model parameters (weights and biases). The gradients determine how each

of the parameters affects the cost function and hence the overall behaviour of the model. The gradients

are needed for the optimization algorithm that modifies the weights and biases. The parameter

modification attempts to minimize the cost function, thus giving rise to the learning of the model.

We derive expressions for finding the gradients of the cost function 𝑐(𝑝)or 𝑐𝑝 for a training instance 𝑝.

Unless otherwise needed, we omit (𝑝) from the subscript of the notations, as it is considered understood

that we are discussing the quantities relevant to an instance 𝑝.

In backpropagation, first, the gradients of 𝑐𝑝 with respect to each of the weights 𝑤𝑗,𝑖
[𝐿]

, 𝑖 =

1,2,3,⋯ , 𝑛𝐿−1 , and biases 𝑏𝑗
[𝐿]

 corresponding to each neuron 𝑗, 𝑗 = 1,2,3,⋯ , 𝑛𝐿 , in the layer 𝐿 (the

output layer), are obtained. Note that 𝑐𝑝 does not depend directly on the weights and biases; rather, it

depends on the corresponding neuron value in the layer 𝐿. Therefore, a gradient of 𝑐𝑝 involves the use

of the chain rule of differentiation.

Next, the gradient of 𝑐𝑝 with respect to each of the weights 𝑤𝑘,𝑖
[𝐿−1]

, 𝑖 = 1,2,3,⋯ , 𝑛𝐿−2, and biases 𝑏𝑘
[𝐿−1]

corresponding to each neuron 𝑘, 𝑘 = 1,2,3,⋯ , 𝑛𝐿−1, in the layer (𝐿 − 1), are obtained. Again, note that

𝑐𝑝 depends on neither the said weights and biases, nor the neuron values in the layer 𝐿 − 1, directly.

Therefore, for the gradient of 𝑐𝑝, multiple applications of the chain rule are involved recursively. A

similar approach is used for the gradients of 𝑐𝑝 with respect to the weights and biases corresponding to

the neurons in the previous layers. In general, the gradients of 𝑐𝑝 with respect to each of the weights

𝑤𝑞,𝑖
[𝑟]

, 𝑖 = 1,2,3,⋯ , 𝑛𝑟−1 , and biases 𝑏𝑞
[𝑙]

 corresponding to each neuron 𝑞 , 𝑞 = 1,2,3,⋯ , 𝑛𝑟 in each

hidden layer 𝑟 , for 𝑟 = 𝐿 − 1, 𝐿 − 2,⋯ ,1, are obtained with multiple applications of the chain rule

recursively, as these parameters affect the neuron values in the current layer 𝑟 and the subsequent layers,

𝑟 + 1, 𝑟 + 2,⋯ , 𝐿.

The expressions for the gradient of the cost function with respect to the weights and biases are derived

below.

The gradient of 𝒄𝒑 with respect to the weights and biases used for the neurons of the layer 𝑳:

Let’s derive the expressions the gradients of 𝑐𝑝 with respect to the weights 𝑤𝑗,𝑖
[𝐿]

 and biases 𝑏𝑗
[𝐿]

. Since

𝑐𝑝 is not directly dependent on 𝑤𝑗,𝑖
[𝐿]

 and 𝑏𝑗
[𝐿]

, let’s use the chain rule for the gradients of 𝑐𝑝:

𝜕𝑐𝑝

𝜕𝑤𝑗,𝑖
[𝐿]

=
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

×
𝜕�̂�𝑗

[𝐿]

𝜕𝑧𝑗
[𝐿]

×
𝜕𝑧𝑗

[𝐿]

𝜕𝑤𝑗,𝑖
[𝐿]

, 𝑗 = 1,2,3,⋯ , 𝑛𝐿 𝑖 = 1,2,3,⋯ , 𝑛𝐿−1 − − −(𝐵. 4)

For Eq. (𝐵. 4), we need to find the following three gradients,

𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

=?
𝜕�̂�𝑗

[𝐿]

𝜕𝑧𝑗
[𝐿]

=?
𝜕𝑧𝑗

[𝐿]

𝜕𝑤𝑗,𝑖
[𝐿]

=?

19

The gradient of the predicted values �̂�𝑗
[𝐿]

 with respect to 𝑧𝑗
[𝐿]

 can be written as

𝜕�̂�𝑗
[𝐿]

𝜕𝑧𝑗
[𝐿]

=
𝜕

𝜕𝑧𝑗
[𝐿]

𝜙 (𝑧𝑗
[𝐿]

) = 𝜙′ (𝑧𝑗
[𝐿]

) − − −(𝐵. 5)

The gradient of 𝑧𝑗
[𝐿]

 with respect to 𝑤𝑗,𝑖
[𝐿]

 is given by

𝜕𝑧𝑗
[𝐿]

𝜕𝑤𝑗,𝑖
[𝐿]

=
𝜕

𝜕𝑤𝑗,𝑖
[𝐿]

(𝑧𝑗
[𝐿]

) =
𝜕

𝜕𝑤𝑗,𝑖
[𝐿]

[∑ (𝑥𝑖
[𝐿−1]

∙ 𝑤𝑗,𝑖
[𝐿]

)

𝑛𝐿−1

𝑖=1

+ 𝑏𝑗
[𝐿]

] = 𝑥𝑖
[𝐿−1]

= �̂�𝑖
[𝐿−1]

 − − − (𝐵. 6)

Therefore, using Eqs. (𝐵. 5 − 𝐵. 6) in Eq. (𝐵. 4), the gradient of 𝑐𝑝 with respect to the weights 𝑤𝑗,𝑖
[𝐿]

 can

be expressed as (for each 𝑗 = 1,2,3,⋯ , 𝑛𝐿 vary 𝑖 = 1,2,3,⋯ , 𝑛𝐿−1):

𝜕𝑐𝑝

𝜕𝑤𝑗,𝑖
[𝐿]

=
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

× 𝜙′ (𝑧𝑗
[𝐿]

) × 𝑥𝑖
[𝐿−1]

 − − −(𝐵. 7)

Here, we consider the quantity,

𝛿𝑗
[𝑙] =

𝜕𝑐𝑝

𝜕𝑧𝑗
[𝑙]

 − − −(𝐵. 8)

𝛿𝑗
[𝑙]

 is error in the 𝑗th neuron at layer 𝑙 (Higham and Higham, 2019). It tells how the change in the

weighted input to the neuron effects the cost function. We will use it to define recursive expressions for

simplicity in the derivation. For the output layer 𝑙 = 𝐿, we have

𝛿𝑗
[𝐿]

=
𝜕𝑐𝑝

𝜕𝑧𝑗
[𝐿]

=
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

×
𝜕�̂�𝑗

[𝐿]

𝜕𝑧𝑗
[𝐿]

𝛿𝑗
[𝐿]

=
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

× 𝜙′ (𝑧𝑗
[𝐿]

) − − −(𝐵. 9)

Then, Eq. (𝐵. 7), becomes,

𝜕𝑐𝑝

𝜕𝑤𝑗,𝑖
[𝐿]

= 𝛿𝑗
[𝐿]

× 𝑥𝑖
[𝐿−1]

 − − −(𝐵. 10)

Similarly, the gradient of 𝑐𝑝 with respect to 𝑏𝑗
[𝐿]

 is computed as:

𝜕𝑐𝑝

𝜕𝑏𝑗
[𝐿]

=
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

×
𝜕�̂�𝑗

[𝐿]

𝜕𝑧𝑗
[𝐿]

×
𝜕𝑧𝑗

[𝐿]

𝜕𝑏𝑗
[𝐿]

𝑗 = 1,2,3,⋯ , 𝑛𝐿 − − −(𝐵. 11)

The gradient of 𝑧𝑗
[𝐿]

 with respect to the 𝑏𝑗
[𝐿]

 is given by,

𝜕𝑧𝑗
[𝐿]

𝜕𝑏𝑗
[𝐿]

=
𝜕

𝜕𝑏𝑗
[𝐿]

(𝑧𝑗
[𝐿]

) =
𝜕

𝜕𝑏𝑗
[𝐿]

[∑ (𝑥𝑖
[𝐿−1]

∙ 𝑤𝑗,𝑖
[𝐿]

)

𝑛𝐿−1

𝑖=1

+ 𝑏𝑗
[𝐿]

] = 1 − − −(𝐵. 12)

Using Eqs. (𝐵. 9) and (𝐵. 12) in Eq. (𝐵. 11), we get (for 𝑗 = 1,2,3,⋯ , 𝑛𝐿):

20

𝜕𝑐𝑝

𝜕𝑏𝑗
[𝐿]

= 𝛿𝑗
[𝐿]

× 1 − − −(𝐵. 13)

If we consider the Quadratic cost function, the gradient of 𝑐𝑝 with respect to �̂�𝑗
[𝐿]

 is obtained as follows:

𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

=
𝜕

𝜕�̂�𝑗
[𝐿]

1

2
∑(𝑦𝑗 − �̂�𝑗

[𝐿]
)
2

𝑛𝐿

𝑗=1

∵ using Eq. (𝐵. 1𝑏)

𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

=
1

2
∙ 2 (𝑦𝑗 − �̂�𝑗

[𝐿]
) (−1)

𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

= �̂�𝑗
[𝐿]

− 𝑦𝑗 − − −(𝐵. 14)

If we consider the Binary Cross-Entropy function, the gradient of cp with respect to �̂�𝑗
[𝐿]

 is obtained as

follows:

𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

= −
𝜕

𝜕�̂�𝑗
[𝑙]

[𝑦𝑗 ln �̂�𝑗
[𝐿]

+ (1 − 𝑦𝑗) ln (1 − �̂�𝑗
[𝐿]

)] ∵ using Eq. (𝐵. 2𝑏)

= −[𝑦𝑗

𝜕

𝜕�̂�𝑗
[𝐿]

(ln �̂�𝑗
[𝐿]

) + (1 − 𝑦𝑗)
𝜕

𝜕�̂�𝑗
[𝐿]

ln (1 − �̂�𝑗
[𝐿]

)]

= −[
𝑦𝑗

�̂�𝑗
[𝐿]

+
(1 − 𝑦𝑗)

(1 − �̂�𝑗
[𝐿]

)
(−1)] = −[

𝑦𝑗

�̂�𝑗
[𝐿]

−
(1 − 𝑦𝑗)

(1 − �̂�𝑗
[𝐿]

)
] =

(1 − 𝑦𝑗)

(1 − �̂�𝑗
[𝐿]

)
−

𝑦𝑗

�̂�𝑗
[𝐿]

𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

=
�̂�𝑗

[𝐿]
− 𝑦𝑗

(1 − �̂�𝑗
[𝐿]

) �̂�𝑗
[𝐿]

 − − −(𝐵. 15)

Therefore, for the Quadratic cost function, Eq. (𝐵. 9) becomes,

𝛿𝑗
[𝐿]

= (�̂�𝑗
[𝐿]

− 𝑦𝑗) × 𝜙′ (𝑧𝑗
[𝐿]

) − − −(𝐵. 16)

For the Binary Cross-Entropy function, Eq. (𝐵. 9) becomes,

𝛿𝑗
[𝐿]

=
�̂�𝑗

[𝐿]
− 𝑦𝑗

(1 − �̂�𝑗
[𝐿]

) �̂�𝑗
[𝐿]

× 𝜙′ (𝑧𝑗
[𝐿]

) − − −(𝐵. 17)

If the Sigmoid function is used for the activation, then

𝜙′ (𝑧𝑗
[𝐿]

) =
𝜕

𝜕𝑧𝑗
[𝐿]

𝜙 (𝑧𝑗
[𝐿]

) =
𝜕

𝜕𝑧𝑗
[𝐿]

(
1

1 + 𝑒
−𝑧𝑗

[𝐿])

=
𝑒−𝑧𝑘

[𝐿]

(1 + 𝑒
−𝑧𝑗

[𝐿]

)
2 =

1

1 + 𝑒
−𝑧𝑗

[𝐿] ×
𝑒−𝑧𝑘

[𝐿]

1 + 𝑒
−𝑧𝑗

[𝐿] =
1

1 + 𝑒
−𝑧𝑗

[𝐿] × (1 −
1

1 + 𝑒
−𝑧𝑗

[𝐿])

= 𝜙 (𝑧𝑗
[𝐿]

) (1 − 𝜙 (𝑧𝑗
[𝐿]

))

21

𝜙′ (𝑧𝑗
[𝐿]

) = �̂�𝑗
[𝐿]

(1 − �̂�𝑗
[𝐿]

) − − −(𝐵. 18)

Similarly, if the ReLU function is used for the activation, then

𝜙′ (𝑧𝑗
[𝐿]

) =
𝜕

𝜕𝑧𝑗
[𝐿]

𝜙 (𝑧𝑗
[𝐿]

) =
𝜕

𝜕𝑧𝑗
[𝐿]

(max (0, 𝑧𝑗
[𝑙]

)) = {
0, 𝑧𝑗

[𝑙] ≤ 0

1, 𝑧𝑗
[𝑙]

> 0
 (𝐵. 19)

An appropriate expression for 𝜙′ (𝑧𝑗
[𝐿]

) , such as in Eq. (𝐵. 18) or Eq. (𝐵. 19) , in an appropriate

definition of 𝛿𝑗
[𝐿]

, such as in Eq. (𝐵. 16) or Eq. (𝐵. 17), can be used. The result, in turn, can be used in

Eq. (𝐵. 10) and Eq. (𝐵. 13) to obtain specific expressions for the gradients of 𝑐𝑝 with respect to 𝑤𝑗,𝑖
[𝐿]

and 𝑏𝑗
[𝐿]

.

For the neurons in the hidden layer 𝑳 − 𝟏:

Let’s find the expressions for the gradient of the cost function 𝑐𝑝 with respect to the weights 𝑤𝑘,𝑖
[𝐿−1]

 and

biases 𝑏𝑘
[𝐿−1]

 used for the neuron in the hidden layer 𝐿 − 1. Since 𝑐𝑝 is not directly dependent on 𝑤𝑘,𝑖
[𝐿−1]

,

let’s use the chain rule:

𝜕𝑐𝑝

𝜕𝑤𝑘,𝑖
[𝐿−1]

=
𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

×
𝜕�̂�𝑘

[𝐿−1]

𝜕𝑧𝑘
[𝐿−1]

×
𝜕𝑧𝑘

[𝐿−1]

𝜕𝑤𝑘,𝑖
[𝐿−1]

, 𝑘 = 1,2,3,⋯ , 𝑛𝐿−1 𝑖 = 1,2,3,⋯ , 𝑛𝐿−2

− − −(𝐵. 20)

Similar to Eq. (𝐵. 8), we have

𝛿𝑘
[𝐿−1]

=
𝜕𝑐𝑝

𝜕𝑧𝑘
[𝐿−1]

=
𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

×
𝜕�̂�𝑘

[𝐿−1]

𝜕𝑧𝑘
[𝐿−1]

 − − −(𝐵. 21)

Next

𝜕𝑧𝑘
[𝐿−1]

𝜕𝑤𝑘,𝑖
[𝐿−1]

=
𝜕

𝜕𝑤𝑘,𝑖
[𝐿]

(𝑧𝑘
[𝐿−1]

) =
𝜕

𝜕𝑤𝑘,𝑖
[𝐿]

[∑ (𝑥𝑖
[𝐿−2]

∙ 𝑤𝑘,𝑖
[𝐿−1]

)

𝑛𝐿−2

𝑖=1

+ 𝑏𝑘
[𝐿−1]

] = 𝑥𝑖
[𝐿−2]

− − −(𝐵. 22)

Using Eqs. (𝐵. 21) and(𝐵. 22), in Eq. (𝐵. 20) gives

𝜕𝑐𝑝

𝜕𝑤𝑘,𝑖
[𝐿−1]

= 𝛿𝑘
[𝐿−1]

× 𝑥𝑖
[𝐿−2]

, 𝑘 = 1,2,3,⋯ , 𝑛𝐿−1 𝑖 = 1,2,3,⋯ , 𝑛𝐿−2 − − −(𝐵. 23)

Recall that the output from the layer L − 1 is the input to the layer L, i.e., �̂�𝑘
[𝐿−1]

= 𝑥𝑘
[𝐿−1]

. For Eq.

(𝐵. 21), we find
𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1] and

𝜕�̂�𝑘
[𝐿−1]

𝜕𝑧𝑘
[𝐿−1] .

Let’s find the gradient of 𝑐𝑝 with respect to �̂�𝑘
[𝐿−1]

 using the chain rule:

22

𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

= ∑
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

×
𝜕�̂�𝑗

[𝐿]

𝜕𝑦𝑘
[𝐿−1]

𝑛𝐿

𝑗=1

𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

= ∑
𝜕𝑐𝑝

𝜕�̂�𝑗
[𝐿]

×
𝜕�̂�𝑗

[𝐿]

𝜕𝑧𝑗
[𝐿]

×
𝜕𝑧𝑗

[𝐿]

𝜕�̂�𝑘
[𝐿−1]

𝑛𝐿

𝑗=1

𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

= ∑𝛿𝑗
[𝐿]

×
𝜕𝑧𝑗

[𝐿]

𝜕�̂�𝑘
[𝐿−1]

𝑛𝐿

𝑗=1

∵ using Eq. (𝐵. 9) − − −(𝐵. 24)

Since

𝜕𝑧𝑗
[𝐿]

𝜕�̂�𝑘
[𝐿−1]

=
𝜕

𝜕�̂�𝑘
[𝐿−1]

(𝑧𝑗
[𝐿]

) =
𝜕

𝜕�̂�𝑘
[𝐿−1]

[∑ (𝑥𝑘
[𝐿−1]

∙ 𝑤𝑗,𝑘
[𝐿]

)

𝑛𝐿−1

𝑘=1

+ 𝑏𝑗
[𝐿]

] = 𝑤𝑗,𝑘
[𝐿] (𝐵. 25)

Therefore,

𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

= ∑𝛿𝑗
[𝐿]

× 𝑤𝑗,𝑘
[𝐿]

𝑛𝐿

𝑗=1

− − −(𝐵. 26)

Next,

𝜕�̂�𝑘
[𝐿−1]

𝜕𝑧𝑘
[𝐿−1]

=
𝜕

𝜕𝑧𝑘
[𝐿−1]

𝜙 (𝑧𝑘
[𝐿−1]

) = 𝜙′ (𝑧𝑘
[𝐿−1]

) − − −(𝐵. 27)

Using Eqs. (𝐵. 26) − (𝐵. 27) in Eq. (𝐵. 21),

𝛿𝑘
[𝐿−1]

= (∑𝛿𝑗
[𝐿]

× 𝑤𝑗,𝑘
[𝐿]

𝑛𝐿

𝑗=1

) × 𝜙′ (𝑧𝑘
[𝐿−1]

) − − −(𝐵. 28)

In a similar fashion, the gradient of 𝑐𝑝 with respect to the biases 𝑏𝑘
[𝐿−1]

 can be obtained as:

𝜕𝑐𝑝

𝜕𝑏𝑘
[𝐿−1]

=
𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

×
𝜕�̂�𝑘

[𝐿−1]

𝜕𝑧𝑘
[𝐿−1]

×
𝜕𝑧𝑘

[𝐿−1]

𝜕𝑏𝑘
[𝐿−1]

, 𝑘 = 1,2,3,⋯ , 𝑛𝐿−1 − − −(𝐵. 29)

Note that

𝜕𝑧𝑘
[𝐿−1]

𝜕𝑏𝑘
[𝐿−1]

=
𝜕

𝜕𝑏𝑘
[𝐿−1]

(𝑧𝑘
[𝐿−1]

) =
𝜕

𝜕𝑏𝑘
[𝐿−1]

[∑ (𝑥𝑖
[𝐿−2]

∙ 𝑤𝑘,𝑖
[𝐿−1]

)

𝑛𝐿−2

𝑖=1

+ 𝑏𝑘
[𝐿−1]

] = 1

 − − −(𝐵. 30)

Using Eq. (𝐵. 28) and Eq. (𝐵. 30),in Eq. (𝐵. 29), gives (for each 𝑘 = 1,2,3,⋯ , 𝑛𝐿−1),

𝜕𝑐𝑝

𝜕𝑏𝑘
[𝐿−1]

= 𝛿𝑘
[𝐿−1]

 − − −(𝐵. 31)

Using Eq. (𝐵. 16), for the Quadratic cost function, Eq. (𝐵. 28) becomes,

23

𝛿𝑘
[𝐿−1]

= (∑(�̂�𝑗
[𝐿]

− 𝑦𝑗) × 𝜙′ (𝑧𝑗
[𝐿]

) × 𝑤𝑗,𝑘
[𝐿]

𝑛𝐿

𝑗=1

) × 𝜙′ (𝑧𝑘
[𝐿−1]

) − − −(𝐵. 32)

Using Eq. (𝐵. 17), for the Binary Cross-Entropy function, Eq. (𝐵. 28) becomes,

𝛿𝑘
[𝐿−1]

= (∑
�̂�𝑗

[𝐿]
− 𝑦𝑗

(1 − �̂�𝑗
[𝐿]

) �̂�𝑗
[𝐿]

× 𝜙′ (𝑧𝑗
[𝐿]

) × 𝑤𝑗,𝑘
[𝐿]

𝑛𝐿

𝑗=1

) × 𝜙′ (𝑧𝑘
[𝐿−1]

) − − −(𝐵. 33)

An appropriate expression for derivatives of 𝜙 in an expression of 𝛿 can be used to obtain specific

expressions for the gradients of 𝑐𝑝 with respect to 𝑤𝑘,𝑖
[𝐿−1]

 and 𝑏𝑘
[𝐿−1]

.

For the neurons in the hidden layer 𝑳 − 𝟐:

Let’s find the expression for the gradients of the cost function 𝑐𝑝 with respect to the weights 𝑤𝑠,𝑖
[𝐿−2]

 and

biases 𝑏𝑠
[𝐿−2]

 used for the neuron of the hidden layer 𝐿 − 2. Since 𝑐𝑝 is not directly dependent on 𝑤𝑠,𝑖
[𝐿−2]

,

let’s use the chain rule:

𝜕𝑐𝑝

𝜕𝑤𝑠,𝑖
[𝐿−2]

=
𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

×
𝜕�̂�𝑠

[𝐿−2]

𝜕𝑧𝑠
[𝐿−2]

×
𝜕𝑧𝑠

[𝐿−2]

𝜕𝑤𝑠,𝑖
[𝐿−2]

, 𝑠 = 1,2,3,⋯ , 𝑛𝐿−2 𝑖 = 1,2,3,⋯ , 𝑛𝐿−3

− − −(𝐵. 34)

Similar to Eqs. (𝐵. 9) and (𝐵. 21) , we have

𝛿𝑠
[𝐿−2]

=
𝜕𝑐𝑝

𝜕𝑧𝑠
[𝐿−2]

=
𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

×
𝜕�̂�𝑠

[𝐿−2]

𝜕𝑧𝑠
[𝐿−2]

 − − −(𝐵. 35)

Next,

𝜕𝑧𝑠
[𝐿−2]

𝜕𝑤𝑠,𝑖
[𝐿−2]

=
𝜕

𝜕𝑤𝑠,𝑖
[𝐿−2]

(𝑧𝑠
[𝐿−2]

) =
𝜕

𝜕𝑤𝑠,𝑖
[𝐿−2]

[∑ (𝑥𝑖
[𝐿−3]

∙ 𝑤𝑠,𝑖
[𝐿−2]

)

𝑛𝐿−3

𝑖=1

+ 𝑏𝑠
[𝐿−2]

] = 𝑥𝑖
[𝐿−3]

− − −(𝐵. 36)

Using Eqs. (𝐵. 35) and(𝐵. 36), in Eq. (𝐵. 34) gives

𝜕𝑐𝑝

𝜕𝑤𝑠,𝑖
[𝐿−2]

= 𝛿𝑠
[𝐿−2]

× 𝑥𝑖
[𝐿−3]

, 𝑠 = 1,2,3,⋯ , 𝑛𝐿−2 𝑖 = 1,2,3,⋯ , 𝑛𝐿−3 − − (𝐵. 37)

Recall that the output from the layer L − 2 is the input to the layer L − 1, i.e., 𝑦𝑠
[𝐿−2]

= 𝑥𝑠
[𝐿−2]

. For Eq.

(𝐵. 35), we find
𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2] and

𝜕�̂�𝑠
[𝐿−2]

𝜕𝑧𝑠
[𝐿−2] .

Let’s find the gradient of 𝑐𝑝 with respect to 𝑦𝑠
[𝐿−2]

 using the chain rule:

𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

= ∑
𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

×
𝜕�̂�𝑘

[𝐿−1]

𝜕�̂�𝑠
[𝐿−2]

𝑛𝐿−1

𝑘=1

24

𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

= ∑
𝜕𝑐𝑝

𝜕�̂�𝑘
[𝐿−1]

×
𝜕�̂�𝑘

[𝐿−1]

𝜕𝑧𝑘
[𝐿−1]

×
𝜕𝑧𝑘

[𝐿−1]

𝜕�̂�𝑠
[𝐿−2]

𝑛𝐿−1

𝑘=1

 − − −(𝐵. 38)

𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

= ∑ 𝛿𝑘
[𝐿−1]

×
𝜕𝑧𝑘

[𝐿−1]

𝜕�̂�𝑠
[𝐿−2]

𝑛𝐿−1

𝑘=1

∵ using Eq. (𝐵. 21) − − −(𝐵. 39)

Since,

𝜕𝑧𝑘
[𝐿−1]

𝜕�̂�𝑠
[𝐿−2]

=
𝜕

𝜕�̂�𝑠
[𝐿−2]

(𝑧𝑘
[𝐿−1]

) =
𝜕

𝜕�̂�𝑠
[𝐿−2]

[∑ (𝑥𝑠
[𝐿−2]

∙ 𝑤𝑘,𝑠
[𝐿−1]

)

𝑛𝐿−2

𝑠=1

+ 𝑏𝑘
[𝐿−1]

] = 𝑤𝑘,𝑠
[𝐿−1] (𝐵. 40)

Therefore,

𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

= ∑ 𝛿𝑘
[𝐿−1]

× 𝑤𝑘,𝑠
[𝐿−1]

𝑛𝐿−1

𝑘=1

 − − −(𝐵. 41)

Next,

𝜕�̂�𝑠
[𝐿−2]

𝜕𝑧𝑠
[𝐿−2]

=
𝜕

𝜕𝑧𝑠
[𝐿−2]

𝜙 (𝑧𝑠
[𝐿−2]

) = 𝜙′ (𝑧𝑠
[𝐿−2]

) − − −(𝐵. 42)

Using Eqs. (𝐵. 41) and (𝐵. 42) in Eq. (𝐵. 35), gives

𝛿𝑠
[𝐿−2]

= (∑ 𝛿𝑘
[𝐿−1]

× 𝑤𝑘,𝑠
[𝐿−1]

𝑛𝐿−1

𝑘=1

) × 𝜙′ (𝑧𝑠
[𝐿−2]

) − − −(𝐵. 43)

In a similar fashion, the gradient of 𝑐𝑝 with respect to the biases 𝑏𝑘
[𝐿−1]

 can be obtained as:

𝜕𝑐𝑝

𝜕𝑏𝑠
[𝐿−2]

=
𝜕𝑐𝑝

𝜕�̂�𝑠
[𝐿−2]

×
𝜕�̂�𝑠

[𝐿−2]

𝜕𝑧𝑠
[𝐿−2]

×
𝜕𝑧𝑠

[𝐿−2]

𝜕𝑏𝑠
[𝐿−2]

, 𝑠 = 1,2,3,⋯ , 𝑛𝐿−2 − − −(𝐵. 44)

Note that

𝜕𝑧𝑠
[𝐿−2]

𝜕𝑏𝑠
[𝐿−2]

=
𝜕

𝜕𝑏𝑠
[𝐿−2]

(𝑧𝑠
[𝐿−2]

) =
𝜕

𝜕𝑏𝑠
[𝐿−2]

[∑ (𝑥𝑖
[𝐿−2]

∙ 𝑤𝑠,𝑖
[𝐿−1]

)

𝑛𝐿−3

𝑖=1

+ 𝑏𝑠
[𝐿−2]

] = 1 (𝐵. 45)

Using Eqs. (𝐵. 35) and (𝐵. 45), in Eq. (𝐵. 44), gives (for each 𝑘 = 1,2,3,⋯ , 𝑛𝐿−1),

𝜕𝑐𝑝

𝜕𝑏𝑠
[𝐿−2]

= 𝛿𝑠
[𝐿−2]

 − − −(𝐵. 46)

Using Eq. (𝐵. 16), for the Quadratic cost function, and Eq. (𝐵. 28), Eq. (𝐵. 43) becomes,

𝛿𝑠
[𝐿−2]

= (∑ (∑(�̂�𝑗
[𝐿]

− 𝑦𝑗) × 𝜙′ (𝑧𝑗
[𝐿]

) × 𝑤𝑗,𝑘
[𝐿]

𝑛𝐿

𝑗=1

)𝜙′ (𝑧𝑘
[𝐿−1]

)𝑤𝑘,𝑠
[𝐿−1]

𝑛𝐿−1

𝑘=1

) × 𝜙′ (𝑧𝑠
[𝐿−2]

)

 − − −(𝐵. 47)

25

Using Eq. (𝐵. 17), for the Binary Cross-Entropy function, and Eq. (𝐵. 28), Eq. (𝐵. 43) becomes,

𝛿𝑠
[𝐿−2]

 = (∑ (∑
�̂�𝑗

[𝐿]
− 𝑦𝑗

(1 − �̂�𝑗
[𝐿]

) �̂�𝑗
[𝐿]

× 𝜙′ (𝑧𝑗
[𝐿]

) × 𝑤𝑗,𝑘
[𝐿]

𝑛𝐿

𝑗=1

)𝜙′ (𝑧𝑘
[𝐿−1]

)𝑤𝑘,𝑠
[𝐿−1]

𝑛𝐿−1

𝑘=1

) × 𝜙′ (𝑧𝑠
[𝐿−2]

)

− − −(𝐵. 48)

An appropriate expression for derivatives of 𝜙 in an expression of 𝛿 can be used to obtain specific

expressions for the gradients of 𝑐𝑝 with respect to 𝑤𝑠,𝑖
[𝐿−2]

 and 𝑏𝑠
[𝐿−2]

.

For the neurons in the hidden layer 𝒓, (𝐟𝐨𝐫 𝒓 = 𝑳 − 𝟏, 𝑳 − 𝟐,⋯ , 𝟏) :

In general, for any hidden layer 𝑟, (for 𝑟 = 𝐿 − 1, 𝐿 − 2, ⋯ ,1), the gradients of the cost function 𝑐𝑝 with

respect to the weights and biases can be expressed as:

𝜕𝑐𝑝

𝜕𝑤
𝑞,𝑖
[𝑟]

= 𝛿𝑞
[𝑟] × 𝑥𝑖

[𝑟−1]
, 𝑞 = 1,2,3,⋯ , 𝑛𝑟, 𝑖 = 1,2,3,⋯ , 𝑛𝑟−1 − − −(𝐵. 49)

𝜕𝑐𝑝

𝜕𝑏𝑞
[𝑟]

= 𝛿𝑞
[𝑟]

, 𝑞 = 1,2,3,⋯ , 𝑛𝑟 − − −(𝐵. 50)

where 𝛿𝑞
[𝑟]

 can be expressed recursively as:

𝛿𝑞
[𝑟] = ∑ 𝛿𝑡

[𝑟+1] × 𝑤𝑡,𝑞
[𝑟+1]

𝑛𝑟+1

𝑡=1

× 𝜙′ (𝑧𝑞
[𝑟]) − − −(𝐵. 51)

For 𝑟 = 𝐿 − 1, in Eq. (𝐵. 51), 𝛿𝑡
[𝑟+1]

 becomes 𝛿𝑡
[𝐿]

 that is defined in Eq. (𝐵. 9):

𝛿𝑡
[𝐿]

=
𝜕𝑐𝑝

𝜕�̂�𝑡
[𝐿]

× 𝜙′ (𝑧𝑡
[𝐿]

) , 𝑡 = 1,2,3,⋯ , 𝑛𝐿 − − −(𝐵. 52)

This concludes the derivation of expressions for derivatives of the cost function 𝑐𝑝 with respect to the

network parameters (weights and biases). For elaboration, consider the network as shown in Fig. 3.1.

Fig. 3.1: A network with two hidden layers.

26

Using the formulas with the chain rule, the derivate of the cost function 𝑐𝑝 for an instance 𝑝 with respect

to the weight 𝑤11
[3]

 is given by,

𝜕𝑐𝑝

𝜕𝑤1,1
[3]

=
𝜕𝑐𝑝

𝜕�̂�1
[3]

×
𝜕�̂�1

[3]

𝜕𝑧1
[3]

×
𝜕𝑧1

[3]

𝜕𝑤1,1
[3]

 − − −(𝐵. 53)

The quantities involved in Eq. (𝐵. 53) for chaining of the derivatives due to the variable dependencies

are highlighted in Fig. 3.2.

Fig. 3.2: Highlighting the quantities involve in the chain rule for gradient of 𝑐𝑝 with respect to 𝑤11
[3]

.

The derivate of 𝑐𝑝 with respect to the weight 𝑤11
[2]

 is given by,

𝜕𝑐𝑝

𝜕𝑤1,1
[2]

= (∑
𝜕𝑐𝑝

𝜕�̂�𝑗
[3]

×

𝑛3=2

𝑗=1

𝜕�̂�𝑗
[3]

𝜕𝑧𝑗
[3]

×
𝜕𝑧𝑗

[3]

𝜕�̂�1
[2]

) ×
𝜕�̂�1

[2]

𝜕𝑧1
[2]

×
𝜕𝑧1

[2]

𝜕𝑤1,1
[2]

 − − −(𝐵. 54)

The quantities involved in Eq. (𝐵. 54) for chaining of the derivatives due to the variable dependencies

are highlighted in Fig. 3.3.

Fig. 3.3: Highlighting the quantities involve in the chain rule for gradient of 𝑐𝑝 with respect to 𝑤11
[2]

.

27

The derivate of 𝑐𝑝 for an instance 𝑝 with respect to the weight 𝑤11
[2]

 is given by,

𝜕𝑐𝑝

𝜕𝑤1,1
[1]

= (∑ (∑
𝜕𝑐𝑝

𝜕�̂�𝑗
[3]

×

𝑛3=2

𝑗=1

𝜕�̂�𝑗
[3]

𝜕𝑧𝑗
[3]

×
𝜕𝑧𝑗

[3]

𝜕�̂�𝑖
[2]

) ×
𝜕�̂�𝑖

[2]

𝜕𝑧𝑖
[2]

×

𝑛2=2

𝑖=1

𝜕𝑧𝑖
[2]

𝜕�̂�1
[1]

) ×
𝜕�̂�1

[1]

𝜕𝑧1
[1]

×
𝜕𝑧1

[1]

𝜕𝑤1,1
[1]

(𝐵. 55)

The quantities involved in Eq. (𝐵. 55) for chaining of the derivatives due to the variable dependencies

are highlighted in Fig. 3.4.

Fig. 3.4: Highlighting the quantities involve in the chain rule for gradient of 𝑐𝑝 with respect to 𝑤11
[1]

.

4. Learning of the Neural Network Model Through Optimization

On completion of forward pass computations (together with initial values of weights and biases) of the

neural network, an appropriate definition of the cost function (loss function) is used to compute the

error between the predicted output and the target (label) output. This activity is performed for one or

more instances depending on the choice of the optimization strategy. Next, through optimization, which

is an integral component of a deep learning algorithm, the network weights and biases are updated to

minimize the cost function for better generalization. The updated weights and biases are used for the

next forward pass, and the cost function is computed again. If needed, the weights and biases are

modified again through optimization. The iterative process of updating weights and biases (probably

using a different set of instances) is continued until the desired accuracy is achieved. In fact, for a neural

network model, the learning of the model occurs in the form of optimization of the weights and biases

for the minimal cost function. Better weights and biases reflect better ‘learning’ of the model.

For deep learning, an optimizer is a function or algorithm that finalizes the gradients for updating the

parameters and then modifies the parameters (weights and biases). In the literature, several optimization

methods are available that are frequently used in deep learning. Examples include the Gradient Descent

(GD) methods (Batch GD, Stochastic GD, Minibatch GD, etc.) with and without the Momentum term,

the Nesterov Accelerated GD method, and the GD method with Adaptive learning rates (such as Adam).

Here, firstly, we discuss some basics of the Gradient descent method—secondly, we discuss various

strategies for accumulating the gradients for the optimization scheme—finally, we discuss the formulas

to update the weights and biases.

28

4.1. The Gradient Descent (GD) method for Multivariable Optimization

The GD method is an unconstrained first-order optimization algorithm. The GD method proceeds

iteratively with the goal of converging to a vector that optimizes the objective function. The main idea

of the GD method is to take steps proportional to the negative gradient of the function to minimize it.

Let 𝐶:ℝ𝑛 → ℝ be an 𝑛 -dimensional, differentiable, objective function of variables: 𝑣 =

(𝑣1, 𝑣2, ⋯ , 𝑣𝑛)𝑇 . The gradient of 𝐶 is the vector of partial derivatives of 𝐶 with respect to the

components of 𝑣. It is represented by ∇𝐶(𝑣):

∇𝐶(𝑣) = [
𝜕𝐶(𝑣)

𝜕𝑣1

𝜕𝐶(𝑣)

𝜕𝑣2
⋯

𝜕𝐶(𝑣)

𝜕𝑣𝑛
]

𝑇

∈ ℝ𝑛 − − −(𝐷. 1)

If ∆𝑣 = (∆𝑣1, ∆𝑣2, ⋯ , ∆𝑣𝑛)𝑇 ∈ ℝ𝑛 is the vector of change in 𝑣, then by Taylor expansion, we have

𝐶(𝑣 + ∆𝑣) ≅ 𝐶 +
𝜕𝐶(𝑣)

𝜕𝑣1
∆𝑣1 +

𝜕𝐶(𝑣)

𝜕𝑣2
∆𝑣2 + ⋯+

𝜕𝐶(𝑣)

𝜕𝑣𝑛
∆𝑣𝑛 − − −(𝐷. 2)

According to the Calculus, a change in 𝐶 can be expressed as follows,

∆𝐶 ≅
𝜕𝐶(𝑣)

𝜕𝑣1
∆𝑣1 +

𝜕𝐶(𝑣)

𝜕𝑣2
∆𝑣2 + ⋯+

𝜕𝐶(𝑣)

𝜕𝑣𝑛
∆𝑣𝑛 = ∇𝐶(𝑣) ∙ ∆𝑣 − − −(𝐷. 3)

Using Eq. (𝐷. 3) in Eq. (𝐷. 2),

𝐶(𝑣 + ∆𝑣) ≅ 𝐶 + ∆𝐶 = 𝐶 + ∇𝐶(𝑣) ∙ ∆𝑣 − − −(𝐷. 4)

The objective is to minimize the objective function 𝐶. Using the Cauchy–Schwarz inequality, the upper

bound of the magnitude of ∇𝐶(𝑣) ∙ ∆𝑣 is ‖∇𝐶(𝑣)‖2‖∆𝑣‖2. That is,

|∇𝐶(𝑣) ∙ ∆𝑣| ≤ ‖∇𝐶(𝑣)‖2‖∆𝑣‖2 − − −(𝐷. 5)

For minimization, the upper bound should be negative. ‖∇𝐶(𝑣)‖2‖∆𝑣‖2 is negative if

∆𝑣 = −𝛼∇𝐶(𝑣). Thus, Eq. (𝐷. 3). becomes

∆𝐶 ≅ ∇𝐶(𝑣) ∙ (−𝛼∇𝐶(𝑣)) ≅ −𝛼‖∇𝐶(𝑣)‖2 − − −(𝐷. 6)

‖∇𝐶(𝑣)‖2 ≥ 0, this implies that ∆𝐶 ≤ 0. This ensures that the value of 𝐶 is minimized. The update is

made as follows:

𝑣 ⟵ 𝑣 − 𝛼∇𝐶(𝑣)

4.2. Computation of the Gradients for Optimization: Variants of the GD Method

For performing an iteration of the Gradient Descent method, a subset/mini-batch of 𝑚 instances is

selected from the training set of 𝑁 instances. The computations of the forward pass (together with a set

of initial weights and biases) of the neural network are performed for each of 𝑚 selected instances. This

way, the predicted output for each of 𝑚 instances is obtained. Next, the loss function is computed as

the error between the predicted output and the target (label) output for each of the 𝑚 instances

separately. That is, the loss function 𝑐(𝑝) is computed for 𝑝 = 1,2,⋯ ,𝑚. Next, the gradient of each of

29

the loss functions 𝑐(𝑝) with respect to a specific parameter is computed using the backpropagation as

discussed in Section 3. Then, the average of these gradients is considered as the gradient of the cost

function 𝐶. An averaged gradient of 𝐶 serves as a more accurate estimate of the gradient (Goodfellow,

2016; Aggarwal, 2018). Similarly, the averaged gradients of 𝐶 are formed with respect to each of the

parameters separately. That said, we compute:

𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

=
1

𝑚
∑

𝜕𝑐𝑝

𝜕𝑤𝑗,𝑖
[𝑙]

𝑚

𝑝=1

 − − −(𝐺. 1)

𝜕𝐶

𝜕𝑏𝑗
[𝑙]

=
1

𝑚
∑

𝜕𝑐𝑝

𝜕𝑏𝑗
[𝑙]

𝑚

𝑝=1

 − − −(𝐺. 2)

The notations have the same meaning as used in Section 3. Depending on the value of 𝑚 for an iteration,

there are three common variants of using the Gradient Descent optimization method:

4.2.1. The Batch-Gradient Descent Method

If 𝑚 = 𝑁 (i.e., using all the instances in each iteration), the GD method is called the Batch-Gradient

Descent method. In this case, 𝛾 = 1, where 𝛾 is the number of mini-batches of the set of 𝑁 training

instances. This approach shows a smooth convergence of the cost function to its minimum. However,

practically, it slows down the training process and becomes exorbitantly expensive computationally.

Hence, it is seldom used.

4.2.2. The Stochastic Gradient Descent (SGD) Method

If 𝑚 = 1 (i.e., using only one instance in each iteration) and the instance is selected randomly, then the

GD method is called the Stochastic Gradient Descent (SGD) method or Online Gradient Descent

method. For SGD, 𝛾 = 𝑁. The term stochastic corresponds to a random selection of the instance for an

iteration. The random selection may be made with replacement or without replacement. Sampling with

replacement is sometimes referred to as bootstrapping or bagging.

The SGD method converges faster when the dataset is large, as it causes updates to the parameters more

frequently. The SGD method is generally noisier than the Batch GD method, and it takes more iterations

to reach the minimum because of its randomness. Still, it is far less computationally expensive

comparatively. Hence, SGD is often preferred over the Batch GD method. In fact, the stochastic

approach with the GD method has turned out to be the workhorse of neural network computations. The

success is obtained due to the remarkable fact that randomization (stochastic sampling) results in

reliable generalization when there are so many features/variables.

4.2.3. The Mini-Batch Gradient Descent Method

If 1 < 𝑚 < 𝑁, then the GD method is called the Mini-Batch Gradient Descent method, or precisely,

the Mini-Batch Stochastic Gradient Descent method, as the selection of the instances for a minibatch

is made stochastically. In this case 𝛾 = 𝑁/𝑚. That is, 𝑁 is an integer multiple of 𝑚 such that 𝛾𝑚 = 𝑁.

In the Mini-Batch Gradient Decent method, the parameters are updated after every subset of the data,

so the progress of updating the cost function is smoother compared to that of the SGD. Also, since the

entire dataset is not used at a time, the computation cost is less than the batch gradient descent.

Therefore, this approach is preferred mostly.

30

Remark: A comparison of the error drop pattern for the three variants of the GD methods is shown in

Fig. 4.1.

Fig. 4.1: A comparison of error drop pattern among the three variants of the Gradient Descent

method: (a) the Batch GD method, (b) the SGD method, and (c) the Mini-Batch GD method.

4.3. Updating the Parameters (Weights and Biases): The Learning of the Model

Once the gradients of the parameters (weights and biases) are ready, as in Eqs. (𝐺. 1, 𝐺. 2), then

according to the Gradient Descent strategy, the parameters are updated as follows. The averaged

gradient of 𝐶 with respect to a specific parameter serves as the respective component of the vector of

advancement step sizes in the Descent direction. This step is used to update the relevant parameter.

𝑤𝑗,𝑖
[𝑙]

= 𝑤𝑗,𝑖
[𝑙]

− 𝛼 (
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

) 𝑗 = 1,2,3,⋯ , 𝑛𝑙 𝑖 = 1,2,3,⋯ , 𝑛𝑙−1 − − − (𝐺. 3)

𝑏𝑗
[𝑙] = 𝑏𝑗

[𝑙] − 𝛼 (
𝜕𝐶

𝜕𝑏𝑗
[𝑙]

) 𝑗 = 1,2,3,⋯ , 𝑛𝑙 𝑖 = 1,2,3,⋯ , 𝑛𝑙−1 − − − (𝐺. 4)

Here, 𝛼 is the learning rate. 𝛼 is a hyperparameter. It serves as the step size to control how much the

weights and biases are to be changed. In this way, all the parameters are updated using the respective

averaged gradients.

The iterative process of updating the parameters is repeated until 𝐶 is minimized. For the first iteration,

the initial approximation of 𝑤𝑗,𝑖
[𝑙]

 and 𝑏𝑗
[𝑙]

 are set (may be randomly) to start the iterative process. Once

the optimal values of 𝑤𝑗,𝑖
[𝑙]

 and 𝑏𝑗
[𝑙]

 are obtained that minimizes the cost function 𝐶, Eq. (𝐹. 7), together

with the network, serves as the trained model to predict the output value for any input.

31

Remarks:

• It is important to note that each time the parameters (weights and biases) are updated, it is

known as an iteration or step. The GD method involves incremental training in which the

network parameters are updated in each iteration. The updated parameters will be used in the

next iteration (probably with a different set of 𝑚 instances from the training set of 𝑁 instances).

Then, the cost functions and the averaged gradients are computed again. If needed, the weights

and biases are modified again through optimization. The iterative process of updating weights

and biases is continued until the convergence to the global minimum of the cost function.

• After a certain number of iterations, when all instances have been used in at least one iteration

to update the weights and biases, an epoch is said to be completed. One epoch means going

through the entire training set once.

• In the Batch Gradient Descent method, there is only one iteration per epoch, as 𝑚 = 𝑁. Thus,

one iteration serves as an epoch. This allows the cost function to move smoothly to the global

minimum by updating the parameters once per epoch.

• In the SDG, the random selection of an instance is made with replacement or without

replacement. If the instance selection is made without replacement, then 𝑁 iterations would be

required to complete one epoch, as there are 𝑁 instances in the training set and 𝑚 = 1. This

allows the cost function to move rapidly to the global minimum by updating the parameters 𝑁

times per epoch.

• In the Mini-Batch Gradient Decent method, there exists an integer 𝛾 such that 𝛾𝑚 = 𝑁. 𝛾

specifies the number of mini-batches in which the 𝑁 instances are partitioned. Thus, 𝛾

iterations/steps are required to complete one epoch if the sampling is made without

replacement. This also allows the cost function to move rapidly to the global minimum by

updating the parameters 𝛾 times per epoch.

32

Remarks: For gradient descent to reach the global minimum of the cost function, we must set the

learning rate to an appropriate value that is neither too small nor too large. High learning rates cause

larger steps towards the minimum (fewer iterations) but risk overshooting. On the other hand, low

learning rates cause smaller step sizes and stability, requiring more iterations and computation time to

reach the minimum. A comparison of the error drop pattern for different values of the learning rate is

shown in Fig. 4.2.

Fig. 4.2: A comparison of different values of the learning rate 𝛼. Here, 𝑤 is a parameter with respect

to which the error or loss 𝐶(𝑤) is spotted to be changing after every iteration. Clearly, having the

learning rate neither too high nor too low is the appropriate way for the best pattern of error drop.

Fig. 4.3 gives a comparison of error drop for different levels of values of the learning rate 𝛼 as the

epochs of the iterative learning process progress.

The learning rate (𝛼) and the size of a mini-batches (𝑚) are two critical hyperparameters that control

the optimization process. However, the right choices for these hyperparameters are not always obvious.

Interestingly, strategies for an adaptive learning rate, such as Adam (discussed later), help to learn so

efficiently that the effect of hyperparameters is abridged. This way, an extensive grid search for the best

values of hyperparameters can be avoided.

Fig. 4.3: A comparison of different values of the learning rate

33

Remark: There are certain pitfalls and shortcomings associated with the optimization methods.

Researchers and practitioners have been proposing methods and variants for efficient optimization.

Section 9 discusses some advanced Gradient Descent strategies for efficient training. Advanced

literature can be consulted for more versatile optimization techniques.

5. Illustrating the Neural Networks Model Training: A Flow Chart

Fig. 5.1 depicts a work flow of the generic process of training a neural network model.

Fig. 5.1: A flow chart to illustrate the neural network model training process

Select the Neural

Network Architecture

Forward Pass for

Generating Predictions �̂�

Error

Acceptable?

End

Update the Parameters

(Weights and Biases)

Compute the Cost Function using

the Predictions �̂� and Labels 𝑌

Dataset

Optimized Weights

and Biases (as the

Trained Model)

Initialize the Parameters

(Weights and Biases)

Compute Gradients

(using Backpropagation)

YES

NO

Data Pre-Processing

Start

Compute

Averaged Gradients

Optimizer

34

6. Illustrating ANN Computations by Working Out a Classification

Example

6.1. Problem Description

The dataset shown in Table 6.1 is for illustrative purposes. It is taken from a famous dataset for

classifying a Titanic passenger as survived: Yes or No (kaggle-titanic, 2017). The dataset has three input

(independent) features/attributes: Class: Passenger class (1 = First, 2 = Second, 3 = Third), Age (in

years), and Fare. The target variable Survived is a Boolean variable indicating whether the passenger

survived (1 = Yes, 0 = No). The dataset has instances 𝑝, where 𝑝 = 1,2,⋯ ,6.

Class Age Fare Survived

3 22 7.25 0

1 38 71.25 1

3 26 8.5 1

2 35 53.1 1

2 32 48.5 0

3 35 12.5 0

Table 6.1: A small dataset of an example problem: Titanic Survivors

6.2. Standardization of the Dataset

For standardization, we replace each value 𝑥𝑗 of a column/attribute with (𝑥𝑗 − 𝜇)/𝜎∗, where 𝜇 is the

mean of the values in the respective column, and 𝜎∗ is the standard deviation of the respective attribute:

𝜇 =
1

𝑁
∑(𝑥𝑗)

𝑁

𝑗=1

and 𝜎∗ = √
1

𝑁
∑(𝑥𝑗 − 𝜇)

2
𝑁

𝑗=1

After standardization, the updated values are given in Table 6.2.

Class Age Fare Survived

0.8944 −1.6703 −1.0452 0

−1.7888 1.1931 1.5015 1

0.8944 −0.9545 −0.9955 1

−0.4472 0.6562 0.7793 1

−0.4472 0.1193 0.5962 0

0.8944 0.6562 −0.8363 0

Table 6.2: Standardized Dataset

6.3. Selection of the Network Structure

For the Titanic Survivors classification problem, the structure selected as the neural work is shown in

Fig. 6.1. There are three layers: the input layer is 𝑙 = 0, the hidden layer is 𝑙 = 1, and the output layer

is 𝑙 = 2. The number of neurons in the input layer is 3 (𝑛0 = 3), in the hidden layer is 3 (𝑛1 = 3), and

in the output layer is 3 (𝑛2 = 3).

35

For illustrative purposes, we consider only the first instance, i.e., 𝑝 = 1, from Table 2 and use it for

elaborating on the computations of the forward pass, cost function, gradients using backpropagations,

and the Gradient Descent optimization for updating the parameters. The input data is:

𝑋[0] = [𝑥1
[0]

𝑥2
[0]

𝑥3
[0]]

𝑇
= [0.8944 −1.6703 −1.0452]

Fig. 6.1: The Structure of the neural network

6.4. Initializing Weights and Biases

For the hidden layer, 𝑙 = 1:

𝑊1
[1]

= [𝑤1,1
[1]

𝑤1,2
[1]

𝑤1,3
[1]

]
𝑇

= [0.01 0.02 0.1]

𝑊2
[1]

= [𝑤2,1
[1]

𝑤2,2
[1]

𝑤2,3
[1]]

𝑇
= [0.12 0.03 0.05]

𝑊3
[1]

= [𝑤3,1
[1]

𝑤3,2
[1]

𝑤3,3
[1]]

𝑇
= [0.06 0.02 0.03]

𝐵[1] = [𝑏1
[1]

𝑏2
[1]

𝑏3
[1]]

𝑇
= [0.11 0.06 0.05]

For the output layer, 𝑙 = 𝐿 = 2:

𝑊1
[2]

= [𝑤1,1
[2]

𝑤1,2
[2]

𝑤1,3
[2]]

𝑇
= [0.04 0.03 0.3]

𝑊2
[2]

= [𝑤2,1
[2]

𝑤2,2
[2]

𝑤2,3
[2]]

𝑇
= [0.20 0.05 0.02]

𝐵[2] = [𝑏1
[2]

𝑏2
[2]]

𝑇
= [0.06 0.04]

6.5. The Forward Pass (Finding the Neuron Values)

In the layer 𝑙 = 1,

36

𝑊𝑗
[1]

∙ 𝑋[0] = ∑𝑤𝑗,𝑖
[1]

𝑥𝑖
[0]

3

𝑖=1

= 𝜙 (𝑧𝑗
[1]

) = �̂�𝑗
[1]

Recall that each �̂�𝑗
[𝑙] ∈ (0,1), for 𝑗 = 1,2,⋯ , 𝑛𝑙. is an estimated probability.

For the first neuron, 𝑗 = 1:

𝑊1
[1]

∙ 𝑋[0] = ∑𝑤1,𝑖
[1]

𝑥𝑖
[0]

3

𝑖=1

= 𝑤1,1
[1]

𝑥1
[0]

+ 𝑤1,2
[1]

𝑥2
[0]

+ 𝑤1,3
[1]

𝑥3
[0]

= (0.01)(0.8944) + (0.02)(−1.6703) + (0.1)(−1.0452)

= −0.1289

𝑧1
[1]

= 𝑊1
[1]

∙ 𝑋[0] + 𝑏1
[1]

= −0.1289 + 0.11 = −0.0189

�̂�1
[1]

= 𝜙 (𝑧1
[1]

) =
1

1 + 𝑒−𝑧1
[1] =

1

1 + 𝑒+0.0189
= 0.4953

For the second neuron, 𝑗 = 2:

𝑊2
[1]

∙ 𝑋[0] = ∑𝑤2,𝑖
[1]

𝑥𝑖
[0]

3

𝑖=1

= 𝑤2,1
[1]

𝑥1
[0]

+ 𝑤2,2
[1]

𝑥2
[0]

+ 𝑤2,3
[1]

𝑥3
[0]

= (0.12)(0.8944) + (0.03)(−1.6703) + (0.05)(−1.0452)

= 0.0049

𝑧2
[1]

= 𝑊2
[1]

∙ 𝑋[0] + 𝑏2
[1]

= 0.0049 + 0.06 = 0.0649

�̂�2
[1]

= 𝜙 (𝑧2
[1]

) =
1

1 + 𝑒−𝑧2
[1] =

1

1 + 𝑒−0.0649
= 0.5162

For the third neuron, 𝑗 = 3:

𝑊3
[1]

∙ 𝑋[0] = ∑𝑤3,𝑖
[1]

𝑥𝑖
[0]

3

𝑖=1

= 𝑤3,1
[1]

𝑥1
[0]

+ 𝑤3,2
[1]

𝑥2
[0]

+ 𝑤3,3
[1]

𝑥3
[0]

= (0.06)(0.8944) + (0.02)(−1.6703) + (0.03)(−1.0452)

= −0.0111

𝑧3
[1]

= 𝑊3
[1]

∙ 𝑋[0] + 𝑏3
[1]

= −0.0111 + 0.05 = 0.0389

�̂�3
[1]

= 𝜙 (𝑧3
[1]

) =
1

1 + 𝑒−𝑧3
[1] =

1

1 + 𝑒−0.0389
= 0.5097

In the layer 𝑙 = 𝐿 = 2,

37

𝑊𝑗
[2]

∙ 𝑋[1] = ∑𝑤𝑗,𝑖
[2]

𝑥𝑖
[1]

3

𝑖=1

= ∑𝑤𝑗,𝑖
[2]

�̂�𝑖
[1]

3

𝑖=1

= 𝜙 (𝑧𝑗
[2]

) = �̂�𝑗
[1]

For the first neuron, 𝑗 = 1:

𝑊1
[2]

∙ 𝑋[1] = ∑𝑤1,𝑖
[2]

�̂�𝑖
[1]

3

𝑖=1

= 𝑤1,1
[2]

�̂�1
[1]

+ 𝑤1,2
[2]

�̂�2
[1]

+ 𝑤1,3
[2]

�̂�3
[1]

= (0.04)(0.4953) + (0.03)(0.5162) + (0.3)(0.5097)

= 0.1882

𝑧1
[2]

= 𝑊1
[2]

∙ 𝑋[1] + 𝑏1
[2]

= 0.1882 + 0.06 = 0.2482

�̂�1
[2]

= 𝜙 (𝑧1
[2]

) =
1

1 + 𝑒−𝑧1
[2] =

1

1 + 𝑒0.2482
= 0.438

For the second neuron, 𝑗 = 2:

𝑊2
[2]

∙ 𝑋[1] = ∑𝑤2,𝑖
[2]

�̂�𝑖
[1]

3

𝑖=1

= �̂�1
[1]

𝑤2,1
[2]

+ �̂�2
[1]

𝑤2,2
[2]

+ �̂�3
[1]

𝑤2,3
[2]

= (0.20)(0.4953) + (0.05)(0.5162) + (0.02)(0.5097)

= 0.1351

𝑧2
[2]

= 𝑊2
[2]

∙ 𝑋[1] + 𝑏2
[2]

= 0.1351 + 0.04 = 0.1751

�̂�2
[2]

= 𝜙 (𝑧2
[2]

)

=
1

1 + 𝑒−𝑧2
[2]

=
1

1 + 𝑒−0.1751

= 0.544

On completion of the first forward pass, the vector of the output layer’s neuron values (estimated

probabilities) for instance 𝑝 is as follows:

�̂�[2] = [
�̂�1

[2]

�̂�2
[2]

] = [
0.438

0.544
]

The vector of the target values:

𝑌 = [
𝑦1

𝑦2

] = [
0

1
]

38

Recall that each �̂�𝑗
[𝐿]

∈ (0,1), for 𝑗 = 1,2,⋯ , 𝑛𝐿 is a probability (estimated using the Sigmoid function)

for the instance to belong to a particular class. The instance will belong to the class corresponding to the

𝐾th neuron (𝐾th component in the vector of the target classes) such that

�̂�𝐾
[𝐿]

= max
1≤𝑗≤𝑛𝐿

(�̂�𝑗
[𝐿]

)

6.6. Calculating the Cost Function (Error in the Calculated Output)

For the instance 𝑝 = 1, the Binary-Cross Entropy function or error 𝑐(𝑝) or 𝑐𝑝 is calculated as:

𝑐𝑝 = −∑[𝑦𝑗 ln �̂�𝑗
[2]

+ (1 − 𝑦𝑗) ln (1 − �̂�𝑗
[2]

)]

2

𝑗=1

= [𝑦1 ln �̂�1
[2]

+ (1 − 𝑦1) ln (1 − �̂�1
[2]

) + 𝑦2 ln �̂�2
[2]

+ (1 − 𝑦2) ln (1 − �̂�2
[2]

)]

= −[(0) ln(0.438) + (1 + 0) ln(1 − 0.438) + (1) ln(0.544) + (0) ln(1 − 0.544)]

= −1.18506

6.7. Learning Phase: Computing the Gradients through Backpropagation

Gradient of the cost function with respect to the weights and biases used in the layer 𝒍 = 𝑳 = 𝟐:

For the Sigmoid activation function together with the Cross-Entropy cost function, we have for 𝑗 = 1,2

and 𝑖 = 1,2,3:

𝜕𝑐𝑝

𝜕𝑤𝑗,𝑖
[2]

= 𝛿𝑗
[2]

× �̂�𝑖
[1]

∵ from Eq. (𝐵. 9)

=
�̂�𝑗

[2]
− 𝑦𝑗

(1 − �̂�𝑗
[2]

) �̂�𝑗
[2]

× 𝜙′ (𝑧𝑗
[2]

) × �̂�𝑖
[1]

∵ from Eq. (𝐵. 17)

=
�̂�𝑗

[2]
− 𝑦𝑗

(1 − �̂�𝑗
[2]

) �̂�𝑗
[2]

× �̂�𝑗
[2]

(1 − �̂�𝑗
[2]

) × �̂�𝑖
[1]

∵ from Eq. (𝐵. 18)

= (�̂�𝑗
[2]

− 𝑦𝑗) × �̂�𝑖
[1]

 − − −(𝐸. 3)

Also

𝜕𝑐𝑝

𝜕𝑏𝑗
[2]

= 𝛿𝑗
[2]

= �̂�𝑗
[2]

− 𝑦𝑗 − − −(𝐸. 4)

Calculating gradients with respect to the weights using Eq. (𝐸. 3):

39

For 𝑗 = 1, 𝑖 = 1:

𝜕𝑐𝑝

𝜕𝑤1,1
[2]

= (�̂�1
[2]

− 𝑦1) × �̂�1
[1]

= (0.438 − (0)) × 0.4953

= 0.2169

For 𝑗 = 1, 𝑖 = 2:

𝜕𝑐𝑝

𝜕𝑤1,2
[2]

= (𝑦1
[2]

− 𝑦1) × �̂�2
[1]

= (0.438 − (0)) × 0.5162

= 0.2261

For 𝑗 = 1, 𝑖 = 3:

𝜕𝑐𝑝

𝜕𝑤1,3
[2]

= (�̂�1
[2]

− 𝑦1) × �̂�3
[1]

= (0.438 − (0)) × 0.5097

= 0.2232

40

For 𝑗 = 2, 𝑖 = 1:

𝜕𝑐𝑝

𝜕𝑤2,1
[2]

= (�̂�2
[2]

− 𝑦2) × �̂�1
[1]

= (0.544 − 1) × 0.4953

= −0.2258

For 𝑗 = 2, 𝑖 = 2:

𝜕𝑐𝑝

𝜕𝑤2,2
[2]

= (�̂�2
[2]

− 𝑦2) × �̂�2
[1]

= (0.544 − 1) × 0.5162

= −0.2354

For 𝑗 = 2, 𝑖 = 3:

𝜕𝑐𝑝

𝜕𝑤2,3
[2]

= (�̂�2
[2]

− 𝑦2) × �̂�3
[1]

= (0.544 − 1) × 0.5097

= −0.2324

41

Calculating gradients with respect to the biases using Eq. (𝐸. 4):

For the first neuron, 𝑗 = 1:

𝜕𝑐𝑝

𝜕𝑏1
[2]

= �̂�1
[2]

− 𝑦1

= 0.438 − 0

= 0.438

For the second neuron, 𝑗 = 2:

𝜕𝑐𝑝

𝜕𝑏2
[2]

= �̂�2
[2]

− 𝑦2

= 0.544 − 1

= −0.456

Gradient of the cost function with respect to the weights and biases used in the layer 𝒍 = 𝟏:

For the Sigmoid activation function together with the Cross-Entropy cost function, we have for 𝑘 =

1,2,3 and 𝑖 = 1,2,3:

𝜕𝑐𝑝

𝜕𝑤𝑘,𝑖
[1]

= 𝛿𝑘
[1]

× �̂�𝑖
[0]

∵ from Eq. (𝐵. 23)

= (∑𝛿𝑗

[2]
× 𝑤𝑗,𝑘

[2]

2

𝑗=1

× 𝜙′ (𝑧𝑘

[1]
)) × �̂�𝑖

[0]
∵ from Eq. (𝐵. 28)

= (∑(�̂�𝑗
[2]

− 𝑦𝑗) × 𝑤𝑗,𝑘
[2]

2

𝑗=1

) × 𝜙′ (𝑧𝑘
[1]

) × �̂�𝑖
[0]

∵ from Eq. (𝐸. 3)

= (∑(�̂�𝑗
[2]

− 𝑦𝑗) × 𝑤𝑗,𝑘
[2]

2

𝑗=1

) × �̂�𝑘
[1]

(1 − �̂�𝑘
[1]

) × �̂�𝑖
[0]

∵ from Eq. (𝐵. 18)

− − −(𝐸. 5)

Also

𝜕𝑐𝑝

𝜕𝑏𝑘
[1]

= 𝛿𝑘
[1]

= (∑(�̂�𝑗
[2]

− 𝑦𝑗) × 𝑤𝑗,𝑘
[2]

2

𝑗=1

) × �̂�𝑘
[1]

(1 − �̂�𝑘
[1]

) − − −(𝐸. 6)

Calculating gradients with respect to the weights using Eq. (𝐸. 5):

42

For 𝑘 = 1, 𝑖 = 1:

𝜕𝑐𝑝

𝜕𝑤1,1
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,1
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,1
[2]

)

× �̂�1
[1]

(1 − �̂�1
[1]

) × 𝑥1
[0]

 = ((0.438 − 0) × 0.04 + (0.544 − 1) × 0.20)

× 0.4953(1 − 0.4953) × (0.8944)

= −0.0165

For 𝑘 = 1, 𝑖 = 2:

𝜕𝑐𝑝

𝜕𝑤1,2
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,1
[2]

+ (�̂�1
[2]

− 𝑦2) × 𝑤2,1
[2]

)

× �̂�1
[1]

(1 − �̂�1
[1]

) × 𝑥2
[0]

 = ((0.438 − 0) × 0.04 + (0.544 − 1) × 0.20)

× 0.4953(1 − 0.4953) × (−1.6703)

= 0.0556

For 𝑘 = 1, 𝑖 = 3:

𝜕𝑐𝑝

𝜕𝑤1,3
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,1
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,1
[2]

)

× �̂�1
[1]

(1 − �̂�1
[1]

) × 𝑥3
[0]

 = ((0.438 − 0) × 0.04 + (0.544 − 1) × 0.20)

× 0.4953(1 − 0.4953) × (−1.0452)

= 0.0414

43

For 𝑘 = 2, 𝑖 = 1:

𝜕𝑐𝑝

𝜕𝑤2,1
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,2
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,2
[2]

)

× �̂�2
[1]

(1 − �̂�2
[1]

) × 𝑥1
[0]

 = ((0.438 − 0) × 0.03 + (0.544 − 1) × 0.05)

× 0.5162(1 − 0.5162) × (0.8944)

= 0.0081

For 𝑘 = 2, 𝑖 = 2:

𝜕𝑐𝑝

𝜕𝑤2,2
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,2
[2] + (�̂�2

[2]
− 𝑦2) × 𝑤2,2

[2]
)

× �̂�2
[1]

(1 − �̂�2
[1]

) × 𝑥2
[0]

 = ((0.438 − 0) × 0.03 + (0.544 − 1) × 0.05)

× 0.5162(1 − 0.5162) × (−1.6705)

= −0.0226

For 𝑘 = 2, 𝑖 = 3:

𝜕𝑐𝑝

𝜕𝑤2,3
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,2
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,2
[2]

)

× �̂�2
[1]

(1 − �̂�2
[1]

) × 𝑥3
[0]

 = ((0.438 − 0) × 0.03 + (0.544 − 1) × 0.05)

× 0.5162(1 − 0.5162) × (−1.0452)

= −0.00191

44

For 𝑘 = 3, 𝑖 = 1:

𝜕𝑐𝑝

𝜕𝑤3,1
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,3
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,3
[2]

)

× �̂�3
[1]

(1 − �̂�3
[1]

) × 𝑥1
[0]

 = ((0.438 − 0) × 0.3 + (0.544 − 1) × 0.02)

× 0.5097(1 − 0.5097) × (0.8944)

= 0.1294

For 𝑘 = 3, 𝑖 = 2:

𝜕𝑐𝑝

𝜕𝑤3,2
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,3
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,3
[2]

)

× �̂�3
[1]

(1 − �̂�3
[1]

) × 𝑥2
[0]

 = ((0.438 − 0) × 0.3 + (0.544 − 1) × 0.02)

× 0.5097(1 − 0.5097) × (−1.6703)

= 0.1352

For 𝑘 = 3, 𝑖 = 3:

𝜕𝑐𝑝

𝜕𝑤3,3
[1]

 = ((�̂�1
[2]

− 𝑦1) × 𝑤1,3
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,3
[2]

)

× �̂�3
[1]

(1 − �̂�3
[1]

) × 𝑥3
[0]

= ((0.438 − 0) × 0.3 + (0.544 − 1) × 0.02)

× 0.5097(1 − 0.5097) × (−1.0452)

= 0.1338

45

Calculating gradients with respect to the biases using Eq. (𝐸. 6):

For first neuron, 𝑘 = 1:

𝜕𝑐𝑝

𝜕𝑏1
[1]

= [(�̂�1
[2]

− 𝑦1) × 𝑤1,1
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,1
[2]

] × �̂�1
[1]

(1 − �̂�1
[1]

)

= ((0.438 − 0) × 0.04 + (0.544 − 1) × 0.20) × 0.4953(1 − 0.4953)

= −0.0053

For the second neuron, 𝑘 = 2:

𝜕𝑐𝑝

𝜕𝑏2
[1]

= [(�̂�1
[2]

− 𝑦1) × 𝑤1,2
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,2
[2]

] × �̂�2
[1]

(1 − �̂�2
[1]

)

= ((0.438 − 0) × 0.03 + (0.544 − 1) × 0.05) × 0.5162(1 − 0.5162)

= 0.0074

For the third neuron, 𝑘 = 3:

𝜕𝑐𝑝

𝜕𝑏3
[1]

= [(�̂�1
[2]

− 𝑦1) × 𝑤1,3
[2]

+ (�̂�2
[2]

− 𝑦2) × 𝑤2,3
[2]

] × �̂�3
[1]

(1 − �̂�3
[1]

)

= ((0.438 − 0) × 0.3 + (0.544 − 1) × 0.02) × 0.5097(1 − 0.5097)

= 0.1294

6.8. Learning Phase: Updating the Parameters (Weights and Biases)

Using the Gradient Descent method, with the learning rate 𝛼 = 0.5, the parameters (weights and biases)

are updated as follows.

𝑤𝑗,𝑖
[𝑙]

= 𝑤𝑗,𝑖
[𝑙]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤𝑗,𝑖
[𝑙]

) − − −(𝐸. 7)

𝑏𝑗
[𝑙] = 𝑏𝑗

[𝑙] − (𝛼 ×
𝜕𝑐𝑝

𝜕𝑏𝑗
[𝑙]

) − − −(𝐸. 8)

For weight 𝑤1,1
[2]

:

𝑤1,1
[2]

= 𝑤1,1
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤1,1
[2]

) = 0.04 − (0.5 × (0.7122)) = −0.0684

For weight 𝑤1,2
[2]

:

𝑤1,2
[2]

= 𝑤1,2
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤1,2
[2]

) = 0.03 − (0.5 × (−0.7423)) = 0.0830

For weight 𝑤1,3
[2]

:

46

𝑤1,3
[2]

= 𝑤1,3
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤1,3
[2]

) = 0.3 − (0.5 × (−0.7329)) = 0.1884

For weight 𝑤2,1
[2]

:

𝑤2,1
[2]

= 𝑤2,1
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤2,1
[2]

) = 0.2 − (0.5 × (−0.2258)) = 0.3129

For weight 𝑤2,2
[2]

:

𝑤2,2
[2]

= 𝑤2,2
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤2,2
[2]

) = 0.05 − (0.5 × (−0.2354)) = 0.1677

For weight 𝑤2,3
[2]

:

𝑤2,3
[2]

= 𝑤2,3
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤2,3
[2]

) = 0.02 − (0.5 × (−0.2324)) = 0.1362

For weight 𝑤1,1
[1]

:

𝑤1,1
[1]

= 𝑤1,1
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤1,1
[1]

) = 0.01 − (0.5 × (−0.0165)) = 0.0182

For weight 𝑤1,2
[1]

:

𝑤1,2
[1]

= 𝑤1,2
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤1,2
[1]

) = 0.02 − (0.5 × (0.0556)) = 0.0078

For weight 𝑤1,3
[1]

:

𝑤1,3
[1]

= 𝑤1,3
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤1,3
[1]

) = 0.1 − (0.5 × (0.0414)) = 0.0793

For weight 𝑤2,1
[1]

:

𝑤2,1
[1]

= 𝑤2,1
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤2,1
[1]

) = 0.12 − (0.5 × (0.0081)) = 0.1159

For weight 𝑤2,2
[1]

:

𝑤2,2
[1]

= 𝑤2,2
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤2,2
[1]

) = 0.03 − (0.5 × (0.0226)) = 0.0187

47

For weight 𝑤2,3
[1]

:

𝑤2,3
[1]

= 𝑤2,3
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤2,3
[1]

) = 0.05 − (0.5 × (0.0191)) = 0.0404

For weight 𝑤3,1
[1]

:

𝑤3,1
[1]

= 𝑤3,1
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤3,1
[1]

) = 0.06 − (0.5 × (0.1294)) = −0.0047

For weight 𝑤3,2
[1]

:

𝑤3,2
[1]

= 𝑤3,2
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤3,2
[1]

) = 0.02 − (0.5 × (0.1352)) = −0.0476

For weight 𝑤3,3
[1]

:

𝑤3,3
[1]

= 𝑤3,3
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑤3,3
[1]

) = 0.03 − (0.5 × (0.13378)) = −0.0369

For bias 𝑏1
[2]

:

𝑏1
[2]

= 𝑏1
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑏1
[2]

) = 0.06 − (0.5 × (0.438)) = 0.159

For bias 𝑏2
[2]

:

𝑏2
[2]

= 𝑏2
[2]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑏2
[2]

) = 0.04 − (0.5 × (−0.456)) = 0.268

For bias 𝑏1
[1]

:

𝑏1
[1]

= 𝑏1
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑏1
[1]

) = 0.11 − (0.5 × (−0.005278)) = 0.1126

For bias 𝑏2
[1]

:

𝑏2
[1]

= 𝑏2
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑏2
[1]

) = 0.06 − (0.5 × (0.00745)) = 0.0563

For bias 𝑏3
[1]

:

𝑏3
[1]

= 𝑏3
[1]

− (𝛼 ×
𝜕𝑐𝑝

𝜕𝑏3
[1]

) = 0.05 − (0.5 × (0.1291)) = −0.01455

48

The updated weights and biases are given as follows.

For the layer 𝑙 = 1:

𝑊1
[1]

= [𝑤1,1
[1]

𝑤1,2
[1]

𝑤1,3
[1]]

𝑇
= [0.0137 0.0130 0.0956]

𝑊2
[1]

= [𝑤2,1
[1]

𝑤2,2
[1]

𝑤2,3
[1]

]
𝑇

= [0.1177 0.0342 0.0526]

𝑊3
[1]

= [𝑤3,1
[1]

𝑤3,2
[1]

𝑤3,3
[1]]

𝑇
= [0.0128 −0.0681 −0.0251]

𝐵[1] = [𝑏1
[1]

𝑏2
[1]

𝑏3
[1]]

𝑇
= [0.1142 0.0574 −0.0027]

For the layer 𝑙 = 𝐿 = 2:

𝑊1
[2]

= [𝑤1,1
[2]

𝑤1,2
[2]

𝑤1,3
[2]]

𝑇
= [−0.3161 0.4011 0.6664]

𝑊2
[2]

= [𝑤2,1
[2]

𝑤2,2
[2]

𝑤2,3
[2]]

𝑇
= [0.3129 0.1677 0.1362]

𝐵[2] = [𝑏1
[2]

𝑏2
[2]]

𝑇
= [−0.659 0.268]

The updated parameters will be used for the next randomly chosen training instance and the process is

repeated until all the training instances have been passed through the network. This completes one

epoch. Such epochs are repeated until the desired accuracy of the error function is achieved.

7. Algorithm for ANN Computations with Vectorized Implementation

Vectorization is a technique used to optimize the implementation of machine learning algorithms,

including neural networks. In a vectorized implementation, the computations of a neural network are

represented as matrix operations. The input data, weights, biases, and activations of each layer of the

network are stored as matrices or tensors, and the computations between layers are performed as matrix

multiplications, additions, and other operations. The computations of the network are performed on

entire batches of data simultaneously rather than performing element-wise operations using loops.

The computations of other types of layers, such as convolutional or recurrent layers, can also be

implemented efficiently with vectorized implementation. In practice, most modern deep learning

frameworks, such as TensorFlow and PyTorch, also provide highly optimized vectorized

implementations of common neural network operations. The benefits of a vectorized implementation

of a neural network include:

• Speed: Vectorized operations can be efficiently parallelized and optimized, leading to

significant speedups compared to non-vectorized implementations.

• Memory efficiency: By processing multiple data points or batches simultaneously, vectorized

implementations can achieve high throughput and reduce the memory requirements of the

computations.

• Simplified code: Vectorized operations often require less code and are more intuitive to write

and read than non-vectorized operations, leading to simpler and more maintainable code.

• Better use of hardware resources: Vectorized implementations can take advantage of

specialized hardware such as GPUs, Vector registers, and Tensor-cores for efficiency.

• Scalability: Vectorized implementations can be easily scaled to handle large datasets and

complex models, making them well-suited for deep learning applications.

49

7.1. Description of the Algorithm Variables

Input and Output Variables:

𝑁: an integer as the number of training instances

𝑚: an integer as the number of training instances in a step/iteration.

𝛾: an integer as the number of mini-batches.

Note that 𝑚 = 𝑁 (and 𝛾 = 1) for the Batch-Gradient Descent, 𝑚 = 1 (and 𝛾 = 𝑁) for the

Stochastic Gradient Descent method, and 1 < 𝑚 < 𝑁 for the Mini-Batch Gradient Descent.

𝑡𝑜𝑙: a scalar as the tolerance (or permissible error to be used as a stopping criterion)

𝑀𝐴𝑋𝑒𝑝𝑜𝑐ℎ𝑠: an integer as the maximum number of epochs. Recall that there are 𝛾 mini-batches of 𝑚

training instances each, such that 𝛾𝑚 = 𝑁. So 𝛾 iterations/steps are required to complete one epoch (if

the sampling is made without replacement).

𝐿: an integer as the number of layers (other than the input layer) in the neural network.

𝑙𝑑𝑖𝑚: a vector of 𝐿 + 1 components such that 𝑙th component is 𝑛𝑙, representing the numbers of neurons

in layer 𝑙, for 𝑙 = 0,1,2,⋯ , 𝐿. Note that 𝑙 = 0 is the input layer having 𝑛0 neurons.

𝛼: a scalar as the learning rate for the optimization method

𝑴: an 𝑛0 × 𝑚 matrix of 𝑚 column-vectors, each representing a training instance having 𝑛0 attributes

(also called features or independent variables, represented by 𝑥𝑗
[0](𝑝)

). Each 𝑝th instance has the form:

𝑋[0](𝑝) =

[

 𝑥1

[0](𝑝)

𝑥2
[0](𝑝)

⋮

𝑥𝑛0

[0](𝑝)
]

𝑛0×1

Thus, the matrix 𝑴 has the form (horizontal stacking of 𝑚 column vectors for vectorized

implementation) (also see Fig. 7.1):

𝑀 =

[

 │ │ │

𝑋[0](1) 𝑋[0](2) ⋯ 𝑋[0](𝑚)

│ │ │]

𝑛0×𝑚

If 𝑚 = 1, then 𝑴 has only one instance. If 𝑚 = 𝑁, then 𝑴 is the set of all training instances. In general,

𝑴 is a subset (minibatch) of the whole set �̅� of 𝑁 training instances. So, if we partition �̅�, there can

be 𝛾 disjoint minibatches in �̅�, where 𝛾𝑚 = 𝑁. That said,

�̅� = [—𝑴{1}— —𝑴{2}— ⋯ —𝑴{𝛾}—]

𝑛0×𝑁

However, for the stochastic approach, any mini-batch 𝑴 is a sample of randomly chosen 𝑚 instances

from �̅�.

50

Fig. 7.1: An example of the structure of 𝑴 matrix, for the input layer 𝑙 =, 𝑛2 = 2, and 𝑛1 = 3.

𝒀: an 𝑛𝐿 × 𝑚 matrix of true values/targets/labels, corresponding to the instances in 𝑴, such that its 𝑝th

column vector has the form:

𝑌(𝑝) =

[

 𝑦1

(𝑝)

𝑦2
(𝑝)

⋮

𝑦𝑛𝐿

(𝑝)
]

𝑛𝐿×1

𝑌(𝑝) is the vector of 𝑛𝐿 true values/targets/labels 𝑦𝑗
(𝑝)

, for instance 𝑝 represented by 𝑝th column in 𝑴.

Thus, the matrix 𝒀 has the form (horizontal stacking of 𝑚 column vectors for vectorized

implementation):

𝒀 =

[

 │ │ │

𝑌(1) 𝑌(2) ⋯ 𝑌(𝑚)

│ │ │]

𝑛𝐿×𝑚

In general, 𝒀 is a subset (minibatch) of the whole set �̅� of 𝑁 target labels corresponding to the instances

in 𝑴. Thus, if we partition �̅�, there can be 𝛾 disjoint subsets in �̅�, where 𝛾𝑚 = 𝑁. That said,

�̅� = [—𝒀{1}— —𝒀{2}— ⋯ —𝒀{𝛾}—]

𝑛𝐿×𝑁

A subset 𝒀 is sampled from �̅� with the same indices as the corresponding mini-batch 𝑴 is sampled

from �̅�.

51

�̅̅̅�[𝑙]: an 𝑛𝑙 × (𝑛𝑙−1) matrix of weights such that its 𝑗th row is the transpose of the column vector of the

form:

𝑊𝑗
[𝑙]

=

[

 𝑤𝑗,1

[𝑙]

𝑤𝑗,2
[𝑙]

⋮

𝑤𝑗,𝑛𝑙−1

[𝑙]
]

𝑛𝑙−1×1

𝑊𝑗
[𝑙]

 is used for its dot product with the vector of 𝑛𝑙−1 neurons of layer 𝑙 − 1 to generate 𝑗th neuron of

layer 𝑙. It has 𝑛𝑙−1 components because there are 𝑛𝑙−1 neurons in layer 𝑙 − 1. Thus, the matrix �̅̅̅�[𝑙] has

the form (vertical stacking of 𝑛𝑙 column vectors for vectorized implementation) (also see Fig. 7.2):

�̅̅̅�[𝑙] =

[

 —— 𝑊1

[𝑙]𝑇
 ——

—— 𝑊2
[𝑙]𝑇

——

⋮

—— 𝑊𝑛𝑙

[𝑙]𝑇
——]

𝑛𝑙×(𝑛𝑙−1)

For each layer 𝑙, where 𝑙 = 1,2,3,⋯ , 𝐿, a different �̅̅̅�[𝑙] matrix is required.

Fig. 7.2: An example of the structure of �̅̅̅�[𝑙] matrix, for layer 𝑙 = 2, 𝑛2 = 2, and 𝑛1 = 3.

52

𝐵[𝑙]: a vector of 𝑛𝑙 biases such that its 𝑗th component is to be used for generating the 𝑗th neuron in layer

𝑙. 𝐵[𝑙] has the form (also see Fig. 7.3):

𝐵[𝑙] =

[

 𝑏1

[𝑙]

𝑏2
[𝑙]

⋮

𝑏𝑛𝑙

[𝑙]
]

𝑛𝑙×1

For each layer 𝑙, where 𝑙 = 1,2,3,⋯ , 𝐿, a different 𝐵[𝑙] vector is required.

Fig. 7.3: An example of the structure of 𝐵[𝑙] matrix, for layers 𝑙 = 1 and 2.

Auxiliary Variables:

𝒁[𝑙]: an 𝑛𝑙 × 𝑚 matrix of pre-activation neurons (linear neurons) such that its 𝑝th column vector has

the form:

𝑍[𝑙](𝑝) =

[

 𝑧1

[𝑙](𝑝)

𝑧2
[𝑙](𝑝)

⋮

𝑧𝑛𝑙

[𝑙](𝑝)
]

𝑛𝑙×1

=

[

 𝑊1

[𝑙]𝑇𝑋[𝑙−1](𝑝) + 𝑏1
[𝑙]

𝑊2
[𝑙]𝑇𝑋[𝑙−1](𝑝) + 𝑏2

[𝑙]

⋮

𝑊𝑛𝑙

[𝑙]𝑇𝑋[𝑙−1](𝑝) + 𝑏𝑛𝑙

[𝑙]
]

𝑛𝑙×1

𝑍[𝑙](𝑝) is the vector of pre-activation neurons in layer 𝑙 of the network for instance 𝑝 . It has 𝑛𝑙

components because there are 𝑛𝑙 neurons in layer 𝑙. Thus, the matrix 𝒁[𝑙] = �̅̅̅�[𝑙] �̂�[𝑙−1] + 𝐵[𝑙] has the

form (horizontal stacking of 𝑚 column vectors for vectorized implementation) (also see Fig. 7.4):

53

Fig. 7.4: An example of the structure of 𝒁[1] matrix, for layer 𝑙 = 1.

𝒁[𝑙] =

[

 │ │ │

𝑍[𝑙](1) 𝑍[𝑙](2) ⋯ 𝑍[𝑙](𝑚)

│ │ │]

𝑛𝑙×𝑚

For each layer 𝑙, where 𝑙 = 1,2,3,⋯ , 𝐿, a different 𝒁[𝑙] matrix is required.

�̂�[𝑙]: an 𝑛𝑙 × 𝑚 matrix of the post-activation neurons (non-linear neurons) of layer 𝑙 such that its 𝑝th

column vector has the form:

�̂�[𝑙](𝑝) =

[

 �̂�1

[𝑙](𝑝)

�̂�2
[𝑙](𝑝)

⋮

�̂�𝑛𝑙

[𝑙](𝑝)
]

𝑛𝑙×1

=

[

 𝜙 (𝑧1

[𝑙](𝑝)
)

𝜙 (𝑧2
[𝑙](𝑝)

)

⋮

𝜙 (𝑧𝑛𝑙

[𝑙](𝑝)
)]

𝑛𝑙×1

�̂�[𝑙](𝑝) is the vector of post-activation neurons in layer 𝑙 of the network for instance 𝑝 . It has 𝑛𝑙

components because there are 𝑛𝑙 neurons in layer 𝑙 . Thus, the matrix �̂�[𝑙] = 𝝓(𝒁[𝑙]) has the form

(horizontal stacking of 𝑚 column vectors):

�̂�[𝑙] =

[

 │ │ │

�̂�[𝑙](1) �̂�[𝑙](2) ⋯ �̂�[𝑙](𝑚)

│ │ │]

𝑛𝑙×𝑚

For each layer 𝑙, where 𝑙 = 1,2,3,⋯ , 𝐿, a different �̂�[𝑙] matrix is required. Moreover, �̂�[0] = 𝑀.

54

Note that for 𝑙 = 𝐿, �̂�[𝐿] represents the final output neurons (predicted values) in the output layer 𝐿.

Thus, for 𝑚 instances,

�̂�[𝐿] =

[

 │ │ │

�̂�[𝐿](1) �̂�[𝐿](2) ⋯ �̂�[𝐿](𝑚)

│ │ │]

𝑛𝐿×𝑚

Note that the 𝑝th column vector in the input matrix 𝑴, the 𝑝th column vector in the output matrix �̂�[𝐿],

and 𝑝th column vector in the target matrix 𝒀 corresponds to the 𝑝th instance in the training set.

It is pertinent to note the following:

• For regression problems, 𝑛𝐿 = 1 is usually sufficient. The goal is to predict a single continuous

numeric value. Hence, the single output neuron represents the prediction for the corresponding

instance. Thus, each column in �̂�[𝐿] represents the predicted numeric value, and each column

in 𝒀 represents a single target value.

Using multiple neurons in the output layer for regression is possible in certain cases, such as

there are multiple continuous target variables to predict simultaneously (multi-output

regression). Each neuron in the output layer would then represent one of the target variables.

• For binary classification problems, 𝑛𝐿 = 1, is usually sufficient. The single neuron in the output

layer represents the predicted probability for the corresponding instance for belonging to one

of the two classes. Thus, each column in �̂�[𝐿] represents the predicted probability, and each

column in 𝒀 represents a single target value, either 0 or 1. To make the final prediction, the

typical decision rule is as follows: If the predicted probability is greater than or equal to 0.5,

then the corresponding instance is considered to belong to that class (called the positive class,

labeled “1”), otherwise not (i.e., it belongs to the negative class, labeled “0”).

• For multiclass classification problems, each neuron in the output layer represents a possible

class, i.e., 𝑛𝐿 equals the number of classes. Each column in �̂�[𝐿] represents the predicted

probabilities on 𝑛𝐿 neurons for the corresponding instance for belonging to each class. Further,

each column in 𝒀 has 𝑛𝐿 entries that are all 0s except the one entry (that is, 1), which

corresponds to the particular class to which the corresponding instance belongs.

To make the final prediction, a decision rule, such as choosing the class with the higher

probability or comparing the probabilities against a threshold, can be applied. Even for binary

classification problems, setting 𝑛𝐿 as 2 can also work. In that case, each neuron represents the

predicted probability or score for one of the two classes.

During training, the neural network learns to adjust its weights and biases to minimize the difference

between the predicted output (neuron values in the output layer) of the network and the actual target

values. For regression problems, the Mean-Squared Error Loss function is a more appropriate choice.

For classification problems, the Binary/Multiclass Cross Entropy Loss function is a more appropriate

choice.

𝐶𝑚: a vector of 𝑚 errors (loss functions) having the form:

55

𝐶𝑚 =

[

𝑐(1)

𝑐(2)

⋮

𝑐(𝑚)]

𝑚×1

=

[

𝐸(𝑌(1), �̂�[𝐿](1))

𝐸(𝑌(2), �̂�[𝐿](2))

⋮

𝐸(𝑌(𝑚), �̂�[𝐿](𝑚))]

𝑚×1

Its 𝑝th component 𝑐𝑝 or 𝑐(𝑝), for 𝑝 = 1,2,3,⋯ ,𝑚, represents the error, defined by an appropriate loss

(or cost) function 𝐸 = 𝐸(𝑌(𝑝), �̂�[𝐿](𝑝)), between the 𝑝th target vector in 𝒀 and the 𝑝th output vector in

�̂�[𝐿].

𝐶: a scalar value as the cost function, which is the average of errors or loss function values present in

the vector 𝐶𝑚. 𝐶 can be expressed as:

𝐶 =
1

𝑚
∑ 𝑐(𝑝)

𝑚

𝑝=1

=
1

𝑚
∑ 𝐸(𝑌(𝑝), �̂�[𝐿](𝑝))

𝑚

𝑝=1

It may be noted that the cost function 𝐶 depends on all the weights and biases:

𝐶 = 𝐶(�̅̅̅�[1], 𝐵[1], �̅̅̅�[2], 𝐵[2], ⋯ , �̅̅̅�[𝐿], 𝐵[𝐿])

𝒅𝒁[𝑙]: an 𝑛𝑙 × 𝑚 matrix of gradients of the cost function 𝐶 with respect to the pre-activation neurons

(linear neurons). 𝒅𝒁[𝑙] has the form (horizontal stacking of 𝑚 column vectors for vectorized

implementation):

𝒅𝒁[𝑙] =

[

 │ │ │

𝑑𝑍[𝑙](1) 𝑑𝑍[𝑙](2) ⋯ 𝑑𝑍[𝑙](𝑚)

│ │ │]

𝑛𝑙×𝑚

Its 𝑝th component, 𝑑𝑍[𝑙](𝑝) is a column vector of the gradients of 𝐶 with respect to the pre-activation

neurons in layer 𝑙 of the network for instance 𝑝. It has 𝑛𝑙 components because there are 𝑛𝑙 neurons in

layer 𝑙. As 𝒅𝒁[𝑙] is formed for layer 𝑙. Therefore, for each 𝑙 = 1,2,3,⋯ , 𝐿, a different 𝒅𝒁[𝑙] matrix is

required. For the output layer, 𝐿, for instance 𝑝, 𝑑𝑍[𝐿](𝑝) is given by

𝑑𝑍[𝐿](𝑝) =

[

 𝛿1

[𝐿](𝑝)

𝛿2
[𝐿](𝑝)

⋮

𝛿𝑛𝐿

[𝐿](𝑝)
]

𝑛𝐿×1

=

[

𝜕𝑐(𝑝)

𝜕�̂�1
[𝐿](𝑝)

× 𝜙′ (𝑧1
[𝐿](𝑝)

)

𝜕𝑐(𝑝)

𝜕�̂�2
[𝐿](𝑝)

× 𝜙′ (𝑧2
[𝐿](𝑝)

)

⋮

𝜕𝑐(𝑝)

𝜕�̂�𝑛𝐿

[𝐿](𝑝)
× 𝜙′ (𝑧𝑛𝐿

[𝐿](𝑝)
)
]

𝑛𝐿×1

56

For the layers, 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ ,1, for instance 𝑝, 𝑑𝑍[𝑙](𝑝) is given by

𝑑𝑍[𝑙](𝑝) =

[

 𝛿1

[𝑙](𝑝)

𝛿2
[𝑙](𝑝)

⋮

𝛿𝑛𝑙

[𝑙](𝑝)
]

𝑛𝐿×1

=

[

∑ 𝛿𝑡

[𝑙+1](𝑝)
× 𝑤𝑡,1

[𝑙+1](𝑝)

𝑛𝑙+1

𝑡=1

× 𝜙′ (𝑧1
[𝑙](𝑝)

)

∑ 𝛿𝑡
[𝑙+1](𝑝)

× 𝑤𝑡,2
[𝑙+1](𝑝)

𝑛𝑙+1

𝑡=1

× 𝜙′ (𝑧2
[𝑙](𝑝)

)

⋮

∑ 𝛿𝑡
[𝑙+1](𝑝)

× 𝑤𝑡,𝑛𝑙

[𝑙+1](𝑝)

𝑛𝑙+1

𝑡=1

× 𝜙′ (𝑧𝑛𝑙

[𝑙](𝑝)
)
]

𝑛𝑙×1

𝒅�̂�[𝐿]: an 𝑛𝐿 × 𝑚 matrix of gradients of the cost function 𝐶 with respect to the post-activation neurons

(non-linear neurons) at the output layer, 𝐿, such that its 𝑝th column vector has the form:

𝑑�̂�[𝐿](𝑝) =

[

𝜕𝑐(𝑝)

𝜕�̂�1
[𝐿](𝑝)

𝜕𝑐(𝑝)

𝜕�̂�2
[𝐿](𝑝)

⋮

𝜕𝑐(𝑝)

𝜕�̂�𝑛𝐿

[𝐿](𝑝)
]

𝑛𝐿×1

=

[

 𝐸

′ (𝑦1
(𝑝)

, �̂�1
[𝐿](𝑝)

)

𝐸′ (𝑦2
(𝑝)

, �̂�2
[𝐿](𝑝)

)

⋮

𝐸′ (𝑦𝑛𝐿

(𝑝)
, �̂�𝑛𝐿

[𝐿](𝑝)
)]

𝑛𝐿×1

𝑑�̂�[𝐿](𝑝) is the vector of the gradients of 𝐶 with respect to the post-activation neurons in the output layer

𝐿 of the network for instance 𝑝. It has 𝑛𝐿 components because there are 𝑛𝐿 neurons in layer 𝐿. Thus,

the matrix 𝒅�̂�[𝐿] has the form (horizontal stacking of 𝑚 column vectors for vectorized implementation):

𝒅�̂�[𝐿] =

[

 │ │ │

𝑑�̂�[𝐿](1) 𝑑�̂�[𝐿](2) ⋯ 𝑑�̂�[𝐿](𝑚)

│ │ │]

𝑛𝐿×𝑚

𝒅�̅̅̅�[𝑙]: an 𝑛𝑙 × (𝑛𝑙−1) matrix of gradients of the cost function 𝐶 with respect to each of the weights

such that its 𝑗th row is the transpose of the column vector of the form:

𝑑𝑊𝑗
[𝑙] =

[

𝜕𝐶

𝜕𝑤𝑗,1
[𝑙]

𝜕𝐶

𝜕𝑤𝑗,2
[𝑙]

⋮

𝜕𝐶

𝜕𝑤𝑗,𝑛𝑙−1

[𝑙]
]

𝑛𝑙−1×1

=

[

 1

𝑚
∑

𝜕𝑐(𝑝)

𝜕𝑤𝑗,1
[𝑙]

𝑚

𝑝=1

1

𝑚
∑

𝜕𝑐(𝑝)

𝜕𝑤𝑗,2
[𝑙]

𝑚

𝑝=1

⋮

1

𝑚
∑

𝜕𝑐(𝑝)

𝜕𝑤𝑗,𝑛𝑙−1

[𝑙]

𝑚

𝑝=1]

𝑛𝑙−1×1

=

[

 1

𝑚
∑ (𝛿𝑗

[𝑙](𝑝)
× �̂�1

[𝑙−1](𝑝)
)

𝑚

𝑝=1

1

𝑚
∑ (𝛿𝑗

[𝑙](𝑝)
× �̂�2

[𝑙−1](𝑝)
)

𝑚

𝑝=1

⋮

1

𝑚
∑ (𝛿𝑗

[𝑙](𝑝)
× �̂�𝑛𝑙−1

[𝑙−1](𝑝)
)

𝑚

𝑝=1]

𝑛𝑙−1×1

57

𝑑𝑊𝑗
[𝑙]

 is the vector of gradients of 𝐶 with respect to each of 𝑛𝑙−1 weights that were used for generating

the 𝑗th neuron of layer 𝑙. Thus, the matrix 𝒅�̅̅̅�[𝑙] has the form (vertical stacking of 𝑛𝑙 column vectors

for vectorized implementation):

𝒅�̅̅̅�[𝑙] =

[

 —— 𝑑𝑊1

[𝑙]𝑇
 ——

—— 𝑑𝑊2
[𝑙]𝑇

——

⋮

—— 𝑑𝑊𝑛𝑙

[𝑙]𝑇——]

𝑛𝑙×(𝑛𝑙−1)

For each layer 𝑙, where 𝑙 = 1,2,3,⋯ , 𝐿, a different 𝒅�̅̅̅�[𝑙] matrix is required.

𝑑𝐵[𝑙]: a 𝑛𝑙 × 1 vector of gradients of 𝐶 with respect to each of 𝑛𝑙 biases such that its 𝑗th component is

the gradient of 𝐶 with respect to the bias 𝑏𝑗 that was used for generating the 𝑗th neuron in layer 𝑙.

𝑑𝐵[𝑙] =

[

𝜕𝐶

𝜕𝑏1
[𝑙]

𝜕𝐶

𝜕𝑏2
[𝑙]

⋮

𝜕𝐶

𝜕𝑏𝑛𝑙

[𝑙]
]

𝑛𝑙×1

=

[

 1

𝑚
∑

𝜕𝑐(𝑝)

𝜕𝑏1
[𝑙]

𝑚

𝑝=1

1

𝑚
∑

𝜕𝑐(𝑝)

𝜕𝑏2
[𝑙]

𝑚

𝑝=1

⋮

1

𝑚
∑

𝜕𝑐(𝑝)

𝜕𝑏𝑛𝑙

[𝑙]

𝑚

𝑝=1]

𝑛𝑙×1

=

[

 1

𝑚
∑ (𝛿1

[𝑙](𝑝)
)

𝑚

𝑝=1

1

𝑚
∑ (𝛿2

[𝑙](𝑝)
)

𝑚

𝑝=1

⋮

1

𝑚
∑ (𝛿𝑛𝑙

[𝑙](𝑝)
)

𝑚

𝑝=1]

𝑛𝑙×1

For each layer 𝑙, where 𝑙 = 1,2,3,⋯ , 𝐿, a different 𝑑𝐵[𝑙] vector is required.

7.2. The Procedure

Set 𝑁, the total number of training instances

Set 𝛾, as the number of mini-batches

Set 𝑚 =
𝑁

𝛾
, the number of training instances in a minibatch

Set 𝑡𝑜𝑙, as the tolerance

Set 𝑀𝐴𝑋𝑒𝑝𝑜𝑐ℎ𝑠 as the maximum number of epochs

Set 𝐿, the number of layers (other than the input layer) in the neural network

Set 𝑙𝑑𝑖𝑚, with 𝑙th component 𝑛𝑙 as the number of neurons in layer 𝑙, for 𝑙 = 0, 1,2,⋯ , 𝐿

Set 𝛼, the learning rate

Set �̅�, the matrix of order 𝑛0 × 𝑁 having feature values of all the training instances

Set �̅�, the matrix of order 𝑛𝐿 × 𝑁 having target values of all the training instances (as given in �̅�).

58

Declare 𝐿 data structures for each of the following with respective sizes:

(�̅̅̅�[𝑙])
𝑛𝑙×(𝑛𝑙−1)

, (𝐵[𝑙])
𝑛𝑙×1

, (𝒁[𝑙])
𝑛𝑙×𝑚

, (�̂�[𝑙])
𝑛𝑙×𝑚

Declare one data structure for each of the following with respective sizes:

(𝒀)𝑛𝐿×𝑚, (𝒅�̂�[𝐿])
𝑛𝐿×𝑚

, (𝐶𝑚)𝑚×1

Declare 𝐿 data structures for each of the following with respective sizes:

(𝒅𝒁[𝑙])
𝑛𝑙×𝑚

, (𝒅�̅̅̅�[𝑙])
𝑛𝑙×(𝑛𝑙−1)

, (𝑑𝐵[𝑙])
𝑛𝑙×1

Initialize weights, �̅̅̅�[𝑙], for layer 𝑙 = 1,2,⋯ , 𝐿 (using an appropriate approach).

Initialize biases, 𝐵[𝑙], for layer 𝑙 = 1,2,⋯ , 𝐿 (using an appropriate approach).

7.2.1. Scalar Implementation in Component-Form

Define a subroutine for scalar implementation of the activation function, 𝜙(∎)

Example 1: The Sigmoid activation function for implementation in one line is as follows:

Return scalar 𝜙(𝑥) = 1/(1 + 𝑒−𝑥)

Example 2: The ReLU activation function for implementation in one line is as follows:

Return scalar 𝜙(𝑥) = max(0, 𝑥)

Define a subroutine for scalar implementation of the derivative of the activation function, 𝜙′(∎)

Example 1: The Sigmoid activation function for implementation in one line is as follows:

Return scalar 𝜙′(𝑥) = 𝜙(𝑥)(1 − 𝜙(𝑥))

Example 2: The ReLU activation function for implementation in one line is as follows:

Return scalar 𝜙′(𝑥) = {
0, 𝑥 ≤ 0
1, 𝑥 > 0

Define a subroutine for the cost function, receiving two vectors and returning a scalar, 𝐸(∎,∎)

Example 1: The Quadratic cost function for implementation is as follows:

Function 𝐸(𝑃, 𝑄)

𝑠𝑢𝑚 = 0.0

For 𝑗 = 1,2,⋯ , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃)

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (𝑃(𝑗) − 𝑄(𝑗)) × (𝑃(𝑗) − 𝑄(𝑗))

End for 𝑗

Return scalar 𝑠𝑢𝑚/2.0

Example 2: The Binary Cross-Entropy function for implementation is as follows:

Function 𝐸(𝑃, 𝑄)

𝑠𝑢𝑚 = 0.0

For 𝑗 = 1,2,⋯ , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃)

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + [𝑃(𝑗) ln(𝑄(𝑗)) + (1 − 𝑃(𝑗)) ln(1 − 𝑄(𝑗))]

End for 𝑗

Return scalar 𝑠𝑢𝑚

59

Define a subroutine for the derivate of the cost function, receiving two scalars and returning a scalar,

𝐸′(∎,∎)

Example 1: The Quadratic cost function for implementation in one line is as follows:

Return scalar 𝐸′(𝑝, 𝑞) = 𝑞 − 𝑝

Example 2: The Binary Cross-Entropy function for implementation in one line is as follows:

Return scalar 𝐸′(𝑝, 𝑞) = (𝑞 − 𝑝)/(1 − 𝑞)𝑞

The main processing code is as follows:

For 𝑘 = 1,2,⋯ ,𝑀𝐴𝑋𝑒𝑝𝑜𝑐ℎ𝑠

Set 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔, as a random permutation/shuffling of integers 1 to 𝑁 (for the Stochastic GD approach)

Set �̅�𝒔, as a rearrangement of the columns of �̅� according to 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔

Set �̅�𝒔, as a rearrangement of the target values in �̅� according to 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔

For 𝑔 = 1,2,⋯ , 𝛾

𝑴 = �̅�𝒔[: , (𝑔 − 1) × 𝑚 + 1 ∶ 𝑔 × 𝑚] (sampling without replacement)

𝒀 = �̅�𝒔[: , (𝑔 − 1) × 𝑚 + 1 ∶ 𝑔 × 𝑚] (sampling without replacement)

Forward Pass:

𝐶 = 0

For each 𝑝 = 1,2,⋯ ,𝑚

𝑋𝑖𝑛𝑝 = 𝑋[0](𝑝) (here, 𝑋[0](𝑝) is 𝑝th column of 𝑴)

For each 𝑙 = 1,2,⋯ , 𝐿

For 𝑗 = 1,2,⋯ , 𝑛𝑙

𝑠𝑢𝑚 = 0

For 𝑖 = 1,2,⋯ , 𝑛𝑙−1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑤𝑗,𝑖
[𝑙] ∙ 𝑋𝑖𝑛𝑝[𝑖]

End for 𝑖

𝑧𝑗
[𝑙](𝑝)

= 𝑠𝑢𝑚 + 𝑏𝑗
[𝑙]

�̂�𝑗
[𝑙](𝑝)

= 𝜙 (𝑧𝑗
[𝑙](𝑝)

)

End for 𝑗

Xinp = �̂�[𝑙](𝑝)

End for 𝑙

𝑐(𝑝) = 𝐸(𝑌(𝑝), �̂�[𝐿](𝑝)) (here, 𝑌(𝑝)is 𝑝th column of 𝒀)

𝐶 = 𝐶 + 𝑐(𝑝)

End for 𝑝

𝐶 =
𝐶

𝑚

Computation of Gradients through Backpropagation:

For each 𝑝 = 1,2,⋯ ,𝑚

For 𝑗 = 1,2,⋯ , 𝑛𝐿

𝜕𝑐(𝑝)

𝜕�̂�𝑗

[𝐿](𝑝)
 = 𝐸′ (𝑦𝑗

(𝑝)
, �̂�𝑗

[𝐿](𝑝)
) forming 𝒅�̂�[𝐿] matrix

𝜕𝑐(𝑝)

𝜕𝑧𝑗
[𝐿](𝑝)

=
𝜕𝑐(𝑝)

𝜕�̂�𝑗

[𝐿](𝑝)
× 𝜙′ (𝑧𝑗

[𝐿](𝑝)
) forming 𝒅𝒁[𝐿] matrix

60

End for 𝑝

End for 𝑗

For each 𝑝 = 1,2,⋯ ,𝑚

For each 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ , 1

For 𝑗 = 1,2,⋯ , 𝑛𝑙

𝑠𝑢𝑚 = 0

For 𝑡 = 1,2,⋯ , 𝑛𝑙+1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 +
𝜕𝑐(𝑝)

𝜕𝑧𝑡
[𝑙+1](𝑝)

∙ 𝑤𝑡,𝑗
[𝑙+1]

End for 𝑡

𝜕𝑐(𝑝)

𝜕𝑧𝑗
[𝑙](𝑝)

= 𝑠𝑢𝑚 × 𝜙′ (𝑧𝑗
[𝑙](𝑝)

) forming 𝒅𝒁[𝑙] matrix

End for 𝑗

End for 𝑙

End for 𝑝

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

For 𝑗 = 1,2,⋯ , 𝑛𝑙

For 𝑖 = 1,2,⋯ , 𝑛𝑙−1

𝑠𝑢𝑚 = 0

For 𝑝 = 1,2,⋯ ,𝑚

𝑠𝑢𝑚 = 𝑠𝑢𝑚 +
𝜕𝑐(𝑝)

𝜕𝑧𝑗
[𝑙](𝑝)

× �̂�𝑖
[𝑙−1](𝑝)

End for 𝑝

𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

=
𝑠𝑢𝑚

𝑚
 forming 𝒅�̅̅̅�[𝑙] matrix

End for 𝑖

End for 𝑗

End for 𝑙

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

For 𝑗 = 1,2,⋯ , 𝑛𝑙

𝑠𝑢𝑚 = 0

For 𝑝 = 1,2,⋯ ,𝑚

𝑠𝑢𝑚 = 𝑠𝑢𝑚 +
𝜕𝑐(𝑝)

𝜕𝑧𝑗
[𝑙](𝑝)

End for 𝑝

𝜕𝐶

𝜕𝑏𝑗
[𝑙]

=
𝑠𝑢𝑚

𝑚
 forming 𝒅𝑩[𝑙] vector

End for 𝑗

End for 𝑙

Updating the Parameters (Weights and Biases)

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

For 𝑗 = 1,2,⋯ , 𝑛𝑙

For 𝑖 = 1,2,⋯ , 𝑛𝑙−1

61

𝑤𝑗,𝑖
[𝑙] = 𝑤𝑗,𝑖

[𝑙] − 𝛼 (
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

)

End for 𝑖

End for 𝑗

End for 𝑙

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

For 𝑗 = 1,2,⋯ , 𝑛𝑙

𝑏𝑗
[𝑙] = 𝑏𝑗

[𝑙] − 𝛼 (
𝜕𝐶

𝜕𝑏𝑗
[𝑙]

)

End for 𝑗

End for 𝑙

End for 𝑔

If (𝐶 ≤ 𝑡𝑜𝑙), then terminate the loop over 𝑘.

End for 𝑘

Output �̅̅̅�[𝑙] and 𝐵[𝑙] as the learned/optimized model parameters.

7.2.2. Vectorized Implementation in Matrix-Form

Define a subroutine for scalar implementation of the activation function, 𝜙(∎)

Example 1: The Sigmoid activation function for implementation in one line is as follows:

Return matrix 𝜙(𝒁) = 1/(1 + 𝑒−𝒁)

Example 2: The ReLU activation function for implementation in one line as follows:

Return matrix 𝜙(𝒁) = max(0, 𝒁)

Define a subroutine for scalar implementation of the derivative of the activation function, 𝜙′(∎)

Example 1: The Sigmoid activation function for implementation in one line is as follows:

Return matrix 𝜙′(𝒁) = �̂�[𝐿]⨂(1 − �̂�[𝐿])

Example 2: The ReLU activation function for implementation in one line is as follows:

Return matrix 𝜙′(𝒁) = {
0, 𝒁 ≤ 0
1, 𝒁 > 0

Define a subroutine for the cost function, receiving two vectors and returning a scalar, 𝐸(∎,∎)

Example 1: The Quadratic cost function for implementation is as follows:

Return scalar 𝐸(𝑷, 𝑸) =
1

2
‖𝑷 − 𝑸‖2

2

Example 2: The Binary Cross-Entropy function for implementation is as follows:

Return scalar 𝐸(𝑷, 𝑸) = −[𝑷 ln(𝑸) + (𝐼 − 𝑷) ln(𝐼 − 𝑸)]

Define a subroutine for the derivate of the cost function, receiving two scalars and returning a scalar,

𝐸′(∎,∎)

62

Example 1: The derivative of the Quadratic cost function for implementation in one line as

follows:

Return matrix 𝐸′(𝑷,𝑸) = 𝑸 − 𝑷

Example 2: The derivative of the Binary Cross-Entropy function for implementation in one line

as follows:

Return matrix 𝐸′(𝑷,𝑸) = (𝑸 − 𝑷)/(1 − 𝑸)⨂𝑸

The main processing code is as follows:

For 𝑘 = 1,2,⋯ ,𝑀𝐴𝑋𝑒𝑝𝑜𝑐ℎ𝑠

Set 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔, as a random permutation/shuffling of integers 1 to 𝑁 (for the Stochastic GD approach)

Set �̅�𝒔, as a rearrangement of the columns of �̅� according to 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔

Set �̅�𝒔, as a rearrangement of the target values in �̅� according to 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔

For 𝑔 = 1,2,⋯ , 𝛾

𝑴 = �̅�𝒔[: , (𝑔 − 1) × 𝑚 + 1 ∶ 𝑔 × 𝑚] (sampling without replacement)

𝒀 = �̅�𝒔[: , (𝑔 − 1) × 𝑚 + 1 ∶ 𝑔 × 𝑚] (sampling without replacement)

Forward Pass:

𝐶 = 0

�̂�[0] = 𝑀

For each 𝑙 = 1,2,⋯ , 𝐿

𝒁[𝑙] = �̅̅̅�[𝑙] �̂�[𝑙−1] + 𝐵[𝑙]

�̂�[𝑙] = 𝜙(𝒁[𝑙])

End for 𝑙

For each 𝑝 = 1,2,⋯ ,𝑚

𝑐(𝑝) = 𝐸(𝑌(𝑝), �̂�[𝐿](𝑝)) (here, 𝑌(𝑝)is 𝑝th column of 𝒀)

𝐶 = 𝐶 + 𝑐(𝑝)

End for 𝑝

𝐶 =
𝐶

𝑚

Computation of Gradients through Backpropagation:

𝒅�̂�[𝐿] = 𝐸′(�̅�, �̂�[𝐿])

𝒅𝒁[𝐿] = 𝒅�̂�[𝐿] ⨂ 𝜙′(𝒁[𝐿]) Hadamard (or componentwise) product

For each 𝑙 = 𝐿 − 1, 𝐿 − 2,⋯ , 1

𝒅𝒁[𝑙] = (�̅̅̅�[𝑙+1]𝑇𝒅𝒁[𝑙+1])⨂ 𝜙′(𝒁[𝑙])

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

𝒅�̅̅̅�[𝑙] =
1

𝑚
× 𝒅𝒁[𝑙]�̂�[𝑙−1]𝑇

End for 𝑙

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

𝑑𝐵[𝑙] =
1

𝑚
× 𝑟𝑜𝑤𝑠𝑢𝑚 (𝒅𝒁[𝑙])

End for 𝑙

63

Updating the Parameters (Weights and Biases)

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

�̅̅̅�[𝑙] = �̅̅̅�[𝑙] − 𝛼𝒅�̅̅̅�[𝑙]

End for 𝑙

For each 𝑙 = 𝐿, 𝐿 − 1, 𝐿 − 2,⋯ , 1

𝐵[𝑙] = 𝐵[𝑙] − 𝛼𝑑𝐵[𝑙]

End for 𝑙

End for 𝑔

If (𝐶 ≤ 𝑡𝑜𝑙), then terminate the loop over 𝑘.

End for 𝑘

Output �̅̅̅�[𝑙] and 𝐵[𝑙] as the learned/optimized model parameters.

This completes the training algorithm of ANN.

7.3. Test Case: Predicting Stock Price Using Time Series Data in Python

7.3.1. Vectorized Implementation of the ANN Algorithm in Python

We consider the share price history of 22 years (date-wise) of Pak Suzuki Motor Company Limited

(Pakistan) available from (Kaggle - Pakistan Stock Exchange Data, 2022). We address the problem of

predicting the stock price of the company as a regression problem through supervised learning using

historical data with the ANN. We solve the problem using the ANN algorithm discussed in Section 7.

First, we present a Python code for the vectorized implementation of the algorithm, as discussed in

Section 7.2.2. Next, we demonstrate that similar performance results are obtained using the TensorFlow

(Abadi et al., 2016) library functions for similar algorithm of ANN model building and prediction

(Emmert-Streib et al., 2020). The algorithm presented for the ANN model is the basic one. Although

rich and powerful in methodologies and performance capabilities, deep neural network models can be

helpful only when used judiciously with appropriate hyperparameters. The models’ efficiency and

performance can be improved by paying attention to practical considerations, including hyperparameter

tuning, regularization, batch normalizations (discussed in Section 8), and optimization techniques

(discussed in Section 9). The vectorized implementation of the algorithm is given as follows.

64

Original Dataset Head:

 Date Open High Low Close Volume

0 2001-01-01 10.25 10.25 10.25 10.25 1000.0

1 2001-01-02 10.25 11.50 10.70 11.30 10500.0

2 2001-01-03 11.30 11.30 10.75 10.75 6500.0

3 2001-01-04 10.75 11.30 11.25 11.25 3000.0

4 2001-01-05 11.25 11.30 11.05 11.05 6500.0

65

Original Dataset Tail:

 Date Open High Low Close Volume

5247 2022-11-11 161.50 162.98 159.00 160.84 18222.0

5248 2022-11-14 159.00 159.85 156.94 157.25 52296.0

5249 2022-11-15 158.50 164.50 157.01 162.27 151394.0

5250 2022-11-16 163.00 164.00 160.00 160.29 49327.0

5251 2022-11-17 161.69 161.70 158.60 159.21 43334.0

Training Set Features ready with dimensions: (10, 4979)

Training Set Target ready with dimensions: (1, 4979)

Test Set Features ready with dimensions: (10, 253)

Test Set Target ready with dimensions: (253,)

66

67

68

69

========== Training epochs started ==========

After 100 epochs, the training Error (Cost function) = 0.01797601542125484

========== Training epochs completed ==========


~~~~~ Forward Pass with the test data started ~~~~~ 

 

================== Prediction Completed ================== 

 

======================= Test Errors ======================= 

MAE in the prediction for the test data: 30.410900839424134 

RMSE in the prediction for the test data:  37.43117805243188 

 

7.3.2. Vectorized Implementation of the ANN Algorithm in Python using TensorFlow 

A Python based implementation of the basic ANN algorithm using the TensorFlow functions is as 

follows. The starting part for data loading, transformation, and preparation of the training and test sets 

is the same as those presented for the vectorized implementation. The subsequent part is given below. 



70 

 

 

 
 

Model: "sequential" 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 dense (Dense)               (None, 20)                220        

                                                                  

 dense_1 (Dense)             (None, 30)                630        

                                                                  

 dense_2 (Dense)             (None, 10)                310        

                                                                  

 dense_3 (Dense)             (None, 5)                 55         

                                                                  

 dense_4 (Dense)             (None, 1)                 6          

                                                                  

================================================================= 

Total params: 1,221 

Trainable params: 1,221 

Non-trainable params: 0 

_________________________________________________________________ 



71 

 

  

 
 

========== Training process started ========== 

Epoch 1/100 

50/50 [==============================] - 1s 2ms/step - loss: 0.0899 

Epoch 2/100 

50/50 [==============================] - 0s 2ms/step - loss: 0.0768 

... 

Epoch 100/100 

50/50 [==============================] - 0s 2ms/step - loss: 0.0369 

 

========== Training process completed ========== 

 

========== Prediction process started ========== 

8/8 [==============================] - 0s 2ms/step 

 

========== Prediction process completed ========== 

 

======================= Test Errors ======================= 

MAE in the prediction for the test data: 28.918479638382383 

RMSE in the prediction for the test data:  35.91955904463751 



72 

 

Remark: The model’s performance will be improved if the Adam optimizer is used in the given code. 

Details about the Adam optimizer are provided in section 9.3.4. The performance may be enhanced 

further by adjusting the hyperparameters. The subsequent section delves into hyperparameters and 

hyperparameter tuning in detail. 

8. Practical Considerations for Improved Neural Network Training 

8.1. Issues in Training the Neural Network 

Generalization refers to the ability of a model to accurately predict outcomes for new, unseen data that 

is not included in the training set. A model that can generalize well has learned the underlying patterns 

and relationships in the training data without memorizing it and can apply it to new data. Despite various 

issues, deep learning with neural networks has offered so much potential of generalization. Kawaguchi 

et al. (2022) presented a theoretical treatment of generalization, even proposed new open problems. 

While training neural networks, there can be several issues that can result in poor generalization. 

Marcus, (2018) critically discussed some of the aspect related to issues with the neural networks. 

Some common issues related to the neural networks are discussed below: 

1. Overfitting: If the training error (the error your model makes on the training set) is low, but 

the generalization error (the error your model makes on the test set) is high, then it means that 

the model is exhibiting high variance and overfitting the training data. The strategies include 

those for appropriate data collection, data pre-processing, network designing, parameter 

initialization, hyperparameter tuning, cross-validation, model complexity, regularization, and 

ensemble methods (those combine the predictions of multiple models for improved 

performance) are planned for avoiding overfitting.  

2. Underfitting: Underfitting is when a machine learning model is too simple and cannot capture 

the underlying patterns in the data. This can result in high bias and poor training and test data 

performance. Increasing the complexity of the model, and adding more layers or neurons, can 

help address underfitting. The strategies, such as those for appropriate data pre-processing, 

network designing, model complexity, regularization, and ensemble methods, are planned to 

avoid underfitting. 

3. Vanishing and Exploding Gradients: Vanishing and exploding gradients are two common 

problems that can occur during the training of deep neural networks, in particular, the 

backpropagation phase. Vanishing of the gradients occurs when they become minimal, often 

approaching zero, as they propagate back through the layers of the network. This can cause the 

weights to update very slowly or not at all, which can significantly slow down or even prevent 

the convergence of the network during training. In extreme cases, vanishing gradients can also 

cause the network to become stuck in a local minimum, leading to poor overall performance. 

Exploding of the gradients, on the other hand, occurs when the gradients become very large, 

often reaching extremely high values, as they propagate back through the network layers. 

Again, this can cause the weights to update rapidly and lead to instability in the training process,  

which may result in divergence. 



73 

 

Vanishing and exploding gradients are more likely to occur in deep neural networks with certain 

types of activation functions, such as the sigmoid or hyperbolic tangent function, because the 

derivatives of these functions can become very small or very large, resulting in extreme 

gradients. Other activation functions, such as ReLU and its variants, are often considered to 

reduce these problems. Moreover, using various techniques of parameter initialization and 

batch normalization can also help stabilize the gradients during training. 

4. High Computational Cost (Limited Computational Resources): Training large neural 

networks can be computationally expensive and require high-end hardware, such as GPUs or 

TPUs. Training can sometimes take days or weeks to complete, making it challenging to 

accomplish within a reasonable timeframe. Efficient algorithms and state-of-the-art 

computational parallel computing resources are acquired to address the challenge (Ali, 2013). 

5. Slow Convergence for Optimization: Due to the versatility and complexity of the cost 

functions to be optimized for training the neural network model, the iterative convergence of 

the optimization algorithm (usually the Gradient Descent method) becomes slow. A handful of 

the mathematical theory of optimization methods has grown to increase the convergence rate. 

Some advanced strategies for the Gradient Descent method include the Stochastic Gradient 

method, the Stochastic Gradient method with momentum or Nestrove momentum, the Gradient 

Descent with Adaptive Learning Rates (e.g., AdaGrad, RMSProp, AdaDelta, Adam), and many 

more. 

The subsequent sections discuss crucial practical considerations at various phases to avoid neural 

network training issues for a successful deep learning activity. 

8.2. Data Collection (or Data Generation) 

The very first activity for any deep learning (or any machine learning) project is acquiring/generating 

the dataset to be used for learning. The size of the dataset should be large enough so that meaningful 

generalization (a well-trained model) can be made and the model will not overfit the training data. 

Having a large enough dataset is one of the primary ways to avoid overfitting. Moreover, the data to be 

used for training should be representative of the overall population so that the trained model will 

judiciously generalize future data. Otherwise, the trained model will not be able to perform reasonably 

(e.g., in making predictions). Even large datasets cannot perform if the data has sampling bias: non-

representativeness due to biasing in data selection. On the other hand, smaller data sizes have a high 

probability of missing a variety of representative examples from the population. This is called sampling 

noise. 

8.3. Data Pre-processing and Feature Engineering 

Firstly, the dataset should be clean, not dirty. It should be made free from errors or noise, such as 

missing values, outliers, etc. Having a clean dataset is also one of the primary ways to avoid overfitting. 

The rows/columns with errors can be removed from the dataset, or the erroneous value may be 

imputed/replaced by some reasonable approximation (e.g., the median of the column entries). The data 

pre-processing may also involve data wrangling, data integration, data transformation (such as 

normalization), data reduction (such as dimensionality reduction), and data discretization. With a poor-



74 

 

quality dataset, a well-trained model cannot be anticipated. In practice, a significant proportion of the 

total time of a data science activity is spent on pre-processing the data. 

The data pre-processing activities related to features/variables are also termed feature engineering. 

This typically involves activities such as appropriately representing data (converting from 

categorical/text/image values to numeric form through one-hot encoding, label encoding, or ordinal 

encoding as appropriate), feature selection, feature extraction/derivation, and feature scaling. These 

activities are performed before feeding the data into the learning algorithm as a way to preprocess and 

transform the raw data into meaningful inputs for the model. Having better features (as a result of some 

feature engineering) may help avoid high bias, which avoids underfitting.  

Some of the critical feature engineering activities are discussed below: 

1. Feature scaling or normalization (standardization): It refers to scaling numerical features to 

a common scale, a specific range, or distribution to ensure that they have similar statistical 

properties for learning efficiency. The techniques include the Min–Max normalization, Z-score 

normalization, and Normalization by decimal scaling. 

2. Feature selection: Selecting a subset of the essential features from the available set of features 

to reduce dimensionality for relevance and efficiency. Having fewer features/attributes 

produces a simpler model, which may help avoid overfitting. Conventional machine learning 

techniques requires feature selection manually, whereas neural networks perform this activity 

automatically as part of the model’s working. 

3. Feature extraction: Creating new features by extracting relevant information from existing 

features, such as aggregating data, creating interaction terms, or applying mathematical 

transformations. This is highly dependent on the problem or domain-specific knowledge or 

insights. Conventional machine learning techniques requires feature extraction manually, 

whereas neural networks perform this activity automatically as part of the model’s working. 

8.4. Designing the Neural Network Architecture 

In the single-layer neural network, the vector of inputs generates the output. In a multi-layer or deep 

neural network, the input layer is followed by a sequence of hidden layers to perform computations one 

after the other and ultimately generate the output layer. The neurons in the input layer are features 

(attributes/columns) of the dataset under consideration. The neurons within a layer are independent of 

each other. In a fully connected neural network, each neuron in layer 𝑙 is generated using all the neurons 

in the previous layer 𝑙 − 1. The design of a fully connected neural network is based on the number of 

layers (𝐿) and the number of neurons/units in a layer (𝑛𝑙), including the input layer. This architecture 

is called feed-forward because the layer feeds its computed values into the next layer, in the forward 

direction, from the input layer to the output layer. Thus, a neural network architecture acts as a 

composite function Φ of the set of input features 𝑋[0], in which each of the 𝐿 layers acts as a function 

that is applied to the output of the previous layer, as expressed in Eq. (𝐹. 7). This way, the neural 

network serves as a computational framework.  

The number of layers 𝐿  and neurons per layer 𝑛𝑙  for a feed-forward deep neural network can 

significantly impact the model’s performance and accuracy. These two quantities determine the model’s 

capacity, that is, the ability of the model to lean and represent (or store and process) the variety and 



75 

 

complexity of the patterns in the data. In case of underfitting (getting not enough signal), a network can 

be made deeper (by increasing 𝐿) and wider (by increasing 𝑛𝑙). However, there is no one-size-fits-all 

approach for determining the best architecture for a given problem. It often requires a combination of 

intuition, experimentation, and domain expertise. Therefore, it is recommended to start with a simpler 

architecture and gradually increase the complexity of the model, observing the complexity of the 

problem. For example, problems that require more complex decision boundaries may benefit from 

deeper architectures with more neurons per layer. Sometimes, the average of the number of neurons in 

the input layer and the number of neurons in the output layer can serve as a starting point for setting the 

number of neurons per layer. Ultimately, the best way to determine the optimal architecture for a given 

problem is through experimentation while considering other factors (hyperparameters). 

Wider networks tend to capture linear relationships among the features more easily, whereas deeper 

networks tend to capture nonlinear relationships more easily. Another pertinent point is that the initial 

layers capture low-level features, such as edges and textures. In contrast, the deeper layers capture 

high-level features, such as shapes and objects, in a neural network. The initial layers are designed to 

capture the low-level features. As the information moves through the network, these low-level features 

are combined and transformed into more complex features. As a result, the deeper layers have access 

to a larger receptive field, meaning they can consider a broader range of input data. Additionally, the 

deeper layers often have more neurons, which allows them to capture more nuanced and intricate 

relationships between the features. Thus, the hierarchical approach to feature extraction allows neural 

networks to learn increasingly abstract representations of the input data as it passes through the network, 

making them powerful tools for tasks such as image and speech recognition. 

Besides the number of layers and the number of neurons in each layer, another critical task for the 

computational framework of a neural network is to make choices for the activation function/s and the 

loss function, mainly depending on the problem or domain under consideration. Section 2 has 

mentioned various possible choices for these in Tables 2.1 and 2.2. 

8.5. Initialization Techniques 

Initialization of the parameters (weights and biases) is crucial in training neural networks. Proper 

initialization can help address the problem of vanishing and exploding gradients (that can occur during 

the backpropagation phase), accelerate the convergence of the optimization algorithm, and improve the 

overall performance of the neural network. The choice of initialization method depends on the specific 

neural network architecture and activation function used. A good practice is experimenting with 

different initialization methods to see which works best for the specific problem at hand. Following are 

some well-known techniques for parameter initialization in neural networks for each layer, 𝑙 =

1,2,3,⋯. Python-like pseudo-codes using the NumPy library (with alias np) are also given. 

1. Zero Initialization:  In this technique, all the weights and biases in the network are set to zero 

during initialization. A Python-like code using the NumPy library for zero initializing might 

be: 

𝑊[𝑙] = np. zeros(𝑛𝑙 , 𝑛𝑙−1)

𝐵[𝑙] = np. zeros(𝑛𝑙 , 1)
 

With zero initialization, the derivatives with respect to the loss function for each weight in the 

layer will be identical. Consequently, in subsequent layers, all the weights will retain the same 

value, resulting in symmetric hidden layers. This symmetry will persist for all the layers, 



76 

 

causing the network to perform no better than a linear model. However, the biases set to zero 

will not pose any issues as the non-zero weights break the symmetry. Therefore, even if the 

biases are zero, the values in each neuron will be distinct. 

 

2. Random Initialization: In this technique, the weights and biases are randomly initialized to 

values from a uniform or normal/gaussian distribution with zero mean and a small standard 

deviation. This approach helps break the network’s symmetry and can lead to better 

performance. This approach is commonly used in deep learning frameworks such as 

TensorFlow and PyTorch due to its simplicity and effectiveness. A Python-like code for 

randomly initializing weights to values from a uniform distribution is: 

𝑊[𝑙] = np. random. rand(𝑛𝑙 , 𝑛𝑙−1) 

A Python-like code for randomly initializing weights to values from a normal/gaussian 

distribution is: 

𝑊[𝑙] = np. random. randn(𝑛𝑙 , 𝑛𝑙−1) 

3. Xavier Initialization (Glorot Initialization): In this technique, the weights are initialized to 

values from a Gaussian/normal distribution with zero mean and a standard deviation of 

√2.0/(𝑛𝑙−1 + 𝑛𝑙) . This technique benefits activation functions like hyperbolic tangent, 

logistic, and softmax (Xavier, 2010).  A Python-like code for randomly initializing weights to 

values from Gaussian/normal distribution is: 

𝑊[𝑙] = np. random. randn(𝑛𝑙 , 𝑛𝑙−1) × np. sqrt(2.0/(𝑛𝑙−1 + 𝑛𝑙)) 

4. He Initialization: This technique is similar to Xavier initialization but is used for ReLU 

activation functions. The weights are initialized to values from a Gaussian/ Normal distribution 

with zero mean and a standard deviation of √2/𝑛𝑙−1 (He et al., 2015). A Python-like code for 

He initialization technique to values from a Gaussian/normal distribution is: 

𝑊[𝑙] = np. random. randn(𝑛𝑙 , 𝑛𝑙−1) × np. sqrt(2.0/𝑛𝑙−1) 

5. LeCun Initialization: This technique is used for fully connected layers and convolutional layers 

with hyperbolic tangent activation function. The weights are initialized to values from a 

uniform distribution with zero mean and a standard deviation of √1/𝑛𝑙−1 (LeCun et al., 2015). 

A Python-like code for the LeCun initialization technique to values from a Gaussian/normal 

distribution is: 

𝑊[𝑙] = np. random. randn(𝑛𝑙 , 𝑛𝑙−1) × np. sqrt(1.0/𝑛𝑙−1) 

6. Pretrained Initialization (Transfer learning): This technique involves initializing the weights 

to the values that are learned from a pre-training step on a similar task or dataset. This approach 

can be helpful in cases where the size of the labeled data is small. This is commonly used in 

computer vision and natural language processing tasks (Yosinski et al., 2014). 

8.6. Hyperparameter Tuning and Model Validation 

A machine learning or deep learning model (i.e., the learning function) has some model parameters 

(such as slope and intercept in a linear regression model and weights and biases in a deep learning 



77 

 

model) that are crucial to the model’s performance for making predictions. A learning algorithm tries 

to find optimal values for the model parameters so that the model generalizes well to new instances. 

On the other hand, a hyperparameter is a parameter of the learning algorithm itself, not of the trained 

model. Hyperparameters are set prior to the start of the training process, and they remain unaltered 

during the model training. As hyperparameters dictate the performance of the learning algorithm, they 

are tuned to obtain better generalization. The number of layers (𝐿) and the number of neurons/units 

(𝑛𝑙) in a layer 𝑙 are the most basic hyperparameters for a neural network architecture. 

A list of hyperparameters (both mandatory and situational) for fully connected neural networks is as 

follows: 

1. Number of layers other than the input layer (𝐿) 

2. Number of neurons/units in a layer 𝑙 (𝑛𝑙) 

3. Choice of the activation function/s 

4. Choice of the loss function 

5. Size of mini-batches of the training set for iterations of the optimization algorithm (𝑚), or 

equivalently the number of mini-batches of the training set (𝛾)  

6. Number of epochs (𝑀𝐴𝑋𝑒𝑝𝑜𝑐ℎ𝑠) 

7. Choice of the optimization algorithm 

8. Learning rate of the optimization algorithm (𝛼) 

9. Regularization parameter (𝜆) 

10. Value of the momentum parameter 𝛽 for the optimization algorithm (if needed) 

11. RMSProp hyperparameter 𝛽1 (if needed) 

12. Adam parameters 𝛽1, 𝛽2 and 휀 (if needed) 

13. Dropout rate for the neurons of a layer 

14. Learning rate decay 

There are various libraries, such as Bayesian optimization, Hyperopt, Spearmint, SMAC, 

GridSearchCV, RandomizedSearchCV, Ray Tune, and Optuna, for choosing different hyperparameters. 

These libraries offer a range of techniques for hyperparameter tuning, from exhaustive searches to more 

sophisticated Bayesian methods. Choosing the appropriate library depends on the specific requirements 

of a project, such as the size of the search space, computational resources, and the desired level of 

optimization. 

An effective and efficient approach for choosing or tuning hyperparameters (as well as for best model 

selection) is to try out some random/heuristic guesses and then narrow down the choice for best values. 

However, the exhaustive (brute-force) or grid search is slow and resource-consuming.  

To validate a particular selection of a set of hyperparameters (or tuning the hyperparameters, in general), 

there are two well-known approaches: the Holdout Validation technique and 𝒌-Fold Cross-Validation 

technique. 

When training a model, first, we typically divide the available data into two sets: the training set (around 

80-98% of the whole dataset) and the test set (around 2-20% of the whole dataset). The percentages of 

divisions are decided depending on the dataset sizes. Typically, 1000 instances in the test set are 

assumed sufficient to serve the purpose. For simplicity, we assume the division as depicted in Fig. 8.1. 

During the learning phase, the training error is used to dictate the progress. The training error is the 

error of the model on the training set, which measures how well the model fits the training data. It is 

calculated by comparing the model’s predicted output with the training data’s actual/target output. 

During the learning/training process, the error between the predicted and target values is computed 

using the loss function for each training instance. The training error (also called the cost function) is 



78 

 

an average (or mean) of the errors calculated for all the instances in a batch of training instances under 

consideration. 

Once the model is ready, it is measured how well the model performs on new, unseen data (the test set) 

by finding the generalization error. The generalization error is calculated as the difference between the 

predicted outputs and the target outputs of the test set. The generalization error is the most important 

metric for evaluating the performance of the model, as it measures how well the model will perform in 

real-world situations. 

 

Fig. 8.1: A basic approach train-test splitting and model building and testing 

8.6.1. Holdout Validation Technique 

When training a model, first, we typically divide the available data into two sets: the training set and 

the test set, as discussed earlier. Next, for the training phase, the training set is further divided into two 

sets: the reduced training set and the validation set (also called the development set, dev set, or holdout 

set). The validation set might have 1-50% of the training set, depending upon the training set size. For 

large training sets, a lower percentage of the training set is sufficient for making the validation set. 

The validation error is the error of the model on the validation set, which measures how well the model 

generalizes to new data. The model is trained on the training set. Once the model is ready, the validation 

error is then calculated as the difference between the predicted outputs and the target outputs of the 

validation set. The validation error is used to tune the model’s hyperparameters, such as the learning 

rate or the number of layers, to improve the model’s performance on new data. 

Dataset 

 

train_test_split( ) 

 

Training  

Set 

 
Test Set 

 

Generalization 

Error 

 
Predicted 

Output 

 

Target 

Output 

 



79 

 

The reduced training set is used to train multiple models with various choices of hyperparameters. The 

model that gives the best accuracy on the validation set (i.e., lowest validation error) is selected. This 

way, tuning of the hypermeter is carried out. Then, the selected model is trained on the whole training 

set. This produces the final model. This approach serves as a technique to generalize better the training 

set by avoiding overfitting so that the model will perform well on the test set (unseen data). Next, the 

final model is evaluated on the test set, and the generalization error is computed. This process is depicted 

in Fig. 8.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.2: Model training with Holdout Validation approach 

Predicted 

Output 

 

Target 

Output 

 

Validation 

Error 

 

  

Dataset 

train_test_split( ) 

 

Training  

Set 

 

train_test_split( ) 

 

Reduced 

Training 

Set 

Dev Set 

or  

Validation 
Set 

 

Repeat this process multiple 
times for hyperparameter tuning 

 

Training  

Set 

 

Test  

Set 

 

Use the whole Training set with 
tuned hyperparameters 

 Predicted 
Output 

 

Target 

Output 

 

Generalization 

Error 



80 

 

The validation error is used to ensure the validity of the model. It checks whether our model is too 

simple to learn underlying patterns or too complex to learn everything in the training set. The learning 

algorithm that performs poorly on the training set by producing large training error (with reference to a 

baseline/human-level performance) is said to underfit. This indicates high bias, which comes from 

developing a simpler model using fewer parameters and lesser degrees of freedom. The learning 

algorithm that performs well on the training data (with reference to a baseline/human-level 

performance), but not well on the validation set is said to overfit the training data. This indicates high 

variance, which comes from developing a complex model using too many parameters and higher 

degrees of freedom. Thus, the bias-variance tradeoff is to be taken care of for a balanced learning. That 

said, it is vital to strike a balance between model complexity and performance on the unseen data. Fig. 

8.3 shows the performance of three different training example and explains how to detect overfitting 

and underfitting. 

 

 

Fig. 8.3: Identifying high bias and high variance using the training and validation errors. 

The holdout validation technique usually works reasonably well. However, there are some flaws with 

it. The results obtained from holdout validation can be highly dependent on the specific way in which 

the data is split into training and validation sets. This can lead to variability in the performance of the 

model and make it difficult to compare different hyperparameters. Evaluating the model performance 

with a small validation set may to lead to select suboptimal choices of hyperparameters. A larger 

validation set makes the reduced training set smaller. In that case, a smaller training set will be used for 

training the model. The hyperparameters tuned on a smaller set will then be used for model training on 

the original dataset. This issue is addressed by the 𝑘-fold cross validation technique. 

8.6.2. 𝒌-fold Cross-Validation Technique 

In 𝑘-fold cross-validation, the reduced training set is split into 𝑘 equally sized folds/subsets. The model 

is then trained on 𝑘 − 1 of the folds and validated on the one remaining fold. This process is repeated 

𝑘  times (𝑘  trials), with each of the 𝑘  folds being used as the validation set exactly once. The 

performance of the model is then calculated as the average performance in 𝑘  trials. The multiple 

evaluations are averaged to get a better measure of the performance. Based on this estimate, the best 



81 

 

hyperparameter values are selected or obtained by trying out different values in the next iteration of 

cross-validation. The major drawback with this technique is manifold increment in the computation 

time. For 𝑘 = 5, the five-fold cross-validation is depicted in Fig. 8.4. Note that the model averaging is 

typically applied during the evaluation and selection phase of model development, and should not be 

confused with model ensemble techniques, where multiple models are combined during the training 

phase to create a single, more powerful model. Model averaging in the context of 𝑘 -fold cross-

validation is used to obtain a more accurate estimate of a model’s performance and to aid in model 

selection, rather than directly influencing the training of the models themselves. 

8.7. Regularization 

Regularization is a technique used to balance the trade-off between bias and variance. An effective 

regularization approach aims to minimize the variance without significantly increasing the bias. This 

means that the ideal regularization should achieve a considerable reduction in variance while keeping 

the increase in bias to a minimum. During the training process, the regularization method adds an 

additional constraint or penalty term to the cost function that the neural network is attempting to 

optimize.  The penalty term is a function of the model parameter weight, and it can take different forms 

depending on the type of regularization used, such as L1 regularization or L2 regularization 

(Goodfellow, 2016; Aggarwal, 2018). The addition of a regularization term to the cost function affects 

updating of the model parameters by modifying the gradient of the cost function with respect to the 

weights. The gradients will now include the derivative of the regularization term, that penalizes large 

weights.  

The primary objective of adding a penalty term in regularization techniques is to impose a constraint 

on a neural network model from having excessively large weight values, and instead, to have smaller 

weight values that are better suited for generalization, thereby enhancing the model’s capacity to handle 

new data. 

Following are some commonly used regularization methods (Nusrat and Jang, 2018; Dawani, 2020). 

8.7.1. L2-Regularization 

The L2-Regularization (based on the 𝑙2-norm) also known as the Tikhonov regularization, involves 

adding a constraint or penalty term to the cost function of the model, which is proportional to the sum 

of the squares of the weights. This results in smaller weight updates during backpropagation, which, in 

turn, leads to a smoother optimization and a better chance of finding a global minimum. Therefore, L2-

regularization is also sometimes called weight decay.  

The cost function with L2-regularization term can be expressed in component form as: 

𝑐(𝑝) =
1

2
∑(𝑦𝑗

(𝑝)
− �̂�𝑗

[𝐿](𝑝)
)
2

𝑛𝐿

𝑗=1

+
𝜆

2
∑(∑ ∑ (𝑤𝑗,𝑖

[𝑙])
2

𝑛𝑙−1

𝑖=1

𝑛𝑙

𝑗=1

)

𝐿

𝑙=1

  

This can be expressed in vector form, using the Frobenius norm of matrices, as: 

𝑐(𝑝) =
1

2
‖𝑌(𝑝) − �̂�[𝐿](𝑝)‖

2

2
+

𝜆

2
∑(‖�̅̅̅�[𝑙]‖

𝐹
)
2

𝐿

𝑙=1

  



82 

 

 

Performance 

Score 1 

 

Performance 

Score 2 

 

Performance 

Score 3 

 

Performance 

Score 4 

 

Performance 

Score 5 

 

The multiple evaluations are averaged to get a better measure of the 
performance. Based on this estimate, the best hyperparameter values are 
selected or obtained by trying out different values in the next iteration of 
cross-validation. Grid search or randomized search can be used to explore 
different combinations of hyperparameter values. 

5 copies of the Training set for Cross-Validation; Blue part split as the Dev Set  

Dataset 

 

Training 

Set 

 

train_test_split( ) 

 

Predicted 

Output 

 

Target 

Output 

 

Generalization 

Error 

Test  

Set 

 Use the whole Training set 
with tuned hyperparameters 

 

Fig. 8.4: Hyperparameter tuning 

with 𝑘-fold cross validation, 

with 𝑘 = 5. 



83 

 

Here, 𝐹 in the subscript shows the Frobenius norm of the matrix of all the weights of the model. 𝜆 is 

the regularization parameter, which controls the strength of the regularization penalty. The gradient of 

the penalty term with respect to the weights is 𝜆 (𝑤𝑗,𝑖
[𝑙]) and is included in the relevant term of Eq. (𝐺. 3) 

for updating the weights. Rearrangement gives (1 − 𝛼𝜆) as the coefficient of previous weight and is 

termed as weight decay factor. 

8.7.2. L1-Regularization 

The L1-Regularization  (based on the 𝑙1-norm) adds a penalty term to the cost function proportional to 

the absolute value of the weights which encourages sparsity. This leads to some of the weights becoming 

zero during training, which can lead to a simpler and more interpretable model. The cost function with 

L1-regularization term can be expressed in component form as: 

𝑐(𝑝) =
1

2
∑(𝑦𝑗

(𝑝)
− �̂�𝑗

[𝐿](𝑝)
)
2

𝑛𝐿

𝑗=1

+
𝜆

2
∑(∑ ∑ |𝑤𝑗,𝑖

[𝑙]
|

𝑛𝑙−1

𝑖=1

𝑛𝑙

𝑗=1

)

𝐿

𝑙=1

  

This can be expressed in vector form, using the 𝑙1-norm of vectors, as: 

𝑐(𝑝) =
1

2
‖𝑌(𝑝) − �̂�[𝐿](𝑝)‖

2

2
+

𝜆

2
∑∑‖𝑊𝑗

[𝑙]
‖

1

𝑛𝑙

𝑗=1

𝐿

𝑙=1

  

The gradient of the penalty term with respect to the weights is 𝜆𝑡𝑗,𝑖, where 

𝑡𝑗,𝑖 = {
−1, 𝑤𝑗,𝑖

[𝑙]
< 0

1, 𝑤𝑗,𝑖
[𝑙]

> 0
 

The gradient 𝜆𝑡𝑗,𝑖 is included in the relevant term of Eq. (𝐺. 3) for updating the weights. An issue with 

the L1-regularization term is that it is based on absolute value terms, which are not differentiable when 

𝑤𝑖,𝑗 is exactly equal to zero. To address this issue of zero weights, 𝑡𝑗,𝑖 can be set to zero, or chosen 

stochastically from {−1,1}. However, note that, the weights often do not become zero in practice 

because the numerical errors are typically sufficient to prevent these to be exactly zero. 

The L2-regularization usually outperforms L1-regularization in producing accurate results, hence is a 

preferable choice. There is another regularization, called the Elastic-Net Regularization, which adds 

the penalty terms of both the L1 and L2-regularization method to achieve the strengths of both methods. 

The Elastic-Net regularization can be particularly useful in situations where there are many input 

features (i.e., high-dimensional data) (Zou and Hastie, 2005; Hastie et al., 2016). 

8.7.3. Dropout Regularization 

The Dropout regularization method involves randomly dropping out (i.e., setting to zero) some of the 

units (neurons) in a neural network during training. This technique was first introduced by Srivastava 

et al. (2014) and used frequently in deep learning. The basic idea is to reduce the co-dependency 

between the neurons in the network by randomly dropping out a certain percentage of neurons during 

training. 



84 

 

During each training iteration, a certain percentage or probability 𝑝 of neurons are randomly selected 

to be dropped out. Therefore, the remaining neurons have to learn to represent the input data without 

relying on the dropped-out neurons. This helps to prevent the network from memorizing the training 

data and instead learn more robust and generalizable features. 

The probability 𝑝 of dropout is a hyperparameter that is typically set through experimentation. A higher 

probability of dropout can lead to better generalization performance, but too high probability can cause 

underfitting. On the other hand, a lower probability of dropout can lead to better training performance, 

but too low probability can cause overfitting. Therefore, probability 30% to 50% is usually used in 

literature. After training, the dropout technique is usually turned off, and the full network is used for 

making predictions.  

8.7.4. Early Stopping Regularization 

Interestingly, the information that is extracted from a dataset during generalization can be thought of as 

two kinds: signal and noise. The signal helps in learning for better generalization of unseen data. In 

contrast, the noise makes the model memorize patterns for accuracy only on the training data but not 

the unseen data. Underfitting the training data occurs when the model has not learned enough signals. 

Therefore, the validation error is not lowered to a possible or desired level. Overfitting the training 

data occurs when the model has learned significant noises. Therefore, the validation error is not lowered 

to a possible or desired level (Rhnyewale, 2020). A deep learning practitioner attempts to find a balance 

or trade-off. 

Ideal learning creates a trained model that learns all of the signals (avoiding underfitting perfectly) and 

none of the noises (avoiding underfitting perfectly). This does not happen in reality, however. So we 

allow the model to learn both the signals and noises as long as the validation error drops. After a certain 

point, the validation error tends to increase again. Having the lowest validation error is the point where 

the early stopping of the learning process can be made.  

The Early Stopping is kind of regularization that is used for iterative learning algorithms. In this 

technique, the performance of the model is monitored during the validation process using the 

development set. While training a model, the graphs of the training error and the validation error can 

be plotted after each epoch. These graphs are called as the learning curves. The trends of these graphs 

can help detect overfitting and underfitting. The epochs of the training are stopped when the validation 

error stops decreasing over a number of epochs. The model parameters, only those for which the 

validation error gets reduced, are saved. When the iterative process is terminated the lasted saved 

effective model parameters are used. Unlike the Batch Gradient Descent method, noticing the 

attainment of minimum level of validation error is not easy in case of the Stochastic and Mini-batch 

Gradient Descent method, because the error curves are not smooth. For such cases, once the error 

somewhat rises again over the minimum level for several epochs, the iterative process is stopped. Fig. 

8.5 depicts this technique. 

Note that the learning curves can also be plotted as the losses/errors as functions of the training set size 

to detect the overfitting. The overfitting can be vanished by increasing the size of data set, however, 

after a certain point there no much benefit of increasing the data size for better performance. This is 

depicted in Fig. 8.6.  

 



85 

 

 

Fig. 8.5: Using Learning curves to detect a point for the Early Stopping. 

 
Fig. 8.6: Using Learning curves to detect the overfitting. 

8.7.5. Data Augmentation (Dataset Augmentation) 

Deep feedforward networks require a substantial amount of data to learn underlying data distributions 

and make accurate predictions on new data. However, gathering large, high-quality labelled datasets 

can be challenging and costly for certain problems. To circumvent the scarcity of training data, one 

effective method is data augmentation. This technique involves generating synthetic data and using it 

to train deep neural networks. The process typically utilizes generative models to learn the underlying 

dataset distribution. The generative model then creates synthetic data resembling ground-truth data, 

making it appear as if it originates from the same dataset. By artificially increasing the size of the 

training dataset, the data augmentation serves as a regularization technique to prevent overfitting. 

Enhancing Robustness with Variations 

To further enhance robustness and generalization to unseen data, various augmentation strategies are 

employed, particularly in computer vision tasks: 



86 

 

• Image Cropping and Rotation: These techniques involve cropping segments of input images 

or rotating them by specific angles. They have been proven to improve model performance by 

exposing it to diverse viewpoints. 

• Noise Injection: Injecting noise into data can enhance the model's resilience to real-world 

noise. Synthetic data can be corrupted, blurred, or infused with Gaussian noise. These 

modifications help the model generalize better in noisy environments. 

Challenges and Limitations 

While data augmentation is highly effective, there are situations where it may face limitations: 

• Optical Character Recognition (OCR): In OCR tasks, certain transformations like horizontal 

flips or 180-degree rotations can alter class labels. For instance, 'b' may become 'd,' and '6' may 

become '9.' In such cases, careful consideration is required when applying augmentation. 

• Specialized Domains: Some domains, such as medical imaging with MRI and CT scans, may 

not permit traditional data augmentation. However, alternatives like affine transformations 

(e.g., rotations and translations) can be applied. 

Noise Injection Strategies 

Noise injection can be a powerful regularization technique. There are two primary ways to inject noise: 

• Injecting Noise to Input Data: Adding noise directly to input data can improve the model’s 

robustness by making it more resilient to variations and disturbances. 

• Injecting Noise into Hidden Units: Injecting noise into hidden units during training is found 

to be an effective regularizer. It encourages stability and prevents overfitting, often 

outperforming traditional parameter shrinking techniques. 

In summary, data augmentation is a valuable tool to enhance the generalization and robustness of deep 

neural networks, especially when dealing with limited or noisy training data. It complements other 

regularization techniques and helps mitigate the challenges associated with data-hungry models. 

8.8. Batch Normalization of Each Layer 

Batch normalization is a technique used in neural networks to prevent arising of the issues of vanishing 

and exploding gradients, as well as internal covariate shifts. Internal covariate shift occurs when the 

distribution of the inputs to each layer changes during training which can slow down the training process 

and make it more difficult for the model to converge to an optimal solution (Ioffe and Szegedy, 2015). 

By normalizing the inputs of each hidden layer, batch normalization helps the model learn more quickly 

with greater stability. This improves the performance of deep neural networks. Faster convergence is 

especially beneficial for larger datasets. Batch normalization can also act as a regularizer, thus reducing 

overfitting and improving generalization. It can make neural networks less sensitive to the choice of 

hyperparameters, such as learning rate and weight initialization, which can simplify the hyperparameter 

tuning process. Batch normalization also enables faster convergence with stability, allowing for higher 

learning rates. It has become a standard technique in deep learning and is widely used in many state-of-

the-art architectures (Goodfellow, 2016; Aggarwal, 2018). 

Batch normalization is applied layer-wise, while the neuron values for a layer 𝑙 for each of the instance 

in the mini-batch are being computed. The batch normalization is applied either on the linearly 

transformed inputs (that is, 𝑧𝑗 
[𝑙](𝑝)

), or on the result of application of the activation function (that is, 



87 

 

�̂�𝑗 
[𝑙](𝑝)

). Here, we discuss the former approach as it is argued to be more advantageous. First, the 

normalization of the linearly transformed input for each of the neuron across all the instances in the 

mini-batch under consideration is performed and then resulting values are scaled and shifted to by 

learnable parameters, which allows the model to learn an optimal scale and shift for each feature. The 

steps of the batch normalization are explained below. 

For the batch normalization of a layer 𝑙, across 𝑚 instances of the mini-batch, the values at 𝑗th neuron, 

for 𝑗 = 1,2,3,⋯ , 𝑛𝑙, of 𝑝th instances are treated as follows: 

1. Compute the mean 𝜇𝑗 and variance 𝜎𝑗
2: 

𝜇𝑗 =
1

𝑚
(∑ 𝑧𝑗 

[𝑙](𝑝)

𝑚

𝑝=1

) , for 𝑗 = 1,2,3,⋯ , 𝑛𝑙 

𝜎𝑗
2 =

1

𝑚
(∑ (𝑧𝑗 

[𝑙](𝑝)
− 𝜇𝑗)

𝑚

𝑝=1

)

2

, for 𝑗 = 1,2,3,⋯ , 𝑛𝑙 

2. Normalize the activations by subtracting the mean and dividing by the standard deviation: 

�̂�𝑗
[𝑙](𝑝)

=
𝑧𝑗

[𝑙](𝑝)
− 𝜇𝑗

√𝜎𝑗
2 + 𝜖

 

Here, ε is a small constant added for numerical stability. 

3. Scale and shift the normalized values using trainable parameters 𝛾𝑗 and 𝛽𝑗, respectively. 

𝑧𝑗 
[𝑙](𝑝)

= 𝛾𝑗 (�̂�𝑗
[𝑙](𝑝)

) + 𝛽𝑗 

The scaling parameter 𝛾𝑗 scales the normalized value of the feature, and allows the model to learn 

the optimal scale for each feature dimension. The shifting parameter 𝛽𝑗 shifts the normalized value 

of the feature, and allows the model to learn the optimal mean for each feature dimension. 

Once the batch normalized values are ready, activation function is applied to obtain the output neuron 

values in layer 𝑙, which are then used as input for the next layer.  When batch normalization is applied, 

the bias term is not needed, because the shifting parameter can accommodate for the role of the bias 

term. 

9. Some Advanced Gradient Descent Strategies for Efficient Training 

9.1. Gradient Descent with Momentum 

As discussed earlier, Gradient Descent (GD) is a commonly used optimization method, but it can 

sometimes be slow, particularly when dealing with minor or noisy gradients. To address this issue, the 



88 

 

technique of using a momentum term with the GD method, also known as Polyak’s Heavy Ball method, 

was introduced by Polyak (1964). It accelerates the learning process and prevents the optimizer from 

getting stuck in a local minimum. 

The method introduces a variable 𝑣, i.e., the velocity, which represents the direction and speed at which 

the parameters (weights and biases) move through the parameter space. It facilitates the optimizer to 

take larger steps or gain momentum in the direction of the optimal solution. The value of 𝑣 at each 

iteration depends on the previous value of 𝑣 as well as the gradient of the cost function at the current 

estimate of the minimum: 

𝑣𝑗,𝑖
[𝑙] = 𝛽𝑣𝑗,𝑖

[𝑙] − 𝛼
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

− − − (𝐺. 5) 

Here, 𝛽 ∈ (0,1) is a momentum or friction hyperparameter. Thus, Eq. (𝐺. 3) assumes the following 

form for updating the weights: 

𝑤𝑗,𝑖
[𝑙]

= 𝑤𝑗,𝑖
[𝑙]

+ 𝑣𝑗,𝑖
[𝑙]

        − − − (𝐺. 6) 

It is understood that the left-hand side value is the newer one, obtained by using the older value of the 

variable on the right side of the equation. Similar modifications for updating the biases can be made. 

Here, for layer 𝑙,  

𝑉𝑗
[𝑙] =

[
 
 
 
 
 𝑣𝑗,1

[𝑙]

𝑣𝑗,2
[𝑙]

⋮

𝑣𝑗,𝑛𝑙−1

[𝑙]
]
 
 
 
 
 

𝑛𝑙−1×1

 

Thus, the matrix �̅�[𝑙]  has the form (vertical stacking of 𝑛𝑙  column vectors for vectorized 

implementation): 

�̅�[𝑙] =

[
 
 
 
 
 
 
 ——  𝑉1

[𝑙]𝑇 ——

——  𝑉2
[𝑙]𝑇——

⋮

——  𝑉𝑛𝑙

[𝑙]𝑇——]
 
 
 
 
 
 
 

𝑛𝑙×(𝑛𝑙−1)

 

In the vectorized form, the Eqs. (𝐺. 5) and (𝐺. 6) can be written as, 

𝑽[𝑙] = 𝛽𝑽[𝑙] − 𝛼𝒅�̅̅̅�[𝑙]        − − − (𝐺. 7)

�̅̅̅�[𝑙] = �̅̅̅�[𝑙] + 𝑽[𝑙]        − − − (𝐺. 8)
 

The hyperparameter 𝛽  controls the impact of the previous gradients on the current updating step. 

Specifically, a higher 𝛽 value gives more weight to the previous gradients, leading to a smoother and 

more stable updating process that helps to avoid getting stuck in local optima. On the other hand, a 

lower 𝛽 value gives less weight to the previous gradients, leading to more oscillations and potentially 

faster convergence but with a higher risk of overshooting the minimum. Therefore, choosing the proper 



89 

 

value of 𝛽  is essential for achieving good performance in gradient descent with momentum. In 

literature, 𝛽 = 0.9 is considered effective in practice (Srinivasan et al., 2018; Chen et al., 2022). Nakerst 

et al. (2020) proposed a scheme to further accelerate the GD with momentum and demonstrated it to be 

usable with other adaptive learning rate techniques. 

9.2. Gradient Descent with Nesterov Momentum 

Nesterov acceleration is a method of accelerating the convergence of the GD algorithms. It was 

introduced by Nesterov (1983, 2004). The basic idea of Nesterov acceleration is to use a momentum 

term with the previous update direction. This helps to avoid oscillations and overshooting and may 

perform better than the GD with momentum term with no acceleration. 

Sutskever et al. (2013) proposed a modification to the momentum algorithm that was influenced by 

Nesterov’s accelerated gradient method. The updating term for the model parameter to be used in Eq. 

(𝐺. 5) is given by, 

𝑣𝑗,𝑖
[𝑙]

= 𝛽𝑣𝑗,𝑖
[𝑙]

− 𝛼
1

𝑚
∑

𝜕𝑐(𝑝) (𝑤𝑗,𝑖
[𝑙]

+ 𝛽𝑣𝑗,𝑖
[𝑙]

, 𝑏𝑗
[𝑙]

)

𝜕𝑤𝑗,𝑖
[𝑙]

𝑚

𝑝=1

      − − − (𝐺. 9) 

This is accomplished by adding 𝛽𝑣𝑗,𝑖
[𝑙]

 to each weight 𝑤𝑗,𝑖
[𝑙]

 and then performing the computations of the 

forward pass, loss function, and their gradients. In this way, we have the cost function 𝐶 as: 

𝐶 = 𝐶(�̅̅̅�[1] + 𝛽𝑽[1], 𝐵[1],  �̅̅̅�[2] + 𝛽𝑽[2], 𝐵[2], ⋯ , �̅̅̅�[𝐿] + 𝛽𝑽[𝑙], 𝐵[𝐿]) 

instead of 

𝐶 = 𝐶(�̅̅̅�[1], 𝐵[1],  �̅̅̅�[2], 𝐵[2], ⋯ , �̅̅̅�[𝐿], 𝐵[𝐿]) 

In the vectorized form, the Eq. (𝐺. 9) can be written as, 

𝑽[𝑙] = 𝛽𝑽[𝑙] − 𝛼
𝜕𝐶(�̅̅̅�[𝑙] + 𝛽𝑽[𝑙], 𝐵[1])

𝜕�̅̅̅�[𝑙]
 − − − (𝐺. 10) 

Eq. (𝐺. 10) is used in Eq. (𝐺. 8) for updating the weights. Similar modifications for updating the biases 

can be made. Including the momentum term in the gradient calculations requires extra computational 

resources. 

9.3. Gradient Descent with Adaptive Learning Rates 

9.3.1.  AdaGrad (The Adaptive Gradient Technique) 

In traditional gradient descent, the learning rate is fixed and is the same for all parameters. However, 

this can sometimes lead to slow convergence or even divergence. The AdaGrad technique, introduced 

by Duchi et al. (2011), can converge rapidly to a solution in high-dimensional, sparse parameter spaces. 

The AdaGrad algorithm adapts the learning rate of each parameter based on its historical gradients and 

computes a different learning rate for each parameter. The learning rate is inversely proportional to the 

square root of the sum of the squared gradients for that parameter up to the current iteration. The 

updating term for the model parameter is given by, 



90 

 

𝑎𝑗,𝑖
[𝑙]

= 𝑎𝑗,𝑖
[𝑙]

+ (
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

)

2

     − − − (𝐺. 11) 

Here, 𝑎𝑗,𝑖
[𝑙]

 is the aggregate value of the 𝑖th parameter. 𝑎𝑗,𝑖
[𝑙]

 is initialized with zero. Eq. (𝐺. 3) assumes 

the following form for updating the weights: 

𝑤𝑗,𝑖
[𝑙]

= 𝑤𝑗,𝑖
[𝑙]

−
𝛼

√𝑎𝑗,𝑖
[𝑙]

𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

  − − − (𝐺. 12)
 

A small positive value such as 𝜖 = 10−8  can be added into 𝑎𝑗,𝑖
[𝑙]

 for stabilization of the divisions 

involving small values. Similar formulas for updating the biases can be made. In the vectorized form, 

Eqs. (𝐺. 11)  and (𝐺. 12) can be written as, 

𝑨[𝑙] = 𝑨[𝑙] + 𝒅�̅̅̅�[𝑙]⨂𝒅�̅̅̅�[𝑙]      − − − (𝐺. 13) 

�̅̅̅�[𝑙] = �̅̅̅�[𝑙] − 𝛼 (1 ⊘ √𝑨[𝑙]
⊡

)⨂𝒅�̅̅̅�[𝑙]          − − − (𝐺. 14) 

Here, also in the subsequent sections, √
⊡

 denotes element-wise square root, ⊘ denotes element-wise 

reciprocal, and ⨂ denotes element-wise multiplication operations for the matrices. 

9.3.2.  RMSProp (The Root Mean Square Propagation Technique) 

Geoffrey Hinton (2012) first introduced the RMSProp algorithm in his Coursera lecture series as a 

modification to the AdaGrad algorithm. One drawback of AdaGrad is that 𝑎𝑗,𝑖
[𝑙]

 becomes very large over 

time, and the learning rate becomes very small and eventually decreases to zero for non-convex 

functions. To address this issue, RMSProp uses an exponentially weighted moving average of the 

squared gradients and discards history from the extreme past. This allows for a more adaptive learning 

rate, scaling the updating parameters based on the size of gradients in the current updates. It uses a 

decay factor 𝛽2 ∈ (0,1) that controls the length scale of exponentially moving average. The updating 

term for the model parameter is given by, 

𝑎𝑗,𝑖
[𝑙] = 𝛽2𝑎𝑗,𝑖

[𝑙] + (1 − 𝛽2)(
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

)

2

 − − − (𝐺. 16) 

Eq. (𝐺. 16) is used in Eq. (𝐺. 12) to update the weights. A small positive value such as 𝜖 = 10−8 can 

be added into 𝑎𝑗,𝑖
[𝑙]

 for stabilization of the divisions involving small values. Similar formulas for updating 

the biases can be made. In the vectorized form, Eq. (𝐺. 16) can be written as, 

�̅�[𝑙] = 𝛽2�̅�
[𝑙] + (1 − 𝛽2)(𝒅�̅̅̅�[𝑙]⨂𝒅�̅̅̅�[𝑙])       − − − (𝐺. 17) 

Here, �̅�[𝑙] is matrix having dimensions 𝑛𝑙 × (𝑛𝑙−1), just like for 𝒅�̅̅̅�[𝑙] for any layer 𝑙. Eq. (𝐺. 17) is 

used in Eq. (𝐺. 14) to update the weights. 



91 

 

9.3.3.  AdaDelta (The Adaptive Delta Technique) 

AdaDelta is an adaptive learning rate optimization algorithm that was introduced by Zeiler (2012). It 

replaces the global learning rate with a ratio that depends on the root mean square of gradients. The 

updating term for the model parameter is given by, 

𝜓𝑗,𝑖
[𝑙]

= 𝛽2𝜓𝑗,𝑖
[𝑙]

+ (1 − 𝛽2)(
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

)

2

− − − (𝐺. 18) 

The value of 𝜓𝑗,𝑖
[𝑙]

 is based on the past gradients. 𝜓𝑗,𝑖
[𝑙]

 is initialized with zero. Eq. (𝐺. 3) assumes the 

following form for updating the weights: 

𝑤𝑗,𝑖
[𝑙]

= 𝑤𝑗,𝑖
[𝑙]

− √
𝜓𝑗,𝑖

[𝑙]

𝑎𝑗,𝑖
[𝑙]

𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

 − − − (𝐺. 19) 

𝑎𝑗,𝑖
[𝑙]

 is the aggregate value of the 𝑖th parameter, to be taken from Eq. (𝐺. 16). A small positive value 

such as 𝜖 = 10−8 can be added into 𝑎𝑗,𝑖
[𝑙]

 for stabilization of the divisions involving small values. Similar 

formulas for updating the biases can be made. In the vectorized form, Eqs. (𝐺. 18) and (𝐺. 19)  can be 

written as, 

�̅�[𝑙] = 𝛽2�̅�
[𝑙] + (1 − 𝛽2)(𝒅�̅̅̅�[𝑙]⨂𝒅�̅̅̅�[𝑙])      − − − (𝐺. 20) 

�̅̅̅�[𝑙] = �̅̅̅�[𝑙] − √�̅�[𝑙]
⊡

⨂(
1

√�̅�[𝑙]
⊡

)⨂𝒅�̅̅̅�[𝑙]     − − − (𝐺. 21) 

Here, �̅�[𝑙] is matrix having dimensions 𝑛𝑙 × (𝑛𝑙−1), just like 𝒅�̅̅̅�[𝑙] for any layer 𝑙. 

9.3.4.  Adam (The Adaptive Moment Estimation Technique) 

Adam is an optimization algorithm that combines ideas from RMSProp and momentum. It was 

introduced by Kingma & Ba (2017). It has become one of the most popular optimization algorithms in 

deep learning. 

Adam maintains two moving averages of the gradient; one is exponential smoothing, and the second is 

exponential moving average. The first moment 𝑓𝑗,𝑖
[𝑙]

, referred to as the mean or velocity, is an 

exponentially decaying average of past gradients. It keeps track of the gradients’ direction and helps 

smooth the gradient updates. The purpose of this term is similar to the momentum term in other 

optimization algorithms, such as gradient descent with momentum. The second moment 𝑎𝑗,𝑖
[𝑙]

, also 

known as the uncentered variance, is an exponentially decaying average of the squared gradients. It 

measures the variance or uncertainty of the gradients. By adapting the learning rate for each weight 

based on the variance of the gradients, the Adam algorithm can dynamically adjust the step size for 

different weights. This adaptive learning rate improves the optimization process by providing larger 



92 

 

updates for less frequently changing weights and smaller updates for frequently changing weights. The 

expression for the first moment 𝑓𝑗,𝑖
[𝑙]

 is given by, 

𝑓𝑗,𝑖
[𝑙] = 𝛽1𝑓𝑗,𝑖

[𝑙] + (1 − 𝛽1) (
𝜕𝐶

𝜕𝑤𝑗,𝑖
[𝑙]

)   − − − (𝐺. 22) 

Thus, Eq. (𝐺. 3) assumes the following form for updating the weights: 

𝑤𝑗,𝑖
[𝑙]

= 𝑤𝑗,𝑖
[𝑙]

−
𝛼𝑡

√𝑎𝑗,𝑖
[𝑙]

𝑓𝑗,𝑖
[𝑙]

                 − − − (𝐺. 23)
 

A small positive value such as 𝜖 = 10−8  can be added into 𝑎𝑗,𝑖
[𝑙]

 for stabilization of the divisions 

involving small values. Similar formulas for updating the biases can be made. Here,  𝛼𝑡 is the bias 

correction factor, with the value, 

𝛼𝑡 = 𝛼
√1 − 𝛽2

𝑡

1 − 𝛽1
𝑡        − − − (𝐺. 24) 

In the vectorized form, Eqs. (𝐺. 22) and (𝐺. 23)  can be written as, 

�̅�[𝑙] = 𝛽1�̅�
[𝑙] + (1 − 𝛽1)𝒅�̅̅̅�[𝑙] − − − (𝐺. 25) 

�̅̅̅�[𝑙] = �̅̅̅�[𝑙] − 𝛼𝑡 (
1

√�̅�[𝑙]
⊡

)⨂�̅�[𝑙]          − − − (𝐺. 26) 

Here, �̅�[𝑙] is matrix having dimensions 𝑛𝑙 × (𝑛𝑙−1), just like 𝒅�̅̅̅�[𝑙] for any layer 𝑙. 

The Adam technique offers a delicate balance between adaptive learning rates and momentum. Its 

ability to dynamically adjust the learning rate based on the magnitude of gradients, coupled with the 

incorporation of historical gradient information, fosters more efficient and stable convergence. By 

seamlessly navigating the complex optimization landscape, Adam empowers neural networks to 

transcend conventional boundaries and unlock their true potential for solving intricate real-world 

problems (Goodfellow, 2016; Aggarwal, 2018). 

10. Enhancing the Model Performance for the Test Case 

Tuning various hyperparameters, specially making a judicious choice of the cost function optimization 

method, as discussed in Section 8 and 9, the performance of the code can be improved significantly. 

Following are the modifications made in the code given in Section 7.3.2. This results in a neural network 

model that performs much better.  



93 

 

 

 

 
 



94 

 

 

 

 

Original Dataset Head: 

         Date   Open   High    Low  Close   Volume 

0  2001-01-01  10.25  10.25  10.25  10.25   1000.0 

1  2001-01-02  10.25  11.50  10.70  11.30  10500.0 

2  2001-01-03  11.30  11.30  10.75  10.75   6500.0 

3  2001-01-04  10.75  11.30  11.25  11.25   3000.0 

4  2001-01-05  11.25  11.30  11.05  11.05   6500.0 

 

 

Original Dataset Tail: 

            Date    Open    High     Low   Close    Volume 

5247  2022-11-11  161.50  162.98  159.00  160.84   18222.0 

5248  2022-11-14  159.00  159.85  156.94  157.25   52296.0 

5249  2022-11-15  158.50  164.50  157.01  162.27  151394.0 

5250  2022-11-16  163.00  164.00  160.00  160.29   49327.0 

5251  2022-11-17  161.69  161.70  158.60  159.21   43334.0 



95 

 

 

 

 

 



96 

 

 

Model: "sequential" 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 dense (Dense)               (None, 20)                220        

                                                                  

 dense_1 (Dense)             (None, 30)                630        

                                                                  

 dense_2 (Dense)             (None, 10)                310        

                                                                  

 dense_3 (Dense)             (None, 5)                 55         

                                                                  

 dense_4 (Dense)             (None, 1)                 6          

                                                                  

================================================================= 

Total params: 1,221 

Trainable params: 1,221 

Non-trainable params: 0 

 

 

  



97 

 

 

 

 



98 

 

 

========== Training process started ========== 

Epoch 1/20 

80/80 [==============================] - 1s 5ms/step - loss: 0.0165 - val_l

oss: 4.7995e-04 

Epoch 2/20 

80/80 [==============================] - 0s 2ms/step - loss: 4.0469e-04 - v

al_loss: 4.0412e-04 

… 

Epoch 20/20 

80/80 [==============================] - 0s 2ms/step - loss: 1.4306e-04 - v

al_loss: 1.2029e-04 

 

========== Training process completed ========== 

 

========== Prediction process started ========== 

 

========== Prediction process completed ========== 

 

========= Comparing the predicted and true values ========= 



99 

 

 

 

======================= Test Errors ======================= 

MAE in the prediction for the test data: 4.580867688326025 

RMSE in the prediction for the test data:  6.0117266939831575 

Conclusion 

This article provides a concise and comprehensive overview of deep learning with Artificial Neural 

Networks (ANNs), offering valuable insights into their mathematical foundations, training procedures, 

and optimization techniques. It employs graphical illustrations to demystify complex concepts, 

including the formulation of backpropagation and optimization approaches. The paper extensively 

presents pseudo-codes in both element-wise and vectorized forms. Furthermore, a Python-based 

vectorized implementation of ANN algorithms is showcased, delivering performance results akin to 

those achieved with established frameworks like TensorFlow. Next, the article delves into techniques 

for enhancing model generalization, tackling training challenges, and optimizing network performance. 

It underscores the significance of hyperparameter tuning by demonstrating substantial improvements in 

the neural network model's performance for a test case problem. By equipping readers with this 

knowledge and practical implementations, this article seeks to establish a robust foundation that fosters 

enduring progress in deep learning. It is a valuable resource for both students and practitioners alike, 

serving as a stepping stone towards mastering the intricate field of deep learning. 

Acknowledgements 

The authors are highly thankful to Prof. Dr. Muhammad Ali Ismail (Principal Investigator) and Mr. 

Uzair Abid (Team Lead) at National Center for Big Data & Cloud Computing, NED University of 

Engineering and Technology, Karachi, Pakistan, for their continuous guidance and support. The authors 

are thankful to Mr. Muneeb Rashid and Mr. Muhammad Jameel (Data Science @ FAST-NUCES, 

Islamabad, Pakistan), for their support and assistance on the subject. 



100 

 

References 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A. K., Dean, J., & Zheng, X. (2016). TensorFlow: A System 

for Large-Scale Machine Learning, Operating Systems Design and Implementation (pp. 265–283). 

https://doi.org/10.5555/3026877.3026899 

Aggarwal, C. C. (2018). Neural Networks and Deep Learning: A Textbook. Springer. 

Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P. (2015). Learning Activation Functions to Improve Deep 

Neural Networks, arXiv:1412.6830v3. https://arxiv.org/abs/1412.6830v3 

Ali, A., Kazmi, S. Z., Shahzadi, G., Rashid, M., & Ahsan, M. (2023). Demystifying CNN with Mathematical 

Insights: A Prelude with Application to an AI-based Sustainable Solution for Diabetic Retinopathy 

Diagnosis. Research Square. https://doi.org/10.21203/rs.3.rs-3338196/v1 

Ali, A., & Syed, K. S. (2013). An Outlook of High Performance Computing Infrastructures for Scientific 

Computing, Advances in Computers, 91, 87-118. https://doi.org/10.1016/b978-0-12-408089-8.00003-3 

Alexender, A. (2023).  MIT 6.S191: Introduction to Deep Learning. YouTube. 

https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI.  

http://introtodeeplearning.com 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer Verlag. 

Chen, J. J., Wolfe, C. R., Li, Z., & Kyrillidis, A. (2022). Demon: Improved Neural Network Training with 

Momentum Decay. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). https://doi.org/10.1109/icassp43922.2022.9746839 

Chollet, F., et al. (2015) Keras, GitHub. https://github.com/fchollet/keras 

Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and Accurate Deep Network Learning by 

Exponential Linear Units (ELUs), arXiv:1511.07289v5. https://arxiv.org/abs/1511.07289v5 

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, 

Signals, and Systems, 2(4), 303-314. 

Dawani, J. (2020). Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for 

training efficient deep neural networks. Packt Publishing Ltd. 

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic 

Optimization, Journal of Machine Learning Research, 12(61), 2121−2159. 

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., & Garcia, R. (2001). Incorporating Second-Order Functional 

Knowledge for Better Option Pricing. Advances in Neural Information Processing Systems, 13, 330-336. 

Emmert-Streib, F., Yang, Z., Han, F., Tripathi, S., & Dehmer, M. (2020). An introductory review of deep 

learning for prediction models with big data. Frontiers in Artificial Intelligence, 3. 

https://doi.org/10.3389/frai.2020.00004 

Glorot, X., & Bengio, Y. (2010). Understanding the Difficulty of Training Deep Feedforward Neural Networks, 

In JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics 

(AISTATS 2010), 9, 249-256. 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 

https://www.deeplearningbook.org/ 

Hagan, M., Demuth, H., Beale, M., & De Jesus, O. (2014). Neural Network Design, Second Edition. Martin 

Hagan. 

https://doi.org/10.5555/3026877.3026899
https://arxiv.org/abs/1412.6830v3
https://doi.org/10.1016/b978-0-12-408089-8.00003-3
https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa3Z1aGlpaDZkMThPUHpyNnVrYlJxWjQ2ajRNd3xBQ3Jtc0tuM2JCclhxbjlOX0tSVGEydzJpQUpBMlVJbXk5cGRhZHRTdUUwTnBHMXd1TWdzemd6Q0xvTVRDekNKTlRVVEp0SDVOZkd2ZmxWbzc5ZXRWQnUtNUZZVGk2ZEFyLU1FZzZUYjNYbFZfY0dwU2pja1ZORQ&q=http%3A%2F%2Fintrotodeeplearning.com%2F&v=QvkQ1B3FBqA
https://doi.org/10.1109/icassp43922.2022.9746839
https://github.com/fchollet/keras
https://arxiv.org/abs/1511.07289v5
https://www.deeplearningbook.org/


101 

 

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and 

analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789), 947-951  

Hastie, T., Tibshirani, R., & Friedman, J. H. (2016). The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction, Second Edition. Springer. 

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level 

Performance on ImageNet Classification. In Proceedings of the IEEE international conference on computer 

vision. 1026-1034 

Hendrycks, D., & Gimpel, K. (2020). Gaussian Error Linear Units (GELUs), arXiv:1606.08415v4. 

https://arxiv.org/abs/1606.08415v4 

Higham, C. F., & Higham, D. J. (2019). Deep Learning: An Introduction for Applied Mathematicians. Siam 

Review, 61(3), 860–891. https://doi.org/10.1137/18m1165748 

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 

251–257. https://doi.org/10.1016/0893-6080(91)90009-t 

Ioffe, S., Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal 

Covariate Shift, arXiv:1502.03167v3. https://arxiv.org/abs/1502.03167v3 

kaggle-titanic (2017). Github. https://github.com/agconti/kaggle-titanic 

Kawaguchi, K., Bengio, Y., & Kaelbling, L. (2022). Generalization in Deep Learning. In P. Grohs & G. 

Kutyniok (Eds.), Mathematical Aspects of Deep Learning, 112-148, Cambridge University Press. 

Kingma, D.P., Ba, J. (2017). Adam: A Method for Stochastic Optimization, arXiv:1412.6980v9. 

https://arxiv.org/abs/1412.6980v9 

Kutyniok, G. (2022). The Mathematics of Artificial Intelligence, arXiv:2203.08890. 

https://doi.org/10.48550/arxiv.2203.08890 

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Deep learning, Nature, 521, 436-444. 

https://doi.org/10.1038/nature14539 

Marcus, G. (2018). Deep Learning: A Critical Appraisal. arXiv:1801.00631, 

https://doi.org/10.48550/arXiv.1801.00631 

Mhaskar, H. N., Liao, Q., & Poggio, T. (2016). Learning functions: When is deep better than shallow. arXiv: 

01603.00988v4 

McCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of The Ideas Immanent in Nervous Activity. The 

Bulletin of Mathematical Biophysics, 5, 115–133. https://doi.org/10.1007/bf02478259 

MIT 6.S191: Introduction to Deep Learning 

https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI 

Nakerst, G., Brennan, J. D., & Haque, M. (2020). Gradient Descent with Momentum --- to Accelerate or to 

Super-Accelerate? arXiv:2001.06472. https://doi.org/10.48550/arxiv.2001.06472 

Nesterov, Y. (1983). A Method for Solving a Convex Programming Problem with Convergence Rate O(1/K^2), 

Soviet Mathematics Doklady, 27, 372-367. 

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization, In Serries: Applied Optimization, 

Springer. https://doi.org/10.1007/978-1-4419-8853-9 

Nielsen, M. A. (2015). Neural Networks and Deep Learning. http://neuralnetworksanddeeplearning.com/ 

Nusrat, I., & Jang, S. (2018). A Comparison of Regularization Techniques in Deep Neural Networks. 

Symmetry, 10(11), 648. https://doi.org/10.3390/sym10110648 

Kaggle - Pakistan stock exchange data (All Companies), (2022). 

https://www.kaggle.com/datasets/mukhazarahmad/pakistan-stock-exchange-data-all-companies 

https://arxiv.org/abs/1606.08415v4
https://doi.org/10.1137/18m1165748
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167v3
https://github.com/agconti/kaggle-titanic
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.48550/arxiv.2203.08890
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1801.00631
https://doi.org/10.48550/arXiv.1801.00631
https://doi.org/10.1007/bf02478259
https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
https://doi.org/10.48550/arxiv.2001.06472
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.3390/sym10110648


102 

 

Polyak, B. T. (1964). Some Methods of Speeding Up the Convergence of Iteration Methods. U.S.S.R. 

Computational Mathematics And Mathematical Physics, 4(5), 1–17. https://doi.org/10.1016/0041-

5553(64)90137-5 

Ramachandran, P. (2017). Searching for Activation Functions, arXiv:1710.05941v2. 

https://arxiv.org/abs/1710.05941  

Rhnyewale. (2020). Introduction to Deep Learning Using Keras and TensorFlow — Part2 - The Startup - 

Medium. https://rhnyewale.medium.com/introduction-to-deep-learning-using-keras-and-tensorflow-part2-

e3c6d342ada8 

Rolnick, D., & Tegmark, M. (2018). The power of deeper networks for expressing natural functions. IarXiv: 

1705.05502 

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in The 

Brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Representations by Back-propagating 

Errors, Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0  

Sarker, I. H. (2021). Deep Learning: a comprehensive overview on techniques, taxonomy, applications and 

research directions. SN Computer Science, 2(6). https://doi.org/10.1007/s42979-021-00815-1 

Schmidhuber, J. (2015). Deep learning in neural networks: An overview, Neural Networks, 61, 85–117. 

https://doi.org/10.1016/j.neunet.2014.09.003  

Srinivasan, V., Sankar, A. R., & Balasubramanian, V. N. (2018). ADINE: An Adaptive Momentum Method for 

Stochastic Gradient Descent. https://doi.org/10.1145/3152494.3152515   

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple 

Way to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research, 15(56), 1929–1958. 

Strang, G. (2019). Linear Algebra and Learning from Data. Wellesley-Cambridge Press. 

Vidal, R., Bruna, J., Giryes, R., & Soatto, S. (2017). Mathematics of Deep Learning. arXiv:1712.04741. 

https://doi.org/10.48550/arxiv.1712.04741 

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional 

network. arXiv preprint arXiv:1505.00853 

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How Transferable are Features in Deep Neural 

Networks? arXiv:1411.1792. https://arxiv.org/abs/1411.1792  

Zeiler, M.D. (2012). ADADELTA: An Adaptive Learning Rate Method, arXiv:1212.5701. 

http://arxiv.org/abs/1212.5701  

Zou, H. & Hastie T. (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal 

Statistical Society, B. 67(2), 301-302. 

Zhou, D. (2020). Universality of deep convolutional neural networks. arXiv: 1805.10769 

Conflicts of Interest: The authors have no conflicts of interest to declare that are relevant to the content 

of this article. 

https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://arxiv.org/abs/1710.05941
https://rhnyewale.medium.com/introduction-to-deep-learning-using-keras-and-tensorflow-part2-e3c6d342ada8
https://rhnyewale.medium.com/introduction-to-deep-learning-using-keras-and-tensorflow-part2-e3c6d342ada8
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/3152494.3152515
https://doi.org/10.48550/arxiv.1712.04741
https://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1212.5701

