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1 vbSPT software user manual

In this section, we introduce the developed vbSPT software and how to use
it.

1.1 Recommended hardware

It is computationally very demanding to identify the model that describes
thousands of trajectories the best. For this reason it is strongly recom-
mended that the analysis of data sets with more than 1000 trajectories are
run on a very good computer. For example, a typical analysis with 10000-
15000 trajectories including bootstrapping takes 2-10 h on a 2 x Intel Xeon
X5650 (6 core, 2.66 GHz, 12MB L3) machine running MATLAB verR2012a.
It should be noted that this version is capable of working with 12 parallel
nodes, while previous versions only work with 8, setting a limit on the ac-
tual number of usable cores in the computer. However, the test example (see
Sec. 1.3) should produce a result in less than 10 min also on a conventional
desktop or laptop computer.

1.2 Installation

To install the vbSPT software, uncompress the vbSPT.zip file into a ded-
icated folder, which we will call vbRoot/ in these notes. The files under
vbRoot/HMMcore/ might need to be recompiled, depending on what system
you are running. To do this, make sure you have a C compiler installed
on you system and go to the folder vbRoot/HMMcore/ and run the script
compile code. For a list of compatible compilers see:
http://www.mathworks.se/support/compilers/.

It is recommended to add the vbRoot/ folder and the subfolders Tools,
HMMcore/, and VB3/ to the Matlab path. This can be done by executing the
matlab script vbSPTstart in the folder vbRoot/. If it is not added to the
Matlab path it has to be called from the same folder or with its full path.
Instructions for how to add these folders permanently to your Matlab path
can be found in the Matlab documentation.

It is also recommended to start using a static folder structure for the
analysis to keep it simple and benefit from the use of relative paths (used in
the GUI). The proposed structure consist of two subfolders (e.g. InputData/
and Results/) located in a folder containing the runinputfiles that defines
the analysis parameters.

1.3 Test runs

In order to test if the installation is correct and working we have included
a small set of sample data and the corresponding runinputfiles in the folder
vbRoot/ExampleData/.
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The example data set consists of 500 trajectories, with lengths chosen
from am exponential distribution with an average trajectory length of 10
positions, and a minimum of two positions. The data set was generated
by the script ExampleData/InputData/inputScript example.m, with the
following parameters:

Parameter
Example

data

timestep [s] 0.003
P1 0.67
P2 0.33
D1 [ µm2 s−1] 1.0
D2 [ µm2 s−1] 3.0
A12 [timestep−1] 0.042

A21 [timestep−1] 0.084

To test if the software is working follow these steps:

• Add the above mentioned VB3 folders to your Matlab path, e.g. by
executing vbSPTstart.

• Navigate Matlab to the vbRoot/ExampleData/ folder.

• Execute the command R=VB3_HMManalysis(’runinput_short.m’) in
the Matlab prompt.

This should produce a file called testresult vbSPT HMM short.mat in
the vbRoot/Results/ subfolder, and also return the result in the mat-
lab struct R. If it does not work, disable parallel computing by setting
parallelize config=false in the runinputfile and rerun the analysis. For
a first look at the results, execute the following:
VB3 getResult(’runinput short.m’). Note that the diffusion constant is
here given in units from the input data, so in this case [nm2s−1]. A graphical
representation can be invoked by VB3 displayHMMmodel(’runinput short.m’).
Here the diffusion constants are shown in [ µm2 s−1], provided that the length
and time units are given as in the GUI (see Section 1.6).

It should be noted that the runinput short.m runinputfile specifies
an analysis of the data that actually ignores a large part of the trajec-
tories, by having a minimum trajectory length of 7. A larger analysis,
that could take 20 min to 1 h on a laptop, can be started by running
R=VB3 HMManalysis(’runinput normal.m’). However, due to the small
amount of data in the example data sets, one cannot expect splendid nu-
merical agreement with the input parameters.
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1.4 Analysis input

The analysis takes two kinds of input:

• runinputfile - The file containing the parameters defining the input
data as well as the analysis, see Section 1.5.

• trajectories - A .mat file containing at least one variable that is a
cell array where each element, representing a trajectory, is a matrix
where the rows define the coordinates in one, two or three dimensions
in subsequent timesteps. The number of dimensions to be used for the
analysis will be set by the runinputfile.

The analysis is started either from the GUI or by the command
VB3 HMManalysis(’runinputfilename’) in the Matlab prompt.

1.5 The runinput file

At the center of the analysis is the runinputfile where the starting parameters
are set. This file also acts as a handle for accessing the results and input
data and can be used to do e.g. extra bootstrapping analysis using the
scripts presented in Section 1.8.

The runinputfile can be altered and modified by hand just as a text file
or generated and edited through the graphical user interface (GUI). The
parameters required in a runinputfile are listed and explained in Table 1.

1.6 The graphical user interface (GUI)

The GUI is started from the Matlab prompt by the command vbSPTgui. It
should be noted that within the GUI runinputfiles are referred to as scripts.
From within the GUI it is possible to create new runinputfiles/scripts, load
and edit as well as run them. It is also possible to print the result from
a previous analysis in the Matlab prompt by loading its runinput file and
choosing ’Show Result’. The GUI limits the input data to be in length units
of either [nm] or [µm] and time units to [s]. This is for the convenience of
being able to supply initial guesses and results for diffusion coefficients in
the common unit [ µm2 s−1]. If other units are desired the user is limited
to manually modifying the runinputfiles.

1.7 Analysis results

Here, we list the Matlab notation for some important variables contained
within the result given by the analysis code. The analysis saves the result
in a .mat file containing the following variables:
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• INF - An array that documents the progress of the search algorithm,
one converged model per row. Each row contains the Iteration number
(restart during which the model was generated), the Number of states,
and the lower bound on the evidence, F, which is the model score.

• Wbest - A structure describing the best global model found by the
analysis.

• WbestN - A cell array containing structures that describes the best
model for each model size as found by the analysis.

• bootstrap - A structure containing the bootstrapping result for the
best global model and also the best model for each model size provided
that ’fullBootstrap=true’ was given in the runinput file (or chosen in
the GUI).

• dF - An array showing the relative difference in the model score for
different model sizes. The size for the best global model should have
value 0, and all others negative.

• options - A structure with fields defined by the runinput file that is
used to run the analysis.

In Table 2 some important fields in the Wbest, and thus also WbestN{i}
(where i is a number describing the model size) structure are presented and
explained. All state-related variables are sorted after increasing diffusion
coefficient. In Table 3 some important fields in the bootstrap structure are
presented and explained.

1.8 Useful scripts

Here follows a brief description of some included useful scripts. For fur-
ther information on the input arguments and the scripts please refer to
the documentation in the .m files either by opening them or running help

scriptname from the Matlab prompt.

• VB3 getResult - Loads the results from a previous analysis and prints
some parameters in the Matlab prompt.

• VB3 readData - Loads the trajectory data set used for an analysis.

• VB3 varyData - Converges the best models for different model sizes
with increasing amounts of input data.

• VB3 generateSynthData - Generates trajectories in a E. coli like ge-
ometry (tubular with spherical endcaps), according to model and ge-
ometry parameters specified by the user. Alternatively, the script used
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for generating the example data set (inputScript example.m, in the
folder vbRoot/ExampleData/InputData/) can be modified and used
to provide the input for this function.

• VB3 bsResult - Bootstraps the results of a finished analysis. Note that
the bootstrapping parameters are taken from the the runinput file or
options structure given as input, which should therefore be modified
prior to running this script.

• VB3 convertOld - Converts models using direct transition probability
parameterization (contains an M.wA field) to the present format.

Additional undocumented scripts that can serve as templates for visual-
izing and extracting data can be found under vbRoot/Tools/ and subfolders
therein.

1.9 A note on units

The testdata as well as the real data analyzed in the original paper, measured
lengths in nanometers and time in seconds, and hence we divide diffusion
constants by 106 to convert them to the more convenient units of µm2 s−1.
The GUI allows the user some choice in specifying what units to use, and
then writes the runinputfile accordingly.

The analysis software in itself does not know about units however, and
will analyze data in arbitrary units in a consistent manner. The unit of time
is specified in the timestep parameter of the runinput file (see next section),
while the length unit is set by the data. Hence, the user must make sure
that diffusion constants in the runinputfile (for initial guesses and priors)
are given in the same unit system.

1.10 More information

For more information about any .m file, run help filename in the Matlab
prompt, where filename should start with ’VB3 ’.
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2 Tables of variables

Table 1: Explanations of the parameters defined in the run-
inputfiles. Int and real denotes integers and real numbers re-
spectively, most of which need to be positive if not state oth-
erwise. The units of some quantities are indicated as [time],
[length2/time], etc, indicating the need to choose units con-
sistent with the data.

Parameter Value Description

inputfile ’filename’
Name of the .mat file that contains
the trajectories.

trajectoryfield ’trajfield’

Name of the field in the .mat file
that contains the trajectories to be
analysed.

parallelize config true/false
Determines whether parallel com-
puting should be used.

parallel start ’command’
Command used to start the
parallelization.

parallel end ’command’
Command used to end the
parallelization.

outputfile ’filename’
Name of the .mat file where the
results are saved.

jobID ’description’
Description of the job for your own
records.

timestep real
Timestep between points in the
trajectories, in units of [time].

dim int

Dimensionality of the data to be
analysed (the first dim columns in
the coordinate data will be used).

trjLmin int

Minimum length of trajectories to
be included in the analysis. Rec-
ommended default value: 2.

runs int

Number of analysis attempts at
each model size. Recommended
to use a multiple of the number
of cores when running in parallel.

Continued on next page
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Table 1 – continued from previous page

Parameter Value Description

maxHidden int

Maximum number of hidden
states to consider. Recommended
to use twice the amount of
expected hidden states.

maxIter int

Maximum number of VB itera-
tions. Set to an empty matrix ([])
to use the recommended default
value of 1000.

relTolF real

Convergence criterion for the rel-
ative change in likelihood lower
bound. Recommended to set to
[], which uses the default value of
10−8.

tolPar real

Convergence criterion for the M-
step parameters. Recommended
to set to [], which uses the default
value of 10−2.

stateEstimate true/false

Determines whether extra large
and computer intensive estimates,
including Viterbi paths, should be
computed.

bootstrapNum int/0

Number of bootstrap resamplings.
Set to 0 to disable bootstrap-
ping. 100 or more resamplings
are recommended when using this
feature.

fullBootstrap true/false

Determines whether bootstrap-
ping should be done for all model
sizes, not only the best global
model. Bootstrapping all model
sizes requires more computer time,
but can give an indication of how
robust the model size estimate is.

init D [real real]

Interval for initial guess of diffu-
sion coefficients, given in unit of
[length2/time].

Continued on next page
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Table 1 – continued from previous page

Parameter Value Description

init tD [real real]

Interval for initial guess of mean
dwell times (lifetimes) of the hid-
den states, given in units of
[time]. Recommended default
value: [2 20]*timestep. Guess-
ing too short dwell times does not
hurt convergence.

prior type D string

Type of parameterization for
diffusion constant. Default:
’mean strength’ (used by Persson
et al. [1]).

’mean strength’:
prior D

real

Diffusion coefficient prior mean
value, in units of [length2/time].
An order of magnitude estimate is
good enough.

’mean strength’:
prior Dstrength

int

Strength of the diffusion coeffi-
cient prior. Recommended default
value: 5.

prior type Pi string

Type of parameterization for ini-
tial state prior. Alternatives:
’flat’, and ’natmet13’ (default,
used by Persson et al. [1]).

’flat’: no parame-
teres needed.

A flat Dirichlet prior; w̃
(~π)
j = 1.

’natmet13’:
prior piStrength

int

Prior strength w̃
(~π)
0 for the initial

state probability, , given in pseu-

docounts, w̃
(~π)
j = w̃

(~π)
0 /N . Default

value: 5.

prior type A string

Type of parameterization for tran-
sition matrix. Alternatives:
’dwell Bflat’, and ’natmet13’ (de-
fault, used by Persson et al. [1]).

’dwell Bflat’

Specifies mean value and standard
deviation of the prior mean dwell
times (same for all states) to spec-

ify w̃
(~a)
j , and uses a flat Dirichlet

prior for the rows of B.

Continued on next page
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Table 1 – continued from previous page

Parameter Value Description

’dwell Bflat’:
prior tD

real

Dwell time prior mean value,
in units [time]. Must not be
smaller than 2*timestep. De-
fault: 10*timestep.

’dwell Bflat’:
prior tDstd

real

Standard deviation of prior mean
dwell time, in units [time]. Set
a high value for an unforma-
tive (weak) prior. Default
100*timestep.

’natmet13’

Specifies a Dirichlet prior for all
rows of the transition matrix A
directly, via the mean dwell time

and total strength w̃
(A)
j0 = w̃

(~a)
j0 ,

while using a uniform prior for B

with w̃
(B)
j0 = w̃

(~a)
j1 .

’natmet13’:
prior tD

real

Dwell time prior mean value,
in units [time]. Must not be
smaller than 2*timestep. De-
fault: 10*timestep.

’natmet13’:
prior tDstrength

real

Strength of the transition
probability prior. Rec-
ommended default value:
2*prior tD/timestep
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Table 2: Important variables within the Wbest structure. The states in the
model is always sorted after increasing diffusion coefficient.

Wbest. Description

dim Dimensionality of the analysed data.

N Number of states in the model.

T
The trajectrory length for all trajectories used in the
analysis.

F The score of the model.

est.Ptot The occupation of each state.

est.Amean

The transition matrix. States the probability of going
between two states within a timestep, i.e. Amean(2, 3)
gives the probability that a molecule in state 2 will tran-
sition to state 3 within a timestep.

dwellMean
The mean dwelltime/lifetime for each state, given in units
of timesteps.

DdtMean
D*timestep in the same length units as the data put into
the analysis.

est2.sMaxP

The sequence of most likely hidden states for each
trajectory. The est2 field is only computed if
stateEstimate=true; is given in the runinput file
(equivalent of choosing ’Additional estimates’ in the GUI)
since it is rather large and computer intensive.
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Table 3: Important variables within the bootstrap structure.

bootstrap. Description

wbs

All the individual bootstraps containing score (F), the
.est field (see Tab. 2) and the index of the randomly
chosen trajectories (ind).

Wmean.est
The mean value from all the bootstraps for the .est field
from Tab. 2.

Wstd
The standard deviation from all the bootstraps for all
variabls in the .est field from Tab.2.

WmeanN

Same as Wmean but for all model sizes. Computed if
fullBootstrap=true was given in the runinput file (or
chosen in the GUI).

WstdN

Same as Wstd but for all model sizes. Computed if
fullBootstrap=true was given in the runinput file (or
chosen in the GUI).

Fbootstrap

The score for each bootstrap and model size. Computed
if fullBootstrap=true was given in the runinput file (or
chosen in the GUI).

pBest

The fraction of all bootstraps that resulted in the corre-
sponding model sizes, i.e. pBest(3)=0.8 means that 80%
of the bootstraps resulted in a 3 state model. Computed
if fullBootstrap=true was given in the runinput file (or
chosen in the GUI).

13



3 Introduction to the variational algorithm for sin-
gle particle tracking

In this chapter, we describe the statistical method used to analyze the data,
with more details than the corresponding part of the supplementary infor-
mation of the original paper [1].

Our approach is to model the state kinetics by a hidden Markov Model
(HMM) for diffusing particles with memory-less jumps in diffusion constants,
which we analyze by an approximate approach to a maximum evidence
model selection, known as variational Bayes or ensemble learning [2, 3].
Variational algorithms for HMMs have been derived earlier [4–9], and ap-
plied successfully in a biophysical setting to e.g. single molecule FRET data
[7–9]. The main advantage of the variational maximum evidence approach
over the more common maximum likelihood approach to HMMs is the in-
herent complexity control, i.e. the ability to not only learn parameter values
from data, but also to make model selection and learn the number of hidden
states [8].

3.1 Model selection by maximum evidence

In this section, we briefly introduce our model selection criteria, maxi-
mum evidence. For simplicity, we use x, s, θ, and N to denote tracking
data, hidden states corresponding to the data, unknown parameters in the
model and the number of hidden states, respectively. For readers new to
Bayesian statistics, we also recommend the brief introduction by Eddy [10]
(or textbooks[2, 3]).

A probabilistic model specifies the probability of obtaining the data
x and hidden states s, given a model N and some parameter values θ:
p(x, s|θ,N). Our particular model will be specified in Sec. 3.3 below. To
use this for Bayesian model selection, we treat all variables in this func-
tion as random variables, use the laws of probability to derive the inverse
probability p(N |x), which we interpret as a statement about our degree of
confidence in model N given the data x, and prefer the most likely model.

This will require us to specify prior distributions, of the form p(θ,N),
that express our beliefs about the models and their parameters prior to see-
ing the data x. Indeed, the willingness to assign a probability distribution to
unknown parameters and treat them on an equal footing with other random
variables is a characteristic of Bayesian statistics.

Returning to the derivation of p(N |x), we start by computing the weighted
average over all possible hidden states, known as marginalizing over them
(or, in physics jargon, integrating or summing them out):

p(x|θ,N) =
∑
s

p(x, s|θ,N). (S1)
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Using Bayes’ rule on p(x|θ,N), and introducing the aforementioned prior
distributions, we can derive the joint model and parameter probability as

p(θ,N |x) =
p(x|θ,N)p(θ,N)

p(x)
, (S2)

where the denominator is a normalization constant,

p(x) =
∑
N ′

∫
dθ′p(x|θ′, N ′)p(θ|N ′)p(N ′). (S3)

Finally, the sought inverse probability is obtained by marginalizing over the
parameters,

p(N |x) =

∫
dθp(x|θ,N)p(θ,N)

p(x)
=

1

p(x)

∫
dθ
∑
s

p(x, s|θ,N)p(θ|N)p(N),

(S4)
where we also re-wrote the joint probability in the form p(θ,N) = p(θ|N)p(N).

If we further assume that p(N) is constant, i.e. that all models (in some
interval 0 < N ≤ Nmax) are equally probable a priori, and note that the
denominator p(x) is independent of parameters and models, then the best
model is the one that maximizes the numerator in Eq. (S4), also known as
the evidence,

NME = argmaxN

∫
dθ
∑
s

p(x, s|θ,N)p(θ|N), (S5)

where argmaxy f(y) denotes the value of y that maximizes the function f .

3.2 Variational maximum evidence

In practice, the integrals and sums in the evidence are intractable for almost
all interesting models, and further progress requires good approximations
and computers. The difficulties resemble those of computing partition func-
tions in statistical physics, and the two common fallbacks in that field –
Monte Carlo simulations [2, 11, 12] and mean field theory [2–4] – work here
as well. The variational or ensemble learning approach we will follow corre-
sponds to mean field theory, where we seek approximations to the posterior
distribution in Eq. (S2) in the form

p(s, θ|x,N) =
p(s, x|θ,N)p(θ|N)

p(x|N)
≈ q(s)q(θ), (S6)

i.e., where the hidden states s and parameter values θ are statistically inde-
pendent. A general recipe to derive mean-field-like approximations of this
type[2] is to rewrite the logarithm of the evidence as the solution of an op-
timization problem in an arbitrary distribution q(θ, s) over the unknowns.
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The approximation then consists of optimizing in a restricted space, in this
case that of separable distributions of the form q(θ)q(s).

To begin with, we multiply and divide the evidence by q(θ, s), and then
make use of Jensen’s inequality to write

ln p(x|N) = ln

∫
dθ
∑
s

q(θ, s)
p(x, s|θ,N)p(θ|N)

q(θ, s)

≥
∫
dθ
∑
s

q(θ, s) ln
p(x, s|θ,N)p(θ|N)

q(θ, s)

=

∫
dθ
∑
s

[
q(θ, s) ln p(x, s|θ,N)p(θ|N)−q(θ, s) ln q(θ, s)

]
≡ F [q(θ, s), x].

(S7)

This inequality is true for any distribution q(θ, s). If we use the calcu-
lus of variations to directly optimize F with respect to q(θ, s) subject to
a normalization constraint (since q(θ, s) is a probability distribution), we

find q†(θ, s) = p(x,s|θ,N)p(θ|N)
p(x|N) . Substituting back in Eq. (S7), we then get

F [q†, x] = ln p(x|N), i.e. the original intractable problem.
Moreover, we can rewrite the second line of Eq. (S7) as the evidence

minus a Kullback-Leibler divergence,

F [q(θ, s), x] = ln p(x|N)−
∫
dθ
∑
s

q(θ, s) ln
q(θ, s)

1
p(x|N)p(x, s|θ,N)p(θ|N)

= ln p(x|N)−DKL

(
q(θ, s)||p(x, s|θ,N)p(θ|N)

p(x|N)

)
. (S8)

Hence, maximizing F means minimizing the KL-divergence from q† to q,
and it follows from the properties of KL-divergencies[13] that q† is the only
distribution that achieves the best bound F = ln p(x|N).

To make this a useful approximation, we place restrictions on the vari-
ational distribution q(θ, s). Our approximate model selection will be to
prefer the model for which the tightest bound F can be found within that
restricted function space. KL-divergencies are not proper metrics, but have
enough metric-like properties to motivate using the corresponding optimal
distribution q∗(θ, s) for approximate inference about the parameter values
and hidden states, not only model selection[2, 3].

A useful restriction is that of separable distribution q(θ, s) ≈ q(θ)q(s)
[4, 6, 7], which does give a tractable problem. In particular, optimizing
with respect to q(θ) and q(s), while using Lagrange multipliers to enforce
normalization, one can derive the following equations:

ln q(θ) =− lnZθ + ln p(θ|N) + 〈ln p(x, s|θ,N)〉q(s) , (S9)

ln q(s) =− lnZs + 〈ln p(x, s|θ,N)〉q(θ) , (S10)
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where Zθ and Zs are normalization constants, and 〈·〉q(·) denotes an average
with respect to q(·). As it turns out, these averages can be computed for
our model. Following earlier variational treatments of HMMs [4, 6, 7, 9],
we solve these equations iteratively, by alternatingly updating q(s) and q(θ)
for fixed q(θ) and q(s), respectively. The resulting algorithm greatly re-
sembles the well-known expectation-maximization procedure for maximum-
likelihood optimization in HMMs [5, 14, 15] (see Sec. 4 for details).

3.3 Diffusion model

We assume that we can track the particles in d dimensions, and call ~xt the
position at time t. The time between consecutive measurements is ∆t, but
we are going to use t as an integer index as well. We model the position by
simple diffusion,

~xt+1 = ~xt +
√

2Dst∆t~wt, (S11)

where ~wt are independent d-dimensional Gaussian variables with uncorre-
lated components of zero mean and unit variance.

Binding and unbinding events are modeled as jumps in the diffusion
constant Dst , as indicated by the degree of freedom st ∈ {1, 2, . . . N}, where
N is the number of diffusive states. This degree of freedom constitutes our
hidden state, and we model it as a discrete Markov process with a transition
matrix A, and initial state probabilities ~π, i.e.

p(s1 = j) = πj , p(st = j|st−1 = i) = Aij , for t > 1, (S12)

where normalization demands
∑N

k=1 πk =
∑N

k=1Ajk = 1. The number
of hidden states N is a parameter to be determined from the data. The
vector of diffusion constants corresponding to the different hidden states is
denoted ~D = (D1, D2, . . . , DN ). We will also use the shorthand notation
~x1:T = {~x1, ~x2, . . . , ~xT } and s1:T−1 = {s1, s2, . . . , sT−1} for the positions and
hidden states of a whole trajectory.1

For our analysis, we need expressions for the joint distribution of posi-
tions, hidden states, and parameters, p(~x1:T , s1:T−1, ~D,A, ~π|N), which can
be factorized as

p(~x1:T , s1:T−1, ~D,A, ~π|N) = p(~x1:T |s1:T−1, ~D)p(s1:T−1|A, ~π)

× p( ~D|N)p(A|N)p(~π|N). (S13)

The first two factors on the above right hand side are specified by the
model. In particular, the distribution of hidden state sequences is

p(s1:T−1|A, ~π) = πs1

T−2∏
t=1

Astst+1 =
N∏
m=1

π
δm,s1
m

T−2∏
t=1

N∏
k,j=1

A
δk,stδj,st+1

kj , (S14)

1Since sT does not influence the position data, we exclude it from the model.
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and the distribution of positions, conditional on the hidden states, is given
by

p(~x1:T |s1:T−1, ~D) = p(~x1)

T−1∏
t=1

p(~xt+1 − ~xt|st, ~D)

= p(~x1)

T−1∏
t=1

1

(4πDst∆t)
d/2

e
− 1

4Dst∆t
∆~x2

t . (S15)

In these equations, δj,k is the Kronecker delta. The initial position distribu-
tion p(~x1) does not depend on any parameter of interest to us here, and we
will drop it from the analysis. It is also convenient to introduce the inverse
diffusion constant γj = 1/4Dj∆t, and write

p(~x1:T |s1:T−1, ~γ) =

T−1∏
t=1

(γst
π

)d/2
e−γst (~xt+1−~xt)2

=
T−1∏
t=1

N∏
k=1

(γk
π

) d
2
δk,st

e−δk,stγk(~xt+1−~xt)2
. (S16)

The last three factors in Eq. (S13) are the prior distributions for the
parameters, expressing our beliefs about the parameter values for different
model sizes (values of N), before seeing the data. For computational conve-
nience, independent priors, e.g. p(~γ|N)p(A|N)p(~π|N), are used instead of
the more general p(~γ,A, ~π|N). For the same reason priors functional forms
are chosen as conjugate priors (see Chap.2.4.2 in Bishop[3]). As we will see
in the derivation below, this means gamma distributions for the inverse diffu-
sion constant priors, and Dirichlet distributions (a multidimensional version
of the beta distribution) for the initial state and transition probability pri-
ors. Within these constraints, we strive to choose uninformative, or weak,
priors in order to let the data speak for itself as much as possible.

3.4 Treatment of many trajectories

Typical in vivo single particle tracking experiments produce many rather
short trajectories. Most trajectories contain less than 20 consecutive posi-
tions, and probably very few (≤ 2) transitions. If considered in isolation,
such trajectories are not very informative, and transitions are difficult to
identify accurately. To extract meaningful information, we need to pool
many trajectories. The simplest way to do that is to assume that they are
statistically independent and governed by the same model and parameter
set, i.e. that all molecules (including those from different cells in the same
batch) are equivalent and that the interaction dynamics do not change over
time. In that case, the probability distribution for a set of M trajectories is
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a product of single-trajectory densities governed by the same model,

p({~xi1:T , s
i
1:T−1}Mi=1|~γ,A, ~π,N) =

M∏
i=1

p(~xi1:T , s
i
1:T−1|~γ,A, ~π,N), (S17)

where different trajectories are indicated by the index i.

4 Derivation of the variational algorithm

We now derive the core elements of the variational algorithm for single
trajectories, following earlier Variational Bayesian/Ensemble learning treat-
ments of HMMs[4, 6, 8]. To make it easier to choose prior distributions
however, we reparameterize the transition matrix to separate out dwell time
distributions, and write

Aij = δij(1− ai) + (1− δij)aiBij = (1− ai)δija
1−δij
i B

1−δij
ij , (S18)

with constraints

0 ≤ aj ≤ 1, Bii = 0,
∑
j 6=i

Bij = 1, (S19)

that is, ai = p(st+1 6= i|st = i) is the probability to exit state i, and
Bij = p(st+1 = j|st = i, i 6= j) is a matrix of jump probabilities, conditional
on a jump actually occurring.

To start with, we will combine the model Eqs. (S13-S16) with the new
parameterization,

p(~x1:T , s1:T−1, ~γ,A, ~π|N)

= p(~x1:T |s1:T−1, ~γ)p(s1:T−1|B,~a, ~π)p(~γ|N)p(B|N)p(~a|N)p(~π|N), (S20)

p(s1:T−1|B,~a, ~π) =
N∏
m=1

π
δm,s1
m

T−1∏
t=1

N∏
k,j=1

(
(1− ak)δkja

1−δkj
k B

1−δkj
kj

)δk,stδj,st+1
,

(S21)

p(~x1:T |s1:T−1, ~γ) =

T−1∏
t=1

N∏
k=1

(γk
π

) d
2
δk,st

e−δk,stγk(~xt+1−~xt)2
. (S22)

and feed it into the mean-field machinery of Eqs. (S9) and (S10) (with
θ = ~γ,B,~a, ~π,),

ln q(θ) =− lnZθ + ln p(θ|N) + 〈ln p(x, s|θ,N)〉q(s) , (S9)

ln q(s) =− lnZs + 〈ln p(x, s|θ,N)〉q(θ) . (S10)
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which also includes choosing functional forms for the prior distributions
that make the averages tractable. In the next subsections, we first derive
the parameter distributions and the update rule that constitute the M-step
of the EM iterations, then go on to the distribution of hidden states and
its update rule (the E-step), and finally describe how to compute the lower
bound F after a completed E-step.

4.1 Parameters

We have four types of parameters, θ = (~π,B,~a,~γ), and it will turn out that
if we choose priors that factorize in a clever way,

p(θ|N) = p(~γ, ~π,A|N) = p(~π|N)
∏
j

p(γj |N)p(Bj,:|N)p(aj |N), (S23)

where Bj,: means row j of B, then the variational distributions factorize in
the same way, which simplifies the computations. Hence, if we substitute
factorized priors of this form, plus Eqs. (S21) and (S22), into the parameter
distribution equation, Eq. (S9), we get the following variational distribution
for the parameters:

ln q(~π,B,~a,~γ) = − lnZθ + ln p(B|N) + ln p(~a|N) + ln p(~π|N)

+
〈

ln p(s1:T−1|B,~a, ~π)
〉
q(s1:T−1)

+ ln p(γ|N) + 〈ln p(~x1:T |s1:T−1, ~γ)〉q(s1:T−1)

= − lnZθ +
N∑
j=1

[
〈δj,s1〉q(s1:T−1) lnπj + ln p(πj)

]

+

N∑
j=1

T−2∑
t=1

(
ln p(Bj,:) +

N∑
k=1

(1− δjk)
〈
δj,stδk,st+1

〉
q(s1:T−1)

lnBjk

)

+
N∑
j=1

T−2∑
t=1

(
ln p(aj)+

N∑
k=1

〈
δj,stδk,st+1

〉
q(s1:T−1)

(
(1−δjk) ln aj+δjk ln(1−aj)

))

+

N∑
j=1

[
T−1∑
t=1

(
d

2
〈δj,st〉q(s1:T−1) ln

γj
π
−〈δj,st〉q(s1:T−1) (~xt+1−~xt)2γj

)
+ln p(γj)

]
.

(S24)

From this, we can read out the functional form of the variational distribution,
which factorize in the same was as the prior. We choose conjugate priors[4,
6], which enables a simple interpretation of the prior distribution in terms
of fictitious ’pseudo’-observations.

Initial state and transition rates: Following earlier work[1, 4, 6, 7,
9], we choose Dirichlet (a multivariate version of the beta distribution[16])
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priors for the initial state distribution and for each row of the transition
matrix B, and beta distributions for the elements of ~a. This makes the
variational distributions Dirichlet and beta distributions as well (they are
their own conjugates). The Dirichlet density function, in this case for ~π, is

q(~π) = Dir(~π|~w(~π)) =
1

B(~w(~π))

∏
j

π
(w

(~π)
j −1)

j , (S25)

with the constraints 0 ≤ πj ≤ 1 and
∑

j πj = 1, and normalization con-

stant B(~w(~π)) =
∏
j Γ(w

(~π)
j )/Γ(

∑
k w

(~π)
k )[16], and the beta distribution is

the special case of two components,

β(x|u, v) =
Γ(u+ v)

Γ(u)Γ(v)
xu−1(1− x)v−1. (S26)

Inspection of Eq. (S24) reveals that

q(~π) = Dir(~π|~w(~π)), w
(~π)
j = w̃

(~π)
j + 〈δj,s1〉q(s) , (S27)

q(B) =
∏
j

Dir(Bj,:|w(B)
j,: ), w

(B)
jk = w̃

(B)
jk +

T−2∑
t=1

〈
δj,stδk,st+1

〉
q(s)

, (k 6= j),

(S28)

q(~a) =
∏
j

β(aj |w(~a)
j1 , w

(~a)
j2 ), w

(~a)
j1 =w̃

(~a)
j1 +

T−2∑
t=1

〈
δj,st(1− δj,st+1)

〉
q(s)

,

w
(~a)
j2 =w̃

(~a)
j2 +

T−2∑
t=1

〈
δj,stδj,st+1

〉
q(s)

, (S29)

with where w̃
(~π)
j , w̃

(B)
jk , and w̃

(~a)
jk are pseudo-counts in the prior distributions.

The total number of pseudo-counts (for each distribution) is called the prior
strength. The following average and mode values will be needed:

〈lnπi〉q(~π) =ψ(w
(~π)
i )− ψ(w

(~π)
0 ), w

(~π)
0 =

N∑
i=1

w
(~π)
i , (S30)

〈ln aj〉q(~a) =ψ(w
(~a)
j1 )− ψ(w

(~a)
j0 ), w

(~a)
j0 =w

(~a)
j1 + w

(~a)
j2 , (S31)

〈ln(1− aj)〉q(~a) =ψ(w
(~a)
j2 )− ψ(w

(~a)
j0 ), (S32)

〈lnBjk〉q(B) =ψ(w
(B)
jk )− ψ(w

(B)
j0 ), w

(B)
j0 =

∑
k 6=j

w
(B)
jk , (S33)
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where ψ is the digamma function. Some more expectation (〈·〉...) and mode
(∗...) values will be useful for parameter inference:

π∗i q(~π) =
w

(~π)
i − 1

w
(~π)
0 −N

, 〈πi〉q(~π) =
w

(~π)
i

w
(~π)
0

, (S34)

Var[πi]q(~π) =
w

(~π)
i (w

(~π)
0 − w(~π)

i )

(w
(~π)
0 )2(w

(~π)
0 + 1)

, (S35)

a∗i q(~a) =
w

(~a)
i1 − 1

w
(~a)
i0 − 2

, 〈ai〉q(~a) =
w

(~a)
i1

w
(~a)
i0

, (S36)

(1− ai)∗q(~a) =
w

(~a)
i2 − 1

w
(~a)
i0 − 2

, 〈1− ai〉q(~a) =
w

(~a)
i2

w
(~a)
i0

, (S37)

Var[aj ] =
w

(a)
j1 w

(a)
j2

(w
(a)
j0 )2(1 + w

(a)
j1 )

, Var[1− aj ] =Var[aj ] (S38)

B∗jk q(B) =
w

(B)
jk − 1

w
(B)
j0 −N + 1

〈Bjk〉q(B) =
w

(B)
jk

w
(B)
j0

, (S39)

Var[Bjk] =
w

(B)
jk (w

(B)
j0 − w

(B)
jk )

(w
(B)
j0 )2(1 + w

(B)
j0 )

,
〈
B2
jk

〉
=
w

(B)
jk (1 + w

(B)
jk )

w
(B)
j0 (1 + w

(B)
j0 )

, (S40)

〈Ajj〉q(~a)q(B) = 〈1− aj〉 =
w

(~a)
j2

w
(~a)
j0

, 〈Ajk〉q(~a)q(B) =
w

(~a)
j1 w

(B)
jk

w
(~a)
j0 w

(B)
j0

. (S41)

Var[Ajj ] =Var[1− aj ] = Var[aj ],

Var[Ajk] =
〈
a2
jB

2
jk

〉
− 〈ajBjk〉2 = Var[aj ]

〈
B2
jk

〉
+ 〈aj〉2 Var[Bjk]. (S42)

Note that the transition counts for ~a and B are related via

w
(B)
j0 = w

(~a)
j2 − w̃

(~a)
j2 +

∑
k 6=j

w̃
(B)
jk , (S43)

and would be equal (and moments of Ajk simpler) if the priors were chosen

such that
∑

k 6=j w̃
(B)
jk = w̃

(~a)
j1 . The point of reparameterizing Aij however,

is to be able to choose priors such as this is not the case. Finally, mean
dwell times (in units of ∆t) is τj = a−1

j . This gives the variational density
function

q(τj) = q(aj(τj))

∣∣∣∣dajdτj

∣∣∣∣ =
Γ(w

(~a)
j1 )Γ(w

(~a)
j2 )

Γ(w
(~a)
j0 )

τ
−w(~a)

j0

j (τj − 1)w
(~a)
j2 −1, τj ≥ 1,

(S44)
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which means that

〈τj〉 =
〈
a−1
j

〉
=
w

(~a)
j0

w
(~a)
j1

=
1

〈aj〉
, (S45)

τ∗j =
w

(~a)
j0

1 + w
(~a)
j1

, (S46)

〈
τ2
j

〉
=
〈
a−2
j

〉
q(~a)

= 〈τj〉
w

(~a)
j0 − 1

w
(~a)
j1 − 1

= 〈τj〉2
w

(~a)
j0 − 1

w
(~a)
j0 − 〈τj〉

, (S47)

Var(τj) =
〈
τ2
j

〉
− 〈τj〉2 =

〈τj〉2 (〈τj〉 − 1)

w
(~a)
j0 − 〈τj〉

. (S48)

or

w
(~a)
j1 =

w
(~a)
j0

〈τj〉
= 1 +

〈τj〉 (〈τj〉 − 1)

Var(τj)
,

w
(~a)
j2 =w

(~a)
j0

〈τj〉 − 1

〈τj〉
= (〈τj〉 − 1)w

(~a)
j1 . (S49)

Diffusion constants: The terms involving γj in Eq. (S24) are

ln q(γj) = const.+ ln p(γj |N) +
T−1∑
t=1

d

2
〈δj,st〉 ln

γj
π
− 〈δj,st〉 (~xt+1 − ~xt)2γj .

(S50)
Hence, if we choose the prior to be a gamma-distribution, then the varia-
tional distribution will be so as well, and we get

q(γj) =
c
nj
j

Γ(nj)
γ
nj−1
j e−cjγj , (S51)

with

nj = ñj +
d

2

T−1∑
t=1

〈δj,st〉 , cj = c̃j +
T−1∑
t=1

〈δj,st〉 (~xt+1 − ~xt)2, (S52)

and ñj , c̃j being prior parameters. Again, we will need some averages with
respect to q(γj):

〈γj〉q(γj) =
nj
cj
, 〈ln γj〉q(γj) = ψ(nj)− ln cj , Var[γj ]q(γj) =

nj
c2
j

, (S53)

and we can also transform back to the diffusion constant Dj = (4γj∆t)
−1,

whose distribution is inverse gamma,

q(Dj) =
β
nj
j

Γ(nj)
D
−(nj+1)
j e−βj/Dj . βj = cj/(4∆t), (S54)

23



This means that

D∗j q(Dj) =
c

4(nj + 1)∆t
, (S55)

〈Dj〉q(Dj) =
c

4(nj − 1)∆t
, (S56)

std[Dj ]q(Dj) =
〈Dj〉√
nj − 2

. (S57)

The mean value and standard deviation are only defined if nj > 1, 2 respec-
tively.

The M-step of the iterations, Eq. (S9), thus consists of updating the
variational parameter distributions according to equations (S27-S29) and
(S52). These equations in turn contain certain averages of the hidden state
distribution q(s1:T−1). We now go on and derive the variational distribution
for the hidden state and the E-step, to compute these averages.

4.2 Priors

Directly specifying the parameters of the conjugate priors – c̃j , ñj , w̃
(~π)
j , w̃

(~a)
j

and w̃
(B)
jk – is often an unintuitive way to express ones prior beliefs. This

version of the code therefore offers different alternatives in terms of, e.g.,
moments of the prior distributions. Different ways to do this can be chosen
via the prior type X variables in the runinput files, and more alternatives
can be added by modifying VB3 createPrior.m. See also table 1 for details.

4.3 Hidden states

Collecting the terms in Eqs. (S22) and (S21) that depend on the hidden
states, we get

ln q(s1:T−1) = − lnZs+
〈

ln p(s1:T−1|B,~a, ~π)
〉
q(A)q(~a)q(~π)

+〈ln p(~x1:T |s1:T−1, ~γ)〉q(~γ)

= − lnZs +
T−1∑
t=1

lnHt,st +
T−2∑
t=1

lnQst,st+1 . (S58)

This looks a like the Hamiltonian of a 1-dimensional spin model in statistical
physics, with external field lnHt,j and nearest-neighbor coupling lnQjk given
by

lnHt,j =δ1,t

[
ψ(w

(~π)
j )− ψ(w

(~π)
0 )
]︸ ︷︷ ︸

initial state distribution

+
d

2

(
ψ(nj)− lnπcj

)
− nj
cj

(~xt+1 − ~xt)2,

(S59)

lnQjk =

{
ψ(w

(~a)
j2 )− ψ(w

(~a)
j0 ), (k = j)

ψ(w
(B)
jk )− ψ(w

(B)
j0 ) + ψ(w

(~a)
j1 )− ψ(w

(~a)
j0 ), (k 6= j)

(S60)
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Further simplifications in Qjk would obtain if the ~a and B priors are com-

patible, since w̃
(B)
j0 ≡

∑
k 6=j w̃

(B)
jk = w̃

(~a)
j1 ⇒ ψ(w

(B)
j0 ) − ψ(w

(~a)
j1 ) = 0, which

would give results equivalent to the earlier version of vbSPT without the
reparameterization in Eq. (S18).

We will need a couple of expectation values to feed back in the next
iteration of the parameter distributions, namely

〈δj,st〉q(s) = p(st = j),
〈
δj,stδk,st+1

〉
q(s)

= p(st+1 = k|st = j). (S61)

These can be computed by a dynamic programming trick[3, 4, 6], known in
the HMM context as the forward-backward or Baum-Welch algorithm[14,
15]. As a side effect, one also obtains the normalization constant Zs, which
will be needed below when computing the lower bound F .

4.4 Multiple trajectories:

To analyze many trajectories, one tries to optimize the sum of the lower
bounds for each trajectory with a single model. For the EM-iterations, this
means that the parameters in the variational distributions get contributions
from each trajectory that are just summed up, i.e. averages over the hidden
state distribution gets extended with a summation over M trajectories as
well, e.g. in Eq. (S28),

w
(B)
jk = w̃

(B)
jk +

M∑
m=1

Tm−2∑
t=1

〈
δj,smt δk,smt+1

〉
q(s)

, (S62)

where Tm is the number of positions in trajectory m. We get a variational
distribution over the hidden states in each trajectory, where the coupling
constants Qjk and external fields Htj are given by the same parameter dis-
tributions (but differ in the contributions from data).

4.5 Lower bound

The lower bound F can be computed just after the E-step. Substituting
our variational ansatz q(θ, s) = q(θ)q(s) into our general expression for F ,
Eq. (S7), we can exploit the fact that q(s) and q(θ) are normalized proba-
bility distributions, and rewrite it in the form

F [q(θ)q(s), x] =

∫
dθ
∑
s

[
q(θ)q(s) ln p(x, s|θ,N)p(θ|N)−q(θ)q(s) ln q(θ)q(s)

]
=
∑
s

q(s)
[
〈ln p(x, s|θ,N)〉q(θ)− ln q(s)

]
+

∫
dθq(θ)

[
ln p(θ|N)− ln q(θ)

]
.

(S63)
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Just after the E-step however, q(s) is given by Eq. (S10), which substituted
in the above expressions leads to cancellations, leaving us with

F [q(θ)q(s), x] = lnZs −
∫
dθq(θ) ln

q(θ)

p(θ|N)
. (S64)

The first term is just the normalization constant in Eq. (S10), which comes
out as a by-product of the forward-backward algorithm. The second term is
the negative Kullback-Leibler divergence of the variational parameter dis-
tribution with respect to the prior. In our case, this distribution factorizes
as in Eq. (S23), and we get a sum of separate and tractable contributions,∫

dθq(θ) ln
q(θ)

p(θ|N)
=

∫
d~πq(~π) ln

q(~π)

p(~π|N)
+
∑
j

∫
dajq(aj) ln

q(aj)

p(aj |N)

+
∑
j

∫
dBj,:q(Bj,:) ln

q(Bj,:)

p(Bj,:|N)
+
∑
j

∫
dγjq(γj) ln

q(γj)

p(γj |N)
. (S65)

For the initial state distribution, we get

∫
d~πq(~π) ln

q(~π)

p(~π|N)
=

〈
ln

Γ(w
(~π)
0 )

Γ(w̃
(~π)
0 )

N∏
j=1

Γ(w̃
(~π)
j )

Γ(w
(~π)
j )

π
w

(~π)
j −w̃

(~π)
j

j

〉
q(~π)

= ln
Γ(w

(~π)
0 )

Γ(w̃
(~π)
0 )
−(w

(~π)
0 −w̃

(~π)
0 )ψ(w

(~π)
0 )−

N∑
j=1

[
ln

Γ(w
(~π)
j )

Γ(w̃
(~π)
j )
− (w

(~π)
j − w̃

(~π)
j )ψ(w

(~π)
j )

]
,

(S66)

where we used Eq. (S30) for 〈lnπi〉q(~π). Similarly, the dwell time variable aj
contributes

∫
d~aq(~a) ln

q(~a)

p(~a|N)
=

N∑
j=1

〈
ln

Γ(w
(~a)
j0 )

Γ(w̃
(~a)
j0 )

2∏
k=1

Γ(w̃
(~a)
jk )

Γ(w
(~a)
jk )

a
w

(~a)
jk −w̃

(~a)
jk

j

〉
q(~a)

=

N∑
j=1

ln
Γ(w

(~a)
j0 )

Γ(w̃
(~a)
j0 )
− (w

(~a)
j0 − w̃

(~a)
j0 )ψ(w

(~a)
j0 )−

2∑
k=1

ln
Γ(w

(~a)
jk )

Γ(w̃
(~a)
jk )
− (w

(~a)
jk − w̃

(~a)
jk )ψ(w

(~a)
jk )

 .

(S67)

Note that for an N = 1 state model, there is no hidden state dynamics,
and hence the contributions for both ~a and B should be omitted. (The
contribution from ~π does indeed give zero in the N = 1 case; but this is not
obviously so for ~a and B. More algebra might be needed here).
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The jump matrix rows are also Dirichlet distributed, and each row con-
tributes

∫
dBj,:q(Bj,:) ln

q(Bj,:)

p(Bj,:|N)
=

〈
ln

Γ(w
(B)
j0 )

Γ(w̃
(B)
j0 )

N∏
k=1,k 6=j

Γ(w̃
(B)
jk )

Γ(w
(B)
jk )

B
w

(B)
jk −w̃

(B)
jk

jk

〉
q(B)

= ln
Γ(w

(B)
j0 )

Γ(w̃
(B)
j0 )

− (w
(B)
j0 − w̃

(B)
j0 )ψ(w

(B)
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−
N∑

k=1,k 6=j

ln
Γ(w

(B)
jk )

Γ(w̃
(B)
jk )

− (w
(B)
jk − w̃

(B)
jk )ψ(w

(B)
jk )

 . (S68)

Finally, the terms for the precision parameter γj can be written in the
form

∫
dγjq(γj) ln

q(γj)

p(γj |N)
=

〈
ln
c
nj
j γ

nj−1
j e−cjγjΓ(ñj)

c̃
ñj
j γ

ñj−1
j e−c̃jγjΓ(nj)

〉
q(γj)

= ñj ln
cj
c̃j
− ln

Γ(nj)

Γ(ñj)
+ (nj − ñj)ψ(nj)− nj

(
1− c̃j

cj

)
, (S69)

where in the last step, we substituted Eq. (S53) for 〈γj〉q(γj) and 〈ln γj〉q(γj).

4.6 Aggregated states

It can happen that to distinct binding states have the same diffusion con-
stant. Models that describe this are known as aggregated Markov models in
the literature[17–20]. vbSPT can fit aggregated models, but care must be
taken, since aggregation can lead to unidentifiable models grouped in equiv-
alence classes, where each class is a set of models with different transition
probabilities but with identical observable properties.

This means that the extracted transition probabilities are not unique,
and also that the mean-field approximation might not work well, since the
variational distributions might not approximate the complicated posterior
density well.

If two states i, j are aggregated, they have the same diffusion constant.
We implement that by defining NA ≤ N aggregated states, and assign each
state to an aggregate. All states in an aggregate have identical diffusion
constant variational distributions, enforced during the M-step by summing
up expectation values from all states in the aggregate

nj = ñj+
T−1∑
t=1

∑
m∈α(j)

〈δm,st〉 , cj = c̃j+
T−1∑
t=1

∑
m∈α(j)

〈δm,st〉 (~xt+1−~xt)2, (S70)
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where α(j) is the set of states in the same aggregate as state j. In addition,
the lower bound only gets one diffusion constant contribution per aggregate.
This feature has not yet been systematically tested for model selection with
aggregated models, and aggregated models are not part of the automated
model search.

One suggested solution to the unidentifiability problem is to fit the data
only to special members, canonical forms[18, 19], of each equivalence classes,
where certain transitions probabilities are set to zero, so as to make the
remaining transition probabilities non-degenerate. vbSPT supports this,
and transitions can be disallowed by adding zeros to the jump matrix pseudo-

count matrix: w̃
(B)
ij = 0 means that the i→ j transition is forbidden.

There is no general recipe for which canonical forms to use. It is generally
assumed that the best choice is to find the canonical form with the least
number of free parameters[18, 19], a problem that is not generally solved.

4.7 Matlab notation

For future reference, we end by listing a translation table between the no-
tation used in this derivation and the variable names used in the VB3 code,
with the Matlab model object named W.

• The parameters of the parameter variational distributions are collected
in the W.M and W.PM fields. These are the only fields needed to start
iterating, all the rest are computed by the algorithm. If the W.E field
is present, then the W.M field is overwritten in the first iteration (and
hence the W.E field must be deleted if one wants to use the W.M field
to parameterize an initial guess).

Matlab VB3 This note Matlab VB3 This note Eq.

W.M.wPi(i) w
(~π)
i W.PM.wPi(i) w̃

(~π)
i (S27)

W.M.wB(j,k) w
(B)
jk W.PM.wB(j,k) w̃

(B)
jk (S28)

W.M.wa(j,k) w
(~a)
jk W.PM.wa(j,k) w̃

(~a)
jk (S29)

W.M.n(j) nj W.PM.n(j) ñj (S52)
W.M.c(j) cj W.PM.c(j) c̃j
W.M.SA State j is in aggregate W.M.SA(j).

• Expectation values computed in the E-step are in the W.E fields. Each
trajectory gets its own field, and for trajectory m, the notation is
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Matlab VB3 This note Eq.

W.E(m).wPi(j) 〈δj,s1〉 (S27)

W.E(m).wA(j,k)
∑T−2

t=1

〈
δj,stδk,st+1

〉
(S28),(S29)

W.E(m).n(j) d
2

∑T−1
t=1 〈δj,st〉 (S52)

W.E(m).c(j)
∑T−1

t=1 〈δj,st〉 (~xt+1 − ~xt)2 (S52)

• Misc fields:

W.N Number of hidden states N .

W.F Total lower bound F .

W.Fterms Various contributions to F (for debugging).

W.T(m) Length of trajectory m. Note that this counts
the number of positions, and hence trajectory j will
contain W.T(m)-1 steps, and W.T(m)-2 transitions.
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• Interesting estimates are supplied to describe the output and make
sense of the converged model and the data. They divided into two
fields, W.est for quantities that are small and cheap to compute (and
hence are given every time), while W.est2 contain quantities that are
either large or expensive to compute, and therefore only supplied when
the iterator algorithm is called with the ’estimate’ argument. When
given, the cell index {m} refers to trajectory number.

Matlab VB3 This note Eq.

W.est.lnQ(j,k) lnQj,k (S58)

W.est.Q(j,k) Qj,k/maxj,k(Qj,k)

W.est.Ts(j)
∑

t 〈δj,st〉

W.est.Ps W.est.Ts/sum(W.est.Ts)

W.est.Amean(j,k) 〈Ajk〉q(A) (S41)

W.est.Astd(j,k) std[Ajk q(A)] (S42)

W.est.lnAmean(k,j) eW.est.lnAmean = 〈A〉 approx. rate matrix [∆t−1]

W.est.dwellMean(j) 〈τj〉 =
〈
a−1
j

〉
q(~a)

mean dwell time, (S45)

W.est.dwellMode(j) τ∗j dwell time (S46)

W.est.gMean(j) 〈γj〉q(~γ) (S53)

Matlab VB3 This note Eq.

W.est2.lnH{m}(t,j) lnHt,j (S58)

W.est2.H{m}(t,j) Ht,j/maxk(Ht,k)

W.est2.viterbi{m} Viterbi path, trj. m.

W.est2.sMaxP{m}(j) argmaxsmt

〈
δj,smt

〉
Most likely states.

W.est.pst{m}(t,j)
〈
δj,smt

〉
Occupation probability p(smt = j).
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