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Mile M. Savković · Milomir M. Gašić ·
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Goran V. Pavlović
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Abstract The paper considers the problem of optimization
of the box section of the main girder of the bridge crane.
Reduction of the girder mass is set as the objective func-
tion. The method of Lagrange multipliers was used as the
methodology for approximate determination of optimum
dependences of geometrical parameters of the box section.
The criteria of permissible stresses and strains, lateral sta-
bility and dynamic stiffness were applied as the constraint
functions. The obtained results of optimization of geomet-
rical parameters were verified on numerical examples and
the comparison with some solutions of cranes was made.
The comparative analysis of the optimization results and
the solutions was the basis for recommendations which are
significant for designers during construction of cranes.

Keywords Box section · Bridge crane · Optimization ·
Stress · Lateral stability

1 Introduction

The main task in the process of designing the carrying
structure of the bridge crane is determination of optimum
dimensions of the main girder box section. The main girder
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is the most responsible part of the bridge crane and therefore
it is necessary, during optimization, to affect the increase
in its carrying capacity with simultaneous reduction of its
mass. The mass of the main girder has the largest share in
the total mass of the bridge crane, so it is very important to
perform its optimization in order to reduce the total costs of
manufacturing the whole carrying structure. The analysis of
cost structure for manufacturing metal structures made by
Farkas 1984 showed that the participation of material costs
in the total costs is the largest (30–73)%, and that the other
costs are lower.

That is the reason why the selection of the optimum shape
and geometrical parameters which influence the reduc-
tion of mass and costs of manufacturing is the subject of
research of a lot of authors regardless of whether they deal
specifically with cranes or carrying structures in general
(Farkas 1984; Farkas and Jármai 1997; Farkas et al. 2005;
Jarmai and Farkas 2001; Jarmai et al. 2003; Kaufmann et al.
2010; Farkas et al. 2010; Mijailović 2010; Mijailovic and
Kastratovic 2009; Selmic et al. 2006a, b).

The optimization of the welded box girder performed by
Jarmai and Farkas (2001) showed that regular placement
of longitudinal stiffeners may result in savings up to the
amount of (18–21)%. The inserted longitudinal stiffeners
increase the stability of the box girder with the reduc-
tion of size of the cross section. Placement of additional
longitudinal and transverse stiffeners also influences the
improvement of the structure of the box girder in terms of
savings in material up to 38.33%, which was confirmed by
the finite element method (Qin and Zhu 2010).

The optimization of the box section of the main girder of
the bridge crane was also carried out in the paper written by
Pinca et al. (2009a, b), where during the optimization the
constant height of the girder h was adopted, and the other
geometrical parameters of the cross section were changed.
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In this way was shown that the mass can be reduced even
up to 20.6, i.e. 8.46% without any risky exceeding of the
permissible stress. It was also pointed out that selecting a
finite element type influences the accuracy of calculation
and reliability of results.

Zuberi et al. (2008) solved the problem of optimiza-
tion of the longitudinal girder with box section and with
the rail placed above the web using three constraint func-
tions. The finite element method was used in that paper, 11
geometrical parameters were varied, and the importance of
the possibility of using a large number of variables during
optimization was emphasized. It can be noticed that opti-
mization is performed either analytically or by means of the
finite element method. The finite element method is suitable
because a lot of variables are varied. The advantage of ana-
lytical methods is that they provide functional dependences
of optimization results so that the analysis can define the
influence of certain parameters on the reduction of mass.
Most authors set permissible stress or two constraint func-
tions: permissible stress and permissible deflection as the
constraint function. The criterion of lateral stability has
lately been increasingly applied as the constraint function
(Zuberi et al. 2008; Farkas 2005; Jarmai and Farkas 2001;
Jarmai et al. 2003; Mijailovic and Kastratovic 2009).

Niezgodziñski and Kubiak (2005) analyzed errors dur-
ing manufacturing box girders of cranes due to welding and
their later effects on the increase in stresses and strains.
They proposed straightening and regeneration which refers
to welding straps to the corresponding zones for overcom-
ing the problem. A similar conclusion was reached by Blum
and Haremski (2010), who also proposed welding of addi-
tional stiffeners, i.e. plates welded in the bottom flange as a
solution of the problem, but they added a plate at midspan,
halfway of the web height that should prevent its horizon-
tal deformations. The paper also pointed to the occurrence
of initial crack both in operation and due to the technology
of manufacturing and its influence on later damages of the
structure. Fatigue of the structure due to technological loads
may be increased even up to 30%. Local buckling and the
point of placing stiffeners was treated by Farkas (1986), too,
but he emphasized the importance of changing the type of
material. He showed that for the D class of cranes changing
the type of material might result in savings of (16–18)%, i.e.
(22–24)%. For the C class savings are considerably smaller.
Jarmai (1990) also showed that replacement of the mate-
rial S230 with steel S355 resulted in considerable savings in
mass. Savings are also achieved by manufacturing an asym-
metric girder where a thinner plate is inserted at the point
which is not exposed to direct wheel-rail pressure. Savings
are accomplished in the mass of girder material as well as in
the energy for moving the equipment for its manufacturing
and preparation of surfaces.

Taking into account all these restrictions and parameters
analyzed in the papers, justification of creating a multi-
criteria optimization method and use of the FE method was
proved (Kaufmann et al. 2010). Having in mind all the
above mentioned results and conclusions, the aim of this
paper is to define optimum values of geometrical param-
eters of the box girder cross-section that will lead to the
reduction of its mass. It is also necessary to define more
closely the relations between the main parameters of the
cross section which make the starting point for those who
design box girders.

2 Mathematical formulation of the optimization
problem

The task of optimization is to define geometrical parame-
ters of the cross section of the girder as well as their mutual
relations, which result in its minimum area. Minimization
of the mass corresponds to minimization of the volume,
i.e. the area of the cross section of the girder, where the
given boundary conditions must be satisfied. The optimiza-
tion problem defined in this way can be given the following
general mathematical formulation:

minimize f (X), (1)

subject to: g j (X) ≤ 0, j = 1, ..., m, (2)

where: f (X) the objective function, g j (X) ≤ 0 the
constraint function, m is the number of constraints.

Here X = {x1, . . . , xD}T r represents the design vector
made of D design variables. Design variables are the values
that should be defined during the optimization procedure.

In this paper optimization for the following cases of
constraints was performed:

g1 = σe − σo ≤ 0 - the strength criterion, (3)

g2 = T − Td ≤ 0; - the criterion of

dynamic stiffness, (4)

g3 = σr − σk ≤ 0; - the criterion of lateral stability, (5)

g41 = fv − fv,dop ≤ 0,

g42 = fh − fh,dop ≤ 0; - the criterion of stiffness, (6)

where:

– σe, σ0 - the maximum equivalent and permissible stress
of the girder,
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– T ,Td - the calculation and permissible times of damping
of oscillations,

– σr , σk - the calculation and stresses in lateral buckling of
the girder,

– fν , fν ,0, , fh , , fh,0 - the calculation and permissible
deflections of the girder in the vertical and horizontal
planes.

The Lagrange function is defined in the following way:

�(X) = f (X) +
m∑

j=1

λ j · g j (X) (7)

where λ j is the known Lagrange multiplier. Optimal values
of parameters are determined:

∂ A

∂b
· ∂g1

∂h
= ∂ A

∂h
· ∂g1

∂b
∧ g1 = 0 - the criterion of permissible stress, (8)

∂ A

∂b
· ∂g2

∂h
= ∂ A

∂h
· ∂g2

∂b
∧ g2 = 0 - the criterion of dynamic stiffness, (9)

∂ A

∂b
· ∂g3

∂h
= ∂ A

∂h
· ∂g3

∂b
∧ g3 = 0 - the criterion of lateral stability, (10)

∂ A

∂b
· ∂g4

∂h
= ∂ A

∂h
· ∂g4

∂b
∧ g4 = 0 - the criterion of stiffness of the girder. (11)

3 Objective and constraint functions

3.1 Objective function

The objective function is represented by the area of the cross
section of the box girder. The paper treats two optimization
parameters (h, b).

The vector of the given parameters is:

�x = (Mcν, Mch, Q, L , σo, Gk, ka, . . .) , (12)

where:

– Mcν and Mch - are the bending moments in the vertical
and horizontal planes,

– Q - the carrying capacity of the crane,
– L - the span of the crane,
– Gk - the mass of the crane cab,
– ka - the dynamic coefficient of crane load in the horizon-

tal plane.

The dynamic coefficient of crane load in the horizontal
plane (ka) was adopted according (Ostrić and Tošić 2005),
but the way of its selection does not reduce the generality of
consideration.

The area of the cross section (Fig. 1), i.e. the objective
function, is:

A (h, b) = f (h, b) = 2

s
·
(

e · b · h + h2
)

, (13)

where:

e = t1/t2 the ratio between thicknesses of plates at the
flange and at the web,

s = h/t2 the ratio between the height and thickness of the
plate at the web,

k = h/b the ratio between the height and width of the
girder.

To know the optimal value of the ratio between the height
and width of the girder k is of particular significance for the
designer, especially in the initial design phase so that its
determination is the subject of research in a large number
of papers (Farkas and Jármai 1997; Gašić et al. 2011a, b;
Savković 2005; Selmic et al. 2006b).

The expressions for the moments of inertia around the x
and y axes are:

Ix = 1

6
· h4

s
+ 1

2
· e · b · (s + e)2

s3
· h3, (14)

Iy = 1

6
· e · h

s
· b3 + 1

2
· h2

s
· ( f · b · s + h)2

s2
, (15)

where: f = b1
b < 1 - the ratio between the distance of web

plates and the width of flange plates of the box girder.
Since the expressions for the moments of inertia (Ix , Iy)

and the section moduli (Wx , Wy) are complex, it is common
to take approximate values of expressions by neglecting the
members of the lower order (Gašić et al. 2011a, b; Savković

Fig. 1 The box section of the main girder of the bridge crane and
elements of the box profile relevant for testing of the local stability
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2005; Selmic et al. 2006b; Mijailovic and Kastratovic 2009;
Mijailović 2010):

Ix = β2
x · h2 · A, Wx = αx · h · A, (16a)

Iy = β2
y · b2 · A; Wy = αy · b · A, (16b)

where:

βx , βy the dimensionless coefficient of the moment of
inertia for the x and y-axes,

αx , αy the dimensionless coefficient of the resistance
moment of inertia for the x and y-axes.

The coefficients βx and αx are obtained from the condi-
tions of equality of the (14) and the expression (16a):

βx = 1

2 · s
·
√

k · s2 + 3 · e · (s + e)2

3 · (e + k)
, αx = 2 · s

s + 2 · e
· β2

x .

(17)

Using the fact that e much smaller than s and k much smaller
than s the coefficients with the form βx and αx can be
simplified:

β‘x ∼= 1

2
·
√

k + 3 · e

3 · (e + k)
, α‘x ∼= k + 3 · e

6 · (e + k)
. (18)

This approximation can be graphically represented (Fig. 2),
where it is seen that deviations are negligible in the consid-
ered range of parameters k.

Fig. 2 Approximation of the coefficient of the moment of inertia
around the x-axis

By repeating the procedure for the moment of inertia and
the section moduli for the y – axis, the following values of
coefficients are obtained in a simpler form:

β‘y ≈ 1

2
·
√

3 · k · f 2 + e

3 · (e + k)
, α‘y = 3 · k · f 2 + e

6 · (e + k)
. (19)

3.2 Constraint functions

3.2.1 Criterion of permissible stress

The maximum equivalent stress which occurs in the main
girder of the bridge crane is at point 1 (Fig. 1). The
constraint function according to this criterion is:

g1 = g1 (h, b) = σe − σ0

= Mcv + c · A

αx · h · A
+ Mch + ka · c · A

αy · b · A
− σ0 ≤ 0, (20)

where: c - the coefficient of influence of the dead weight of
the girder on the bending moment.

In order to apply the method of Lagrange multipliers, for
the criterion of permissible stress, it is necessary to find
the corresponding partial derivatives, in accordance with the
expression (8):

∂g1

∂b
= −

[
Mcv

αx · h
· 1

A2
· ∂ A

∂b
+ Mch

αy · b
· 1

A2
· ∂ A

∂b

+ Mch

αy
· 1

A
· 1

b2
+ ka · c

αy
· 1

b2

]
;

∂g1

∂h
= −

[
Mcv

αx · h
· 1

A2
· ∂ A

∂h
+ Mcv

αx
· 1

A
· 1

h2
+ c

αx
· 1

h2

+ Mch

αy · b
· 1

A2
· ∂ A

∂h

]
; (21)

∂ A

∂b
= 2

s
· e · h; ∂ A

∂h
= 2

s
· (e · b + 2 · h) ;

By replacing the expression (21) in (8), after rearrangement,
the following relation is obtained:

Mcv + c · A

αx · h2 · A
· ∂ A

∂b
= Mch + ka · c · A

αy · b2 · A
· ∂ A

∂h
. (22)

From (20) and (22) it is possible to find the optimum val-
ues of dimensions h and b, i.e. their ratio k according to
this criterion. The bending moment due to dead weight is
considerably smaller than the moment caused by an external
load, so that the following approximation can be performed:

Mcν + c · A

Mch + ka · c · A
≈ M ′

cν

M ′
ch

, (23)
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On the basis of Fig. 3, the ratio
(
M ′

cν/M ′
ch

)
is obtained:

M ′
cν

M ′
ch

= 1

ka
· R · (L − e1)

2 + 2 · Gk · ek · (L + e1)

Rh · (L − e1)
2 + 2 · Gk · ek · (L + e1)

. (24)

It is common that the distance between the cab and the crane
runway is (Ostrić and Tošić 2005) ek ≤ 2 m and it is con-
siderably smaller than the span of the bridge crane L , so it
is shown that the influence of the cab is not important for
this analysis. Using the conclusions from previous analysis,
as well as the recommendations (Ostrić and Tošić 2005), it
can be written that:

M ′
cν

M ′
ch

= 1

ka
· R

Rh
= 1

ka
· c1. (25)

The member c1 (Ostrić and Tošić 2005) depends on the
carrying capacity and the classification class and it reads:

c1 = R

Rh
= f1 (Q)

f2 (Q)
= ψ · Q + mo + K · Qα

Q + mo + K · Qα
. (26)

where: K - the coefficient of influence of the classification
class on the mass of the trolley, ψ - the dynamic coefficient
of the influence of load oscillation in the vertical plane, α -
the coefficient of influence of the load mass on the mass of
the trolley, mo - the assumed mass of the trolley in the first
approximation.

Using the relations (22), (23) and (25), it is obtained
that:

k =
√

e · αy

αx
· M ′

cv

M ′
ch

. (27)

The expression (27) represents the optimum value of the
ratio between the parameters h and b obtained according

Fig. 3 Loads of the main girder of the bridge crane

to the criterion of permissible stress. Using the obtained
dependences from the constraint function according to the
criterion of permissible stress, the objective function can be
written in the following form:

Aσ = A (h) ≥
Mcv
αx

+ Mch
αy

· k

σ0 · h − c
αx

− ka ·c
αy

· k
. (28)

3.2.2 The criterion of dynamic stif fness

In order to determine the optimum ratio of optimization
parameters according to the criterion of dynamic stiffness,
it is necessary to analyze oscillation of the main girder in
the vertical plane. The analysis procedure was performed
in compliance with the Ostrić and Tošić (2005). A simple
girder with its mass concentrated at midspan is taken to be
the model of oscillation (Fig. 4).

The mass m1 is determined according to the expression
(Ostrić and Tošić 2005):

m1 = 0,5 · (Q + m0) + 0,486 · mm, (29)

where: 0,486 ·mm - the reduced continual mass of the girder
at midspan for the assumed function of displacement of the
elastic line of the adopted discrete dynamic model for the
simple girder.

The time of damping of oscillation is determined from
the expression (Ostrić and Tošić 2005):

T = 3 · τ

γd
≤ Td , (30)

where:

τ = 2 · π · √
δ11 · m1 - the period of oscillation (s), (31)

δ11 = 1, 0 · L3

48 · E · Ix
- the deflection of the girder caused

by the action of the unit force, (32)

Fig. 4 The model of oscillation of the main girder with concentrated
mass of the load and the trolley
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Td the permissible time of damping of oscillation (s),
which depends on the purpose of the crane. For general
purpose cranes it ranges within: 12–15 (s), for cranes
transporting molten metal: 8–10 (s).

γd the logarithmic decrement which shows the rate of
damping of oscillation, which depends on the ratio
between the height of the girder hand the span L .

The relation (29) can be written as:

m1 = 0,5 · (Q + m0) + 0,486 · mm

= M + r · L · A, (33)

where: M = 0,5·(Q + m0) - the constant part of the expres-
sion, 0, 486 · mm = r · L · A - the variable part of the
expression.

If the denotation:

Cd = 1,0

48 · E · β2
x
, (34)

is introduced and if the relations (31), (32) and (33) are
replaced in (30), the constraint function for the criterion of
dynamic stiffness is:

g2 (h, b) = 6 · π

γd
·
√

Cd · M · L3

h2 · A
+ Cd · r · L4

h2

− Td ≤ 0. (35)

In order to apply the method of Lagrange multipliers for
the criterion of dynamic stiffness, it is necessary to find
the corresponding partial derivatives, in accordance with the
expression (9):

∂g2

∂b
= 6 · π

γd
· 1√

δ11 · m1
· Cd · M · L3

h2
·
(

− 1

A2

)
· ∂ A

∂b
;

∂g2

∂h
= 6 · π

γd
· 1√

δ11 · m1

·
[

Cd · M · L3

h2
·
(

− 1

A2

)
· ∂ A

∂h

−2 · Cd · M · L3

h3 · A
− 2 · Cd · r · L4

h3

]
;

(36)

By replacing the expression (36) in (9), after rearrangement,
it is obtained that:

e + k

k
− (1 − 2 · t2 · e)

2 · [G(m) − 1]
= 0, (37)

where: G (m) = 0,486·mm
0,5·(m Q+mk)

.

By using the obtained dependences from the constraint
function according to the criterion of dynamic stiffness, the
objective function can be written in the following form:

Ad = A (h) ≥ Cd · M · L3

(
Td ·γd
6·π

)2 · h2 − Cd · r · L4
. (38)

3.2.3 The criterion of local buckling of plate f ields
subjected to compressive stresses

Testing of the box girder stability was carried out in accor-
dance with the European standard (prEN 13001–3–1:2010).
According to this standard, it is necessary to check the sta-
bility of the flange plate with the width b1 and the thickness
t1 (Fig. 1), the stability of the web plate above the longitudi-
nal stiffener (length a, height h1 and thickness t2 – Fig. 1) as
well as the stability of the web plate under the longitudinal
stiffener (length a, height h2 and thickness t2 – Fig. 1).

The criterion of local buckling of top f lange plate of the
box girder Testing of the stability of the flange plate seg-
ment (Fig. 1) subjected to the action of normal compressive
stress in the x direction was carried out in compliance with
the standard prEN 13001–3–1:2010.

This criterion is fulfilled if the following condition is
satisfied:

∣∣σSd,x
∣∣ ≤ fb,Rd,x = κx · fyk

γm
, (39)

where:
∣∣σSd,x

∣∣ = |−ν1 · (σzV 1 + f · σzH1)| - the design
value of the compressive stress in the x direction, fyk = fy

- the minimum yield stress of the plate material, γm - the
general resistance factor, κx - a reduction factor according
to (40):

κx = ce ·
(

1

λx
− 0, 22

λ2
x

)
≤ 1 for λx > 0, 673;

κx = 1 for λx ≤ 0, 673, (40)

where: λx - the non-dimensional plate slenderness accord-
ing to (41):

λx =
√

fyk

Kσ · σe
(41)
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with:

ce = 1, 25 − 0, 12 · ψe, (42)

ψe - the edge stress ratio of the plate, relative to the max-
imum compressive stress, Kσ - a buckling factor given in
Table 15 (prEN 13001–3–1:2010), σe - a reference stress
according to (43):

σe = π2 · E

12 · (
1 − ν2

) ·
(

t1
b1

)2

. (43)

The coefficient ψe is defined by the ratio of factored
stresses:

ψe = σ2

σ1
=

c1

ka
· αy

αx
− f · k

c1

ka
· αy

αx
+ f · k

(44)

where: σ1, σ2 - the stresses due to the factored load.
For average values, this ratio can also be approximately

written by the expression:

ψp ∼= 0, 83 − 0, 06 · k (45)

Based on the given ratios, and with the corresponding
transformations, the following relations are obtained:

cp ∼= 1, 15 + 0, 0072 · k (46)

Kσp = 8, 2

1, 88 − 0, 06 · k
(47)

σe = π2 · E

12 · (
1 − ν2

) ·
(

e · k

s · f

)2

(48)

K o = 1

π
·
√

12 · (
1 − ν2

) · fy

E
, (49)

λxp ∼= K o√
Kσp

· s · f

e · k
. (50)

For the defined range of the ratio k, the change of rela-
tions (40) and (50) can be seen for the adopted values of
classification class 2m/M5 (FEM 9.511/ISO 4301–1), gird-
er material S235JRG2, s = 210, f = 0, 74 and e = 1,
2 ÷ 2, 0 (Fig. 5), i.e. classification class 2m/M5 (FEM
9.511/ISO 4301–1), girder material S235JRG2, e = 1,2,
f = 0,74 and s = 160 ÷ 210 (Fig. 5). It is seen that
the factor κx takes the value 1 for the defined range of the
ratio k.

Fig. 5 Change of the coefficients λxp and κx as the function of the
parameter k

The local stability of the flange plate (39) is satisfied if
the following condition is fulfilled:

σzV 1 + σzH1 ≥ 1

κx
· (σzV 1 + f · σzH1)

⇔ MV I

Wx1
+ MH I

Wy1
≥ 1

κx
·
(

MV I

Wx1
+ f · MH I

Wy1

)
(51)

Rearranging the expression (51) with the corresponding
transformations, it is obtained that:

fl (L) ≥ fd (L) ,

fl = 2,17 · κx · (Q + mk) · (L − e1)
2

L

· (αy · c1 + αx · ka · k
) + 40,82 · κx

· L2 · (αy + αx · ka · k
) · (e + k)

s · k
·
( x

L

)2

fd = 2,17 · (Q + mk) · (L − e1)
2

L

· (αy · c1 + f · αx · ka · k
) + 40,82

· L2 · (αy + f · αx · ka · k
) · (e + k)

s · k
·
( x

L

)2

(52)

where: x
L = L

h = 14 ÷ 20- the recommended value of the
ratio between the span and the height of the main girder
(Ostrić and Tošić 2005). Testing of the fulfillment of con-
ditions of stability for the flange plate can be established
for the adopted values of the classification class 2m/M5
(FEM 9.511/ISO 4301–1), s = 210, e = 1,33 and f =
0,74 the variable parameters: carrying capacity (Fig. 6),
ratio between the width and height of the girder k (Fig. 6)
and the value X (Fig. 6).
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Fig. 6 Testing of the stability of the flange plate for variable parame-
ters: a) carrying capacity b) ratio between the width and height of the
girder k and c) the value of the coefficient X

It is shown that the condition of stability of the flange
plate for the mentioned parameters is fulfilled.

The constraint function (5) for stability of the flange plate
reads:

g31 = Mcv + c · A

αx · h · A
+ f · Mch + ka · c · A

αy · b · A

− κx · σ0 ≤ 0. (53)

In order to apply the method of Lagrange multipliers, it is
necessary to find the corresponding partial derivatives, in
accordance with the expression (10):

∂g31

∂b
= −

[
Mcv

αx · h
· 1

A2
· ∂ A

∂b
+ Mch

αy · b
· 1

A2
· ∂ A

∂b

+ f · Mch

αy
· 1

A
· 1

b2
+ f · ka · c

αy
· 1

b2

]
;

∂g31

∂h
= −

[
Mcv

αx · h
· 1

A2
· ∂ A

∂h
+ Mcv

αx
· 1

A
· 1

h2

+ c

αx
· 1

h2
+ f · Mch

αy · b
· 1

A2
· ∂ A

∂h

]
; (54)

Using the relation (23) as well as the derivatives ∂ A/∂b and
∂ A/∂h, it is obtained that:

k =
√

e · αy

f · αx
· c

ka
. (55)

The expression (55) represents the optimum value of the
ratio between the parameters h and b according to the cri-
terion of lateral stability of the flange plate. It is seen that,
according to this criterion, the optimum value k takes higher
values in relation to the strength criterion because f < 1.
Using the obtained dependencies from the constraint func-
tion according to the criterion of stability of the flange plate,
the constraint function can be written in the following form:

A = A (h) ≥
Mcv
αx

+ f ·Mch
αy

· k

κx · σ0 · h − c
αx

− f ·ka ·c
αy

· k
(56)

The criterion of local buckling of web plate of the box
girder Testing of the stability of the web plate segment
(Fig. 1) subjected to the action of normal stresses in the
x and y directions was carried out in compliance with the
standard prEN 13001–3–1:2010.

The case when, in addition to vertical stiffeners at
midspan, a row of horizontal stiffeners is also placed,
the horizontal stiffeners being placed at the distance of
(0, 25 ÷ 0, 33) · h, was considered.

The criterion of stability of the web plate in area 1 is
fulfilled if the following condition is satisfied:
( ∣∣σSd1,x

∣∣
fb,Rd1,x

)e1x

+
( ∣∣σSd1,y

∣∣
fb,Rd1,y

)e1x

− (
κ1x · κ1y

)6

·
( ∣∣σSd1,x · σSd1,y

∣∣
fb,Rd1,x · fb,Rd1,y

)
≤ 1 (57)

where:
∣∣σSd1,x

∣∣ ,
∣∣σSd1,y

∣∣ - the design value of the com-
pressive stress in the x and y directions at point 1,
fb,Rd1,x , fb,Rd1,y - the limit design compressive stresses,

e1x = 1 + κ4
1x , e1y = 1 + κ4

1y .
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κ1x - a reduction factor for area 1 according to (58):

κ1x = c1e ·
(

1

λ1x
− 0, 22

λ2
1x

)
≤ 1 for λ1x > 0, 63;

κ1x = 1 for λ1x ≤ 0, 63, (58)

where: λ1x - the non-dimensional plate slenderness for area
1 according to the previous equations.

The coefficient ψ1e is defined by the ratio of the factored
stresses:

ψ1e =
c1
ka

· αy
αx

+ 2 · f · k

2 ·
(

c1
ka

· αy
αx

+ f · k
) (59)

For average values, this ratio can approximately be writ-
ten as:

ψ1p ∼= 0, 54 + 0, 015 · k (60)

Based on the given ratios, and with the corresponding
transformations, the following relations are obtained:

c1p ∼= 1, 185 − 0, 0018 · k (61)

Kσ1p = 8, 2

1, 59 + 0, 015 · k
(62)

λ1xp ∼= K o√
Kσ1p

· s

4
(63)

For the defined range of the ratio k, the change of relations
(58) and (63) can be seen for the adopted values of clas-
sification class 2m/M5 (FEM 9.511/ISO 4301–1), girder
material S235JRG2, s = 160 ÷ 210, and f = 0, 74, anal-
ogously to procedure done for relations (40) and (50) and
Fig. 5.

The criterion of stability of the web plate in area 2 is
fulfilled if the following condition is satisfied:

( ∣∣σSd2,x
∣∣

fb,Rd2,x

)e2x

+
( ∣∣σSd2,y

∣∣
fb,Rd2,y

)e2y

− (
κ2x · κ2y

)6 ·
( ∣∣σSd2,x · σSd2,y

∣∣
fb,Rd2,x · fb,Rd2,y

)
≤ 1 (64)

All expressions in (64) correspond to the expressions in
(57), and the index “2” refers to area 2 (Fig. 1).

The coefficient ψ2e is defined by the ratio of the factored
stresses:

ψ2e = σ3

σ4
≈ σ2

σ4
= −

c1
ka

· αy
αx

+ 2 · f · k

2 ·
(

c1
ka

· αy
αx

− f · k
) (65)

σ3 = σSd2,x = −ν1 ·
(σzV 1

2
+ f · σzH1

)

For average values, this ratio can approximately be written
by the expression:

ψ2p ≈ − (0, 6 + 0, 01 · k) (66)

Based on the given ratios, and with the corresponding
transformations, the following relations are obtained:

c2p = 1, 25 (67)

Kσ2p = 15, 1 + 1, 8 · k + 0, 0978 · k2 (68)

λ2xp ∼= K o√
Kσ2p

· 3 · s

4
(69)

For the defined range of the ratio k, the change of relations
(58) and (69) can be seen for the adopted values of clas-
sification class 2m/M5 (FEM 9.511/ISO 4301–1), girder
material S235JRG2, s = 160 ÷ 210 and f = 0,74, anal-
ogously to procedure done for relations (40) and (50) and
Fig. 5.

The factors for the y axis will be analyzed when the load
in the y direction is observed.

The normal stress in the ydirection due to the action of
wheel pressure on the web plate is determined according to
the following expression (prEN 13001–3–1:2010):

∣∣σSd,y
∣∣ = σy = −ν1 · γ · F1

t2 · lr
, (70)

where: lr - the effective distribution length given in Annex
C.4, prEN 13001–3–1:2010 according to (71):

lr = 2 · he · tgκ + λ, (71)

where: he - the distance between the section under consid-
eration and the contact level of the acting load, κ - is the
dispersion angle; κ shall be set to κ ≤ 45◦; for further work
it is adopted that κ = 45◦,

λ = 0, 2 · rt , - the length of the contact area, (72)

where: rt - the radius of the wheel.
The dominant action of wheel pressure on the web plate

is in area 1.
The expression for the boundary compressive stress due

to pressure (57) in the direction of the y-axis reads:

fb,Rd1,y = κ1y · fyk

γm
, (73)
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where: κ1y – a reduction factor for area 1 according to (74)

κ1y = 1, 13 ·
(

1

λ1y
− 0, 22

λ2
1y

)
≤ 1 for λ1y > 0, 831;

κ1y = 1 for λ1y ≤ 0, 831, (74)

where: λ1y - the non-dimensional plate slenderness for area
1, Kσ1y - a buckling factor for area 1 given in Table 15
(prEN 13001–3–1:2010), c1r - the width over which the
transverse load is distributed (corresponds to c1r ).

c1r

a
= 12, 15 · s · f + 2 · b1 · e · k

2 · b1 · k · s
(75)

It is shown that this ratio is smaller than 0.1 and know-
ing that α1e > 4, it is obtained that Kσ1y ∼= 0, 5, so it is
obtained that:

λ1y = K o√
Kσ1y/

c1r
a

· s

4
(76)

Because of the small value of the ratio (76), the factor κ1y

takes the value κ1y = 1 even for rather high values of s.
As all the values for the expression (57) are now known,

the following relation can be written:

√∣∣σSd1,x
∣∣2 + ∣∣σSd1,y

∣∣2 − ∣∣σSd1,x · σSd1,y
∣∣ ≤ fb,Rd1 (77)

Also, the following conditions must be fulfilled:

∣∣σSd1,x
∣∣ ≤ fb,Rd1,

∣∣σSd1,y
∣∣ ≤ fb,Rd1 (78)

If it is assumed that
∣∣σSd1,x

∣∣ is the critical stress in relation
to the others and if the expression (77) is considered, the
following relation is obtained:

∣∣σSd1,x · σSd1,y
∣∣ ≥ ∣∣σSd1,y

∣∣2 ⇔ ∣∣σSd1,x
∣∣ ≥ ∣∣σSd1,y

∣∣ (79)

and it should be proved.
By applying the previous procedure as with the relation

(51), the following expression is obtained:

f1l(L) ≥ f1d (L) ,

f1l (L) = 2,17 · (Q + mk) · (L − e1)
2

L

· (
αy · c1 + f · αx · ka · k

) + 40,82 · L2

· (
αy + f · αx · k · ka

) · (e + k)

s · k
·
(

L

X

)2

f1d (L) = 1120 · αx · αy · (ψ · Q + mk)

· e + k

(12,15 + 1,4 · e) · k
·
(

L

X

)2

Testing of the fulfillment of the conditions of stability of
the web plate can be established for the adopted values of
the classification class 2m/M5 (FEM 9.511/ISO 4301–1),
s = 180, e = 1,33 and f = 0,74 and the variable param-
eters: carrying capacity, ratio between the width and height
of the girder k and the value X,in accordance with previous
procedure ((52) – Fig. 6).

It is shown that the condition of stability of the web plate
is fulfilled in area 1 for the mentioned parameters. Also,
it is shown that the stress that occurs is not higher that
the allowed one according to the strength criterion, and the
stability itself is satisfied.

The expression for l2r , the action of wheel pressure on
the web plate in area 2, reads:

l2r = 12, 15 + 2 · e · h

s
+ h

2
(80)

The members in the expression for the equivalent stress in
relation to the y axis for area 2 are:

σSd2,y = −ν1 · γ · F1

t2 · l2r
, (81)

fb,Rd2,y = κ2y · fyk

γm
, (82)

where: κ2y - a reduction factor for area 2 according to (83):

κ2y = 1,13 ·
(

1

λ2y
− 0,22

λ2
2y

)
≤ 1 for λ2y > 0,831;

κ2y = 1 for λ2y ≤ 0,831, (83)

where: λ2x - the non-dimensional plate slenderness for area
2. Kσ2y - a buckling factor for area 2 given in Table 15
(prEN 13001–3–1:2010), c2r - the width over which the
transverse load is distributed (corresponds to l2r ):

c2r

a
= 24,3 · s · f + 4 · b1 · e · k + b1 · k · s

4 · b1 · k · s
(84)

It is shown that this ratio is close to the value of 0.3 and
knowing that α2e = 8/3, it is obtained that Kσ2y ≈ 1, 2, so
it is obtained that:

λ2y = K o√
Kσ2y/

c2r
a

· 3 · s

4
(85)

Based on the expressions (80) and (81), the change of stress
due to the trolley wheel pressure in area 2 is obtained:

σSd2,y = −ν1 · 2 · γ · F1 · s2

24,3 · s · h + 4 · e · h2 + s · h2
(86)
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As
(
κ2x · κ2y

)6 much smaller than 1 and as all the values
from the expression (64) are known, it obtains the form:

( ∣∣σSd2,x
∣∣

fb,Rd2,x

)e2x

+
( ∣∣σSd2,y

∣∣
fb,Rd2,y

)e2y

≤ 1, (87)

The ratio between the maximum compressive stress of the
girder and the compression in this area is:

ψ2 =
c1
ka

· αy
αx

+ 2 · f · k

2 ·
(

c1
ka

· αy
αx

+ k
) (88)

The expression (87) now becomes:

(
ψ2

κ2x

)1+κ4
2x +

(∣∣σSd2,y
∣∣ · γm

κ2y · fy

)1+κ4
2y

≤ 1 (89)

The change of this dependence in the function can be
established for the adopted values of the classification
class 2m/M5 (FEM 9.511/ISO 4301–1), girder material
S235JRG2, e = 1,33, f = 0,74, and s = 210, i.e. s = 160
(Fig. 7), and the variable parameters: the carrying capac-
ity Q, the width b1 and the ratio between the width and the
height of the girder k. For higher carrying capacities it is
better to adopt a bigger width b1 (Fig. 7) if lower values for
k are expected. For lower carrying capacities (Q ≤ 8t) it
is more rational to use smaller widths for b1. Where higher
values for k are expected it is possible to use higher values
for s. For lower values for s this condition is satisfied for
any k (Fig. 7).

Fig. 7 Change of the value of the function (89) depending on the
carrying capacity Q and the width b1

It is shown that area 1 is critical in testing of the local
stability of web plates. By applying the method of Lagrange
multipliers, for the constraint function (5) reads:

g32 = Mcν + c · A

αx · h · A
+ f · Mch + ka · c · A

αy · b · A

− κ1x · σ0 ≤ 0. (90)

Using the relation (23) as well as the derivatives ∂ A/∂b and
∂ A/∂h, it is obtained that:

k =
√

e · αy

f · αx
· c1

ka
. (91)

Using the obtained dependencies from the constraint func-
tion according to the criterion of stability of the web plate,
the objective function can be written in the following form:

Avl = A (h) ≥
Mcv
αx

+ f ·Mch
αy

· k

κ1x · σ0 · h − c
αx

− f ·ka ·c
αy

· k
(92)

3.2.4 The criterion of girder stif fness

In order to satisfy this criterion, it is necessary that the
deflections in the corresponding plane have the values
smaller than the permissible ones. The maximum values of
deflection must be within the following limits:

fν = F1 · L3

48 · E · Ix
·
[
1 + w ·

(
1 − 6 · p2

)]
≤ fν,dop

= Kν · L - the deflection in the vertical plane, (93)

fh = ka · F1h · L3

48 · E · Iy
·
[
1 + w ·

(
1 − 6 · p2

)]
≤ fh,dop

= Kh · L - the deflection in the horizontal plane, (94)

where (Fig. 3): w = F2
F1

≤ 1, p = d
L , d – the distance

between the wheels of the trolley.
If it is adopted that the coefficients Kν and Kh are equal,

the constraint function has the form:

g4 (h, b) = g42

g41
= ka · F1h · β2

x · h2

F1 · β2
y · b2

− 1 ≤ 0. (95)

In order to apply the method of Lagrange multipliers, for
the criterion of girder stiffness, it is necessary to find the
corresponding partial derivatives, in accordance with the
expression (11):

∂g4

∂b
= −2 · ka · F1h · β2

x · h2

F1 · β2
y · b3

,
∂g4

∂h
= 2 · ka · F1h · β2

x · h

F1 · β2
y · b2

.

(96)



M.M. Savković et al.

By replacing the expression (96) in (11), it is obtained that:

∂ A

∂b
/
∂ A

∂h
= −h

b
⇔ e · b = −h. (97)

In the expression (97) a negative solution which is not
within the set of real solutions (b, h > 0) is obtained.

By using the obtained dependences from the constraint
function according to the criterion of stiffness, the objective
function can be written in the following form:

A f = A (h) ≥ F1h · L2 · [
1 + w · (

1 − 6 · p2
)]

48 · E · β2
x · K f · h2

. (98)

4 Numerical representation of the results obtained

4.1 Analysis of the optimization results

Using the expression (27) the optimum value of the param-
eter k according to the criterion of permissible stress is
obtained as a function of the values e and ka . The coefficient
f does not considerably influence the parameter k and does
not have to be treated in optimization because it depends
on the adopted concept of the box girder, and in practice
it is within the range: f ∈ (0.85 ÷ 0.90). The coefficient
e is adopted and depending on the crane manufacturer it
is most frequently within the range e ∈ (1.2 ÷ 2.0). The
dynamic coefficient ka depends on the selection of crane
trolley. In the initial phase of design, without precise know-
ing of acceleration values in load lifting, it may be adopted
that its value is within the range (Ostrić and Tošić 2005):
ka ∈ (0.10 ÷ 0.15). Taking into account the mentioned rec-
ommendations, the value of the coefficient k is presented in
Table 1.

The expression (28) represents the objective function
obtained from the constraint function according to the cri-
terion of permissible stress and together with the objective
function (13) it can be graphically represented. The expres-
sion (28) is represented by a dashed line, and the expression
(13) is represented by a continuous line (Fig. 8), for the
corresponding types of material (S235), classification class
2m/M5 (FEM 9.511/ISO 4301–1), where the values of the
parameters L = 20 m and Q = 12.5 t are adopted. At the
intersection of these curves, on the abscissa, there is an
optimum height hfor the constraint function according to

Table 1 Optimum values of the parameter k as a function of the
coefficients e and ka

ka = 0.15 ka = 0.125 ka = 0.10

e 1.2 1.4 1.6 1.8 2.0 1.2 1.4 1.6 1.8 2.0 1.2 1.4 1.6 1.8 2.0

k 3.1 3.3 3.5 3.6 3.8 3.4 3.6 3.9 4.1 4.2 3.9 4.1 4.4 4.6 4.8

Fig. 8 Optimum values of the girder height and the objective function
according to the strength criterion a S235JRG2, b S275JR, c S355JR

the criterion of permissible stress. Figure 8 shows how the
position of the intersection point changes depending on the
selection of material. By changing the parameters L , Q and
k, as well as the type of material, the optimum value of the
objective function is easily obtained (13).

Using the expression (37) the optimum value of the
parameter k according to the criterion of dynamic stiffness
is obtained. The value of this parameter depends, to the
greatest extent, on the member G(m) and it is difficult to be
determined in advance. Its value is defined by the span of the
bridge crane and the mass of the trolley, and these parame-
ters are determined by the investor and cannot be the subject
of optimization. Taking into account that the optimum value
of the parameter k, to the criterion of permissible stress,
is within the range (2.5÷4.5) and using (37), the value of
the member G(m) in the interval −0.04÷0.53 is obtained
(Table 2).

Table 2 The values of the member G(m) as a function of the
parameter k and the coefficient e

k = 2.5 k = 3

e 1.20 1.40 1.60 1.80 2.00 1.20 1.40 1.60 1.80 2.00

G(m) 0.53 0.43 0.33 0.24 0.17 0.50 0.38 0.28 0.19 0.11

k = 3.5 k = 4

e 1.20 1.40 1.60 1.80 2.00 1.20 1.40 1.60 1.80 2.00

G(m) 0.48 0.35 0.25 0.14 0.05 0.46 0.33 0.21 0.10 0.0

k = 4.5

e 1.20 1.40 1.60 1.80 2.00

G(m) 0.44 0.31 0.19 0.07 −0.04
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Table 3 Optimum values of the parameter kas a function of the
coefficient e

ka = 0.15 ka = 0.125 ka = 0.10

e 1.2 1.4 1.6 1.8 2.0 1.2 1.4 1.6 1.8 2.0 1.2 1.4 1.6 1.8 2.0

k 3.3 3.5 3.7 3.9 4.1 3.6 3.9 4.1 4.4 4.5 4.2 4.4 4.7 4.9 5.1

The expression (38) represents the objective function
obtained from the constraint function according to the cri-
terion of dynamic stiffness and together with the objective
function (13) it can be graphically represented (analogously
to previous procedure and Fig. 8). Using the expression (55)
the optimum value of the parameter kaccording to the crite-
rion of lateral stability is obtained. The optimum values of
the parameter k as a function of the member e are presented
in Table 3.

The expression (56) represents the objective function
obtained from the constraint function according to the crite-
rion of lateral stability and together with the objective func-
tion (13) it can also be graphically represented (analogously
to previous procedure and Fig. 8).

The expression (98) represents the objective function
obtained from the constraint function according to the cri-
terion of stiffness and together with the objective function
(13) it can be graphically represented.

4.2 Comparative presentation of the obtained results
for the corresponding spans and carrying
capacities of cranes

In order to perform a comparative analysis of optimization
results, it is necessary to define the initial parameters of
cranes which refer to their geometrical characteristics, clas-
sification class and carrying capacity. These are the data
which the designer receives from the investor as the project
task.

The other values of parameters in this phase are:

e = 1.33, f = 0.85 , ψ = 1.15, ka = 0.1,

ek = 2.3 m, Gk = 15 k N , Td = 15 s.

The analysis was performed for the classification class
2m/M5 (FEM 9.511/ISO 4301–1), which is, according
to the (Ostrić and Tošić 2005), most frequently used in
practice. The following values hold for it:

γ = 1.05, α = 1.20, K = 0.08,

mo = 1.20, K f = 1

600
.

The analysis was performed for steel S235JRG2. In order
to perform a comparative analysis, it is necessary to take
into consideration the recommendations specified in the

standard as well as those given by crane manufacturers
(Catalogues 1996). Serbian crane manufacturers recom-
mend that the minimum value of the width b1 should be
b1 > 20 cm, wherefrom it is obtained that:

k ≤ f · h

20
. (99)

This recommendation does not hold with other world manu-
facturers but it does not reduce the generality of application
of the procedure. If the expressions (13) and (28) are made
equal, the dependence of the parameter k according to the
criterion of permissible stress is obtained:

k = F
(
s, e, h, Mcν, Mch, αx , αy

)
, (100)

which can be graphically represented (Fig. 9). If the expres-
sions (13) and (38) are made equal, the dependence of the
parameter k according to the criterion of dynamic stiffness
is obtained (Fig. 9):

k = F (s, e, h, Td , Cd , r, L , γd , M) . (101)

If the expressions (13) and (56) are made equal, the depen-
dence of the parameter k according to the criterion of lateral
stability is obtained (Fig. 9):

k = F
(

s, e, f, h, Q, Mcv, Mch, αx , αy, ka, fy, ν, E
)
.

(102)

If the expressions (13) and (98) are made equal, the depen-
dence of the parameter k according to the criterion of girder
stiffness (Fig. 9):

k = F
(
E, e, βx , K f , h, F1h, w, p, L

)
. (103)

Fig. 9 Multicriteria determination of the optimum value of the param-
eter k for the crane span L = 10 m and the carrying capacity Q = 8t



M.M. Savković et al.

Fig. 10 Multicriteria determination of the optimum value of the
parameter k for the crane span L = 10 m and the carrying capacity
Q = 16t : a b1 = 20 cm, b b1 = 25 cm

For the crane span L = 10 m and the carrying capacity
Q = 8t , using the above mentioned relations, the strength
criterion is relevant and the optimum value of the parameter
k is at the point of intersection between the relations (99)
and (100) (Fig. 9).

The procedure thus performed enables fast and efficient
determination of the optimum value of the parameter k
according to the critical function. The value of the width

Table 5 Basic characteristics of geometrical parameters after the opti-
mization carried out with a certain percent of deviation from the
objective function

No. Q (t) L (m) h (cm) b (cm) t1 (mm) t2 (mm) A (cm2) Saving %

1. 16 22 130 30 8 6 204 26.3

2. 10 16 95 25 7 5 130 19.8

3. 10 20 105 25 7 5 140 22.2

4. 20 11,6 86 26 6 5 117.2 4.8

5. 10 17,3 105 26 6 5 136.2 29.4

6. 10 20 110 29 8 6 178.4 14.2

7. 16 13,7 95 25 8 6 154 8.9

8. 10 16 95 25 7 5 130 20.3

b1 does not influence the optimization procedure but it
influences the obtained values of the optimization parameter
k (Fig. 10).

4.3 Comparative presentation of the obtained results
for the corresponding spans and carrying
capacities of cranes

Verification of the performed method of optimization of
geometrical parameters was carried out by its comparison
with several solutions of bridge cranes from different man-
ufacturers. The vector of the given parameters consists of:
Q(t), L(m), type of material of the main girder and the
classification class. Table 4 shows the basic geometrical

Table 4 Basic geometrical characteristics of some solutions of bridge cranes

R.b. Q (t) L (m) Material Classification h b t1 t2 A Location Manufacturer

class (FEM/ISO) (cm) (cm) (mm) (mm) (cm2)

1. 16 22 S235JRG2 2m/M5 98 50 12 8 276,8 Holcim, Paraćin Tecon Engineering,

Beograd

2. 10 16 S235JRG2 2m/M5 75 45 8 6 162 IMK-14, Kruševac MIN, Niš

3. 10 20 S235JRG2 2m/M5 90 45 8 6 180 IMK-14, Kruševac MIN, Niš

4. 20 11,6 S275JR 2m/M5 80 35 6 5 123,2 PPT, Trstenik Atmos, Hoèe

5. 10 17,3 S235JRG2 2m/M5 84 46 10 6 192,9 Wagon factory ILR Železnik

Kraljevo

6. 10 20 S235JRG2 2m/M5 90 50 10 6 208 Wagon factory ILR Železnik

Kraljevo

7. 16 13,7 S235JRG2 2m/M5 78 30 10 8/6 169,2 Granit ad, Skoplje Tecon Engineering,

Beograd

8. 10 16 S235JRG2 2m/M5 80 42 8 6 163.2 IMK-14, Kruševac IMK-14, Kruševac
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characteristics taken from existing solutions. The manufac-
turer and location of the installed crane are also mentioned.
Table 5 presents the values of geometrical characteristics
after the optimization method performed for the same given
parameters.

By the analysis of obtained results and their mutual com-
parison it is concluded that significant savings in the girder
mass can be made after the optimization is carried out. The
size of savings differs and depends on the manufacturer and
vectors of the given parameters. For all solutions presented
in Tables 4 and 5 the objective function and all constraints
are satisfied.

5 Conclusion

The paper defined optimum dimensions of the box section
of the main girder of the bridge crane in an analytical form,
by using the method of Lagrange multipliers. The objec-
tive function is the minimum mass, i.e. the minimum area
of the cross section, where the given constraints are sat-
isfied: permissible stress, lateral stability, dynamic stiffness
and permissible deflection. The results obtained may be of
great use to the engineer-designer, particularly in the first
phase of the design procedure when the basic dimensions
of the main girder of the bridge crane, as its most respon-
sible part, are defined. Using the obtained optimum values
of geometrical parameters of the main girder, considerable
savings in the material consumed is made thus reducing its
price, which is shown by comparison with certain solutions
of cranes under the same explotiation conditions. For the
examples mentioned, savings in the material range between
4.8% and 29.4%.

Justification of applying the method of Lagrange mul-
tipliers was also shown because the optimization results
were obtained in an analytical form, which allows draw-
ing conclusions on the influence of certain parameters and
directions of further research concerning the reduction of
mass.

The conclusion is that further research should be directed
toward a multicriteria analysis where it is necessary to
include additional constraint functions, such as: material
fatigue, influence of manufacturing technology, optimiza-
tion of the ratio of plate thicknesses, types of material,
conditions of crane operation.
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