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Faculty of Control Engineering, University of Belgrade

11000 Belgrade, Serbia

Abstract—In this paper for the class of singular dynamical
systems we present optimal control results. We develop unified
framework for feedback optimal and inverse optimal control
involving a nonlinear-nonquadratic performance functional. It
is shown that the cost functional can be evaluated in closed-
form as long as the cost functional considered is related in a
specific way to an underlying Lyapunov function that guarantees
asymptotic stability of the nonlinear closed-loop singular system.
Furthermore, the Lyapunov function is shown to be a solution of
a steady-state, Hamilton-Jacobi-Bellman equation.

I. INTRODUCTION

For the class of nonlinear singular dynamical systems we

developed optimality results. We consider a feedback optimal

control problem over an infinite horizon involving a nonlinear-

nonquadratic performance functional. The performance func-

tional involves a continuous-time cost for addressing per-

formance of the continuous-time singular system dynamics.

Furthermore, the cost functional can be evaluated in closed-

form as long as the nonlinear-nonquadratic cost functional

considered is related in a specific way to an underlying

Lyapunov function that guarantees asymptotic stability of the

nonlinear closed-loop singular system. This Lyapunov function

is shown to be a solution of a steady-state, Hamilton-Jacobi-

Bellman equation and thus guaranteeing both optimality and

stability of the feedback controlled singular dynamical system.

The overall framework provides the foundation for extending

linear-quadratic feedback control methods to nonlinear singular

dynamical systems. We note that the optimal control frame-

work for singular dynamical systems developed herein is quite

different from the quasivariational inequality methods for sin-

gular and hybrid control developed in the literature (e.g. Barles

(1985a-b), Bardi and Dolcetta (1997), and Branicky, Borkar,

and Mitter (1998)). Specifically, quasivariational methods do

not guarantee asymptotic stability via Lyapunov functions and

do not necessarily yield feedback controllers. In contrast, the

proposed approach provides feedback controllers guaranteeing

closed-loop stability via an underlying Lyapunov function.

An important contribution of the paper is to develop unified

framework for the analysis and control synthesis of nonlinear

singular dynamical systems.

The contents of the paper are as follows. In Section II we

address an optimal control problem with respect to a nonlinear-

nonquadratic performance functional for singular dynamical

systems. To avoid complexity in solving the Hamilton-Jacobi-

Bellman equation, in Section III we specialize the results of

Section II to address an inverse optimal control problem for

nonlinear affine (in the control) singular systems. Finally, we

draw conclusions in Section IV, and define future work in

Section V.

Finally, in this paper we use the following standard notation.

Let R denote the set of real numbers, let N denote the set

of nonnegative integers, let R
n denote the set of n × 1 real

column vectors, let Rn×m denote the set of n×m real matrices,

let S
n denote the set of n × n symmetric matrices, and let

N
n (resp., P

n) denote the set of n × n nonnegative (resp.,

positive) definite matrices, and let In or I denote the n × n

identity matrix. Furthermore, A ≥ 0 (resp., A > 0) denotes the

fact that the Hermitian matrix is nonnegative (resp., positive)

definite and A ≥ B (resp., A > B) denotes the fact that

A−B ≥ 0 (resp., A−B > 0). In addition, we write V ′(x) for

the Fréchet derivative of V (·) at x. Finally, let C0 denote the

set of continuous functions and Cr denote the set of functions

with r continuous derivatives.

II. OPTIMAL CONTROL FOR SINGULAR SYSTEMS.

CONTINUOUS TIME CASE

In this section we consider an optimal control problem for

nonlinear singular dynamical systems involving notion of op-

timality with respect to a nonlinear-nonquadratic performance

functional. Specifically, we consider the following singular

optimal control problem.

Singular Optimal Control Problem. Consider the nonlinear

singular controlled system given by

Ecẋ(t) = Fc(x(t), uc(t), t), uc(t)∈Uc, (II.1)

where x(t0) = x0, x(tf ) = xf , t ≥ 0, x(t) ∈ D ⊆ R
n is the

state vector , D is an open set with 0 ∈ D, uc(t) ∈ Uc ⊆ R
mc ,

t ∈ [t0, tf ], is the control input, x(t0) = x0 is given, x(tf ) =
xf is fixed, Fc : D×Uc×R → R

n is Lipschitz continuous and

satisfies Fc(0, 0, 0) = 0. Matrix Ec may be singular matrix.

Then determine the control input uc(t) ∈ Uc, t ∈ [t0, tf ], such

that the performance functional

J(Ecx0, uc(·), t0) =

∫ tf

t0

Lc(Ecx(t), uc(t), t)dt (II.2)

is minimized, where Lc : D × Uc ×R → R is given, Haddad,

Chellaboina, and Kablar (2001b) and Kablar (2005a).

Next, we state a Bellman’s principle of optimality for

singular systems, Haddad, Chellaboina, and Kablar (2001b)
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and Kablar (2005a), which provides necessary and sufficient

conditions, for a given control uc(t) ∈ Uc, t ≥ t0, for

minimizing the performance functional (II.2).

Lemma. Let uc(t) ∈ Uc, t ∈ [t0, tf ], be an optimal control

that generates the trajectory x(t), t ∈ [t0, tf ], with x(t0) = x0.

Then the trajectory x(·) from (t0, x0) to (tf , xf ) is optimal if

and only if for all t
′

, t
′′

∈ [t0, tf ], the portion of the trajectory

x(·) going from (t′, x
′

) to (t
′′

, x(t
′′

)) optimizes the same cost

functional over [t′, t′′], where x(t′) = x1 is a point on the

optimal trajectory generated by uc(t), t∈ [t0, t
′).

Next, let u∗
c(t), t ∈ [t0, tf ], solve the Singular Optimal

Control Problem and define the optimal cost J∗(x0, t0) =
(x0, u

∗
c(·), t0). Furthermore, define, for p ∈ R

n, the Hamil-

tonian Hc(Ecx, uc, p, t) = Lc(Ecx, uc, t) + pTFc(x, uc, t)).

Theorem II.1. Let J∗(Ecx, t) denote the minimal cost for the

Singular Optimal Control Problem with x0 = x and t0 = t

and assume that J∗(·, ·) is C1 in x. Then

0 =
∂J∗(Ecx(t), t)

∂t
+ min

uc(·)∈Uc

Hc(Ecx(t), uc(t), p(t), t),

(II.3)

where p(t) = (∂J
∗(Ecx(t),t)

∂t
)
T

. Furthermore, if u∗
c(·) solves

the Singular Optimal Control Problem, then

0 =
∂J∗(Ecx(t), t)

∂t
+Hc(Ecx(t), u

∗
c(t), p(t), t),

(II.4)

Haddad, Chellaboina, and Kablar (2001b) and Kablar

(2005a).

Proof: Follows from the proof of the corresponding

theorem of Haddad, Chellaboina, and Kablar (2001b).

Next, we provide a converse result to Theorem II.1.

Theorem II.2. Suppose there exists a C1 function V :
D × R → R and an optimal control u∗

c(·) such that

V (Ecx(tf ), tf ) = 0,

0 = ∂V (Ecx,t)
∂t

+Hc(Ecx, u
∗
c(t),

∂V T(Ecx,t)
∂x

, t),

(II.5)

Hc(Ecx, u
∗
c(t),

∂V T(Ecx,t)
∂x

, t)≤Hc(Ecx, uc(t),
∂V T(Ecx,t)

∂x
, t),

uc(·) ∈ Uc,

(II.6)

Then u∗
c(·) solves the Singular Control Problem, that is,

J∗(Ecx0, t0) = J(Ecx0, u
∗
c(·), t0) ≤ J(Ecx0, uc(·), t0),

uc(·) ∈ Uc, (II.7)

and J∗(Ecx0, t0) = V (Ecx0, t0). (II.8)

Haddad, Chellaboina, and Kablar (2001b) and Kablar

(2005a).

Proof: Follows from the proof of the corresponding

theorem of Haddad, Chellaboina, and Kablar (2001b).

Next, we use Theorem II.2 to characterize optimal feed-

back controllers for nonlinear singular dynamical systems. To

address the optimal nonlinear feedback control problem let

φc : D → Uc be such that φc(0) = 0. If uc(t) = φc(x(t),
where x(t), t ≥ 0, satisfies (II.1), then uc(·) is a feedback

control. Given the feedback control uc(t) = φc(x(t), the

closed-loop singular dynamical system has the form

Ecẋ(t) = Fc(x(t), φc(x(t)), x(t0) = x0, (II.9)

Now, we present the main theorem for characterizing feed-

back controllers that guarantee closed-loop stability and mini-

mize a nonlinear-nonquadratic performance functional over the

infinite horizon. Furthermore, define the set of asymptotically

stabilizing controllers by

C(x0) = {uc(·) : uc(·) is admissible and zero solution

x(t) ≡ 0, to (II.9) is asimptotically stable}.

(II.10)

Theorem II.3. Consider the nonlinear controlled singular

system (II.9) with performance functional

J(Ecx0, uc(·)) =

∫ ∞

0

Lc(Ecx(t), uc(t))dt, (II.11)

where uc(·) is an admissible control. Assume there exists a C1

function V : D → R and a control law φc : D → Uc such that

V (0) = 0, V (Ecx) ≥ 0, x 6= 0, φc(0) = 0 and

V ′(Ecx)Fc(x, Fc(x, φc(x)) ≤ 0, x 6=0, (II.12)

Hc(Ecx, φc(x)) = 0, (II.13)

Hc(Ecx, uc) ≥ 0, uc∈Uc (II.14)

where

Hc(Ecx, uc) = Lc(Ecx, uc) + V ′(Ecx)Fc(x, uc), (II.15)

Then, with the feedback control uc(·), there exists a neighbor-

hood of the origin D0 ⊆ D such that if x0 ∈ D0, the zero

solution x(t) ≡ 0 of the closed-loop system (II.9) is locally

asymptotically stable. Furthermore,

J (Ecx0, φc(x(·))) = V (Ecx0), x0 ∈ D0. (II.16)

In addition, if x0 ∈ D0 then the feedback control uc(·) =
φc(x(·)) minimizes J(Ecx0, uc(·) in the sense that

J(Ecx0, φc(x(·))) = min
uc(·)

J(Ecx0, uc(·)). (II.17)

Finally, if D = R
⋉, Uc = R

⋗c , and V (x) → ∞ as ‖x‖ → ∞,

then the zero solution x(t) ≡ 0 of the closed-loop system (II.9)

is globally asymptotically stable, Haddad, Chellaboina, and

Kablar (2001b) and Kablar (2005a).

Proof: Local and global asymptotic stability is a direct

consequence of (II.12) by applying Theorem 3.2 of Kablar

(2003b) to the closed-loop system (II.9). Conditions (II.16)

are a direct consequence of Theorem II.2, with V (Ecx, t) =
V (Ecx), t0 = 0, tf → ∞, and using the fact that

limt→∞ V (Ecx(t)) = 0.

Remark II.1. Theorem II.3 guarantees optimality with respect

to the set of admissible stabilizing controllers C(x0). However,
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it is important to note that an explicit characterization of C(x0)
is not required. In addition, the optimal stabilizing feedback

control law uc = φc(x) is independent of the initial condition

x0.

Next, we specialize Theorem II.3 to linear singular systems.

For the following result let Ac ∈ R
⋉×⋉, Bc ∈ R

⋉×⋗c , R1c ∈
R

⋉×⋉, R2c ∈ R
⋗c×⋗c be given, where R1c and R2c are

positive definite.

Corollary II.1. Consider the linear controlled singular system

Ecẋ(t) = Acx(t)+Bcuc(t), x(0)=x0, (II.18)

with quadratic performance functional

J(Ecx0, uc(·))=

∫ ∞

0

[xT(t)ET
c R1cEcx(t) + uT

c (t)R2cuc(t)]dt

(II.19)

where uc(·) is an admissible control. Furthermore, assume

there exists a positive-definite matrix P ∈ R
⋉×⋉ such that

0 =xT(AT
c PEc + ET

c PAc + ET
c R1cEc−

EcBcR
−1
2c B

T
c PEc)x, (II.20)

Then, the zero solution x(t) ≡ 0 to (II.18) is globally

asymptotically stable with the feedback controller

uc = φc(x) = −R−1
2c B

T
c PEcx, (II.21)

and

J(Ecx0, φc(·)) = xT
0 E

T
c PEcx0, x0 ∈ R

⋉. (II.22)

Furthermore,

J(Ecx0, φc(·)) = min
(uc(·))∈C(x0)

J(x0, uc(·)), (II.23)

where C(x0) is the set of asymptotically stabilizing controllers

for (II.18) and x0 ∈ R
⋉, Haddad, Chellaboina, and Kablar

(2001b) and Kablar (2005a).

Proof: The result is a direct consequence of Theo-

rem II.3 with Fc(x, uc) = Acx + Bcuc, Lc(Ecx, uc) =
xTET

c R1cEcx + uT
c R2cuc, V (Ecx) = xTET

c PEcx, with

argument Ecx. D = R
⋉, and Uc = R

⋗c . Specifically, it

follows from (II.20) that Hc(Ecx, φc(x)) = 0, x 6∈ Zx,

and hence V ′(Ecx)Fc(x, φc(x)) < 0 for all x 6= 0. Thus,

Hc(Ecx, uc) = Hc(Ecx, uc) − Hc(Ecx, φc(x)) = [uc −
φc(x)]

TR2c[uc − φc(x)] ≥ 0, x 6∈ Zx, so that all con-

ditions of Theorem II.3 are satisfied. Finally, since V (·) is

radially unbounded, the zero solution x(t) ≡ 0 to (II.18)

with uc(t) = φc(x(t)) = −R−1
2c B

T
c PEcx(t), is globally

asymptotically stable.

Remark II.2. The optimal feedback control φc(x) in Corol-

lary II.1 is derived using the properties of Hc(Ecx, uc) as

defined in Theorem ??. Specifically, since Hc(Ecx, uc) =
xTET

c R1cEcx + uT
c R2cuc + xT(AT

c PEc + ET
c PAc)x +

2xTET
c PBcuc, it follows that ∂2Hc

∂u2
c

= R2c > 0. Now,
∂Hc

∂uc

= 2R2c+2BT
c PEcx = 0 give the unique global minimum

of Hc(Ecx, uc). Hence, since φc(x) minimizes Hc(Ecx, uc)
it follows that φc(x) satisfies ∂Hc

∂uc

= 0 or, equivalently,

φc(x) = −R−1
2c B

T
c PEcx.

Remark II.3. For given R1c, R2c, (II.20) can be solved using

constrained nonlinear programming methods using the struc-

ture of Zx. For example, in the case where Z is characterized

by the hyperplane Z = {x ∈ R
n : H(Ecx) = 0}, where

H ∈ R
m×n, it follows that (II.20) holds when x ∈ [N (H)]⊥ =

R(H)T, where N denotes the null space of H and R(HT)
denotes the range space of HT. Now, reformulating Z as

{x ∈ R
n : Ex = 0}, where E is an elementary matrix

composed of zeroes and ones such that the columns of E span

the nullspace of H , and using the fact that P > 0, (II.20) will

hold for P > 0 with a specific internal matrix structure. This

of course reduces the number of free elements in P satisfying

(II.20). Alternatively, to avoid complexity in solving (II.20) and

an inverse optimal control problem can be solved wherein R1c,

R2c are arbitrary. In this case, (II.20) are implied by

0 = AT
c PEc + ET

c PAc + ET
c R1cEc − ET

c PBcR2cB
T
c PEc,

(II.24)

Since R1c, R2c are arbitrary, (II.24) can be cast as an LMI

[5] feasibility problem involving

P > 0,

[

AT
c PEc + ET

c PAc ET
c PBc

BT
c PEc −R2c

]

< 0,

(II.25)

III. INVERSE OPTIMAL CONTROL FOR NONLINEAR AFFINE

SINGULAR SYSTEMS

In this section we specialize Theorem II.3 to affine systems.

The controllers obtained are predicated on an inverse optimal

control problem. In particular, to avoid the complexity in

solving steady-state Hamilton-Jacobi-Bellman equation we do

not attempt to minimize a given cost functional, but rather, we

parameterize a family of stabilizing controllers that minimize

some derived cost functional that provides flexibility in speci-

fying the control law. The performance integrand is shown to

explicitly depend on the nonlinear singular system dynamics,

the Lyapunov function of the closed-loop system, and the stabi-

lizing feedback control law wherein the coupling is introduced

via the Hamilton-Jacobi-Bellman equation. Hence, by varying

the parameters in the Lyapunov function and the performance

integrand, the proposed framework can be used to characterize

a class of globally stabilizing controllers that can meet the

closed-loop system response constraints.

Consider the affine (in the control) singular dynamical

system

Ecẋ(t) = fc(x(t)) +Gc(x(t))uc(t), (III.26)

where x(0) = x0. Furthermore, we consider performance

integrand Lc(Ecx, uc) of the form

Lc(Ecx, uc) = L1c + uT
c R2c(x)uc, (III.27)
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where L1c : R
n → R and satisfies L1c(x) ≥ 0, x ∈ R

n,

R2c : R
n → P

mc , so that (II.2) becomes

J(Ecx0, uc(·)) =

∫ ∞

0

[L1c(Ecx(t)) + uT
c (t)R2c(x(t))uc(t)]dt

(III.28)

Corollary III.1. Consider the nonlinear singular controlled

system (III.26) with performance functional (III.28). Assume

there exists a C1 function V : Rn → R, such that V (0) =
0, V (Ecx) ≥ 0, x ∈ R

n, x 6= 0,

V ′(Ecx)[fc(x)−
1
2Gc(x)R

−1
2 GT

c (x)V
′T(Ecx)] < 0,

x 6= 0, (III.29)

and

V (Ecx) → ∞ as ‖x‖ → ∞. (III.30)

Then the zero solution x(t) ≡ 0 to the closed-loop system

Ecẋ(t) = fc(x(t)) +Gc(x(t))φc(x(t)), (III.31)

where x(0) = x0, is globally asymptotically stable with the

feedback control law

φc(x) =
1

2
R−1

2c (x)G
T
c (x)V

′T(Ecx), (III.32)

and performance functional (III.28), with

L1c(Ecx) = φT
c (x)R2c(x)φc(x)− V ′(Ecx)fc(x),

(III.33)

is minimized in the sense that

J(Ecx0, φc(x(·))) = min
uc(·)∈C(x0)

J(Ecx0, uc(·)), x0 ∈ R
n.

Finally,

J(Ecx0, φc(x(·))) = V (Ecx0), x0 ∈ R
n. (III.34)

Haddad, Chellaboina, and Kablar (2001b) and Kablar

(2005a).

Proof: The result is a direct consequence of Theorem II.3

with D = R
n, uc ∈ R

mc , Fc(x, uc) = fc(x) + Gc(x)uc,

Lc(Ecx, uc) = L1c + uT
c R2c(x)uc. Specifically, with (III.27)

the Hamiltonian has the form

Hc(Ecx, uc) = L1c(Ecx) + uT
c R2c(x)uc

+V ′(Ecx)(fc(x) +Gc(x)uc), uc ∈ Uc.

(III.35)

Now, the feedback control law (III.32) is obtained by setting
∂Hc

∂uc

= 0. With (III.32) it follows that (III.29) imply (II.12),

respectively. Next, since V (·) is C1 and x = 0 is a local

minimum of V (·), it follows that V ′(0) = 0, and hence, it

follows that φc(0) = 0. Next, with L1c(Ecx) given by (III.33),

respectively, and φc(x), given by (III.32), (II.13) hold. Finally,

since

Hc(Ecx, uc) = Hc(Ecx, uc)−Hc(Ecx, φc(x))

= [uc − φc(x)]
TR2c(x)[uc − φc(x)],

(III.36)

where R2c(x) > 0, condition (II.14) hold. The result now

follows as a direct consequence of Theorem II.3.

Remark III.1. Note that (III.29) are equivalent to

V̇ (Ecx) = V ′(Ecx)[fc(x) +Gc(x)φc(x)] < 0, x 6= 0,

(III.37)

with φc(x) given by (III.32). Furthermore, condition (III.37)

with V (0) = 0 and V (Ecx) > 0, x ∈ R
n, x 6= 0, assure that

V (Ecx) is a Lyapunov function for the singular closed-loop

system (III.31).

IV. CONCLUSION

In this paper we have developed a unified framework for

feedback optimal control over an infinite horizon involving

a hybrid nonlinear-nonquadratic performance functional. The

overall framework provides the foundation for generalizing

optimal linear-quadratic control methods to nonlinear singular

dynamical systems.

V. FUTURE WORK

Further work will be focused on specializing this results

to nonnegative, compartmental and large scale systems. They

will be further extended to time-delay systems. Single result

on optimality of time-delay singular systems is presented in

Kablar (2012).
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