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A B S T R A C T   

Only few studies have used Near-Infrared (NIR) spectroscopy to assess meat quality traits directly in the chiller. 
The aim of this study was therefore to investigate the ability of a handheld NIR spectrometer to predict marbling 
scores on intact meat muscles in the chiller. A total of 829 animals from 2 slaughterhouses in France and Italy 
were involved. Marbling was assessed according to the 3G (Global Grading Guaranteed) protocol using 2 
different scores. NIR measurements were collected by performing 5 scans at different points of the Longissimus 
thoracis. An average MSA marbling score of 330–340 was obtained in the two countries. The prediction models 
provided a R2 in external validation between 0.46 and 0.59 and a standard error of prediction between 83.1 and 
105.5. Results did provide a moderate prediction of the marbling scores but can be useful in the European in-
dustry context to predict classes of MSA marbling.   

1. Introduction 

Beef production and consumption have a number of benefits on 
human health, food security, socioeconomic well-being of rural com-
munities, and gastronomic pleasure of consumers (Hocquette et al., 
2018). Despite all these, the beef production system faces a number of 
challenges due to the high variability of its palatability and a lack of a 
guarantee system for eating quality (Chriki et al., 2013; Legrand, Hoc-
quette, Polkinghorne, & Pethick, 2013). As a result of these challenges, 
the Meat Standards Australia (MSA) grading scheme has been developed 
as an useful tool to assess beef palatability in commercial conditions 
from the 1990s onwards (Watson, Polkinghorne, & Thompson, 2008). 
The MSA grading system has become more popular and recognized by 
many countries as a pertinent innovation to predict beef eating quality 
(Bonny et al., 2018). The MSA system has investigated a set of critical 
control points to assess beef palatability through extensive consumer 
testing protocols which include factors as sex, carcass hanging method, 

cooking method and fat depth etc. (Bonny et al., 2018). The MSA pro-
tocol is set to be adapted to the European context through the 3G (Global 
Guaranteed Grading) protocol that uses the same control points. Among 
these control points, one of the most important components is marbling. 

Marbling is usually seen as intramuscular deposit of fat within the 
muscle and it is assessed between the 5th and the 13th rib of the carcass 
according to the MSA and 3G protocols (Meat, Livestock, Australia & 
Meat Standards, Australia, 2001). In France and in Italy, it is measured 
at the 5th rib instead of the 10th rib in Australia (Liu et al., 2021). 
Marbling plays a great role in beef palatability as it has a positive rela-
tionship with flavor, tenderness, and juiciness even though its effect on 
these is not very clear (Calkins & Hodgen, 2007; Chriki et al., 2013; 
Guillemin et al., 2009). The French national food conference recently 
recommended the meat sector, represented by INTERBEV, to introduce 
marbling in the French beef grading scheme (Etats Generaux de l’Ali-
mentation EGA, 2018). Actually, the MSA grading scheme is highly 
human-led with trained graders evaluating carcasses for different traits 
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(such as marbling). The MSA system therefore requires a grader in each 
slaughterhouse with the accreditation being expensive and requiring 
frequent trainings. It is therefore relevant to move towards a faster and 
more economic method which allows assessment on several slaughter-
houses even in the absence of MSA accredited personnel. Indeed, the 
beef industry needs to look for the most effective and the less con-
straining methods to assess the quality of their product. 

Near-infrared spectroscopy (NIRS) is a rapid, non-invasive, cost- 
effective, and environmentally friendly analytical technique which 
permits to obtain a complete picture of the organic composition of the 
analyzed matrix using an electromagnetic radiation in a known wave-
length range (Van Kempen, 2001). Its principle is based on the absorp-
tion of the radiation which spans the wavelength range between 750 nm 
and 2500 nm by different chemical bonds (O–H, C–H, N–H, and S–H) 
in organic matter (Pasquini, 2003). When recorded, the light absorbed 
produces a spectrum which includes information related to chemical 
and physical properties of molecules of the sample and therefore in-
formation on sample composition (Prieto, Pawluczyk, Russell Dugan, & 
Aalhus, 2017). It has largely been studied and used in food industry as a 
rapid and convenient tool for the evaluation of quality (Fan, Liao, & 
Cheng, 2018), to assess fat, moisture, and protein content in ground beef 
(Su et al., 2014), as well as to predict tenderness and intramuscular fat in 
beef, pork and lamb (Fan et al., 2018; Prieto et al., 2014; Ripoll, Albertí, 
Panea, Olleta, & Sañudo, 2008). Near-infrared spectroscopy presents 
drawbacks due to its dependence on a reference method, its low sensi-
tivity to minor constituents, limited transfer of calibration between 
different instruments and complicated spectral data (Büning-Pfaue, 
2003; Givens, Boever, & Deaville, 1997). In addition, the spectral data 
analyses often require time-consuming and laborious calibration pro-
cedures along with the complexity of the choice of data treatment 
(Büning-Pfaue, 2003). It is therefore a challenge to tackle these draw-
backs for its effective usage by building a strong calibration model 
constructed with data from on-line process to better reflect industrial 
variability. However, the recent development and diffusion of portable 
handheld devices has facilitated the application of this technology on a 
large scale, with rapid acquisition of spectra and avoiding the need for 
complex sampling protocols and transport of samples to a laboratory 
(Goi, Hocquette, Pellattiero, & De Marchi, 2022; Kademi, Ulusoy, & 
Hecer, 2018). Moreover, handheld spectrometers are very cheap, web- 
based with online storage, and thus easy to use in different slaughter-
houses. Among NIRS’ advantages, it allows simultaneous assessment of 
several traits, and it is suitable for on-line application within a pro-
cessing plant without requiring sample preparation (Dixit et al., 2017). 
Indeed, NIRS shows to be a practical and low-cost solution easy to 
implement. A lot of studies have investigated the use of NIRS on ground 
samples of meat compared to intact samples where there are still a few of 
them dedicated to marbling. However, even less studies have investi-
gated the application of NIRS technology to predict beef marbling traits 
in the slaughterhouse. 

The purpose of this study was to investigate the use of a pocket-sized 
handheld near-infrared spectrometer in the slaughterhouse to predict 
marbling scores as they have been shown to have a relationship with 
eating quality and to discriminate animals according to their marbling 
class (Meat, and Livestock Australia, Meat Standards Australia, 2018). 

2. Materials and methods 

2.1. Experimental design 

The study involved a total of 829 beef carcasses selected for their 
variability in terms of breed, age and weight to depict part of the 
intrinsic commercial variability on beef carcasses. They were provided 
by 2 commercial slaughterhouses located in Italy and France. From these 
animals, 400 carcasses were young Charolais bulls and heifers from 
different Italian fattening farms who have been processed in Italy 
(AZoVe, Cittadella PD). Four-hundred-twenty-nine carcasses were 

obtained from animals reared and processed in France (CV Plainemai-
son- Beauvallet, Limoges), among them there were 277 Limousin cows 
or heifers and 152 animals randomly selected to increase variability in 
animal type and breed (Charolais, Holstein, Aubrac, crossed). 

2.2. Marbling measurement 

All the processed carcasses were assessed after 24 h of post-mortem 
chilling in a refrigerated room with an average temperature between 
0 and 4 ◦C. Marbling was assessed according to specifications of the 
ABCAS Reference Standards (Meat, Livestock, Australia & Meat Stan-
dards, Australia, 2001) and a benchmark for the measurement of the 
main quality characteristics of the bovine carcasses adopted by the 
UNECE Bovine Language standards through 2 scores (AUS-MEAT and 
MSA marbling scores). The chiller assessment standards are adapted for 
European cattle and consumers through extensive collaborative research 
in Europe with data being stored and utilized through the IMR3GF. The 
AUS-MEAT marbling score reflects the amount of marbling with score 
ranging from 0 to 9 in increments of one. The MSA marbling provides a 
more precise scale (from 100 to 1190 in increments of 10) indicating the 
amount, the size, the fineness, and the distribution of fat inclusions in 
muscles. The AUS-MEAT and the MSA marbling scores were assessed at 
the 5th rib of the carcass as described by (Liu et al., 2021). The assess-
ment was done by two 3G chiller assessors (one for Italy and one for 
France) accredited by the International Research Meat 3G Foundation. 
They followed the same training session and have been always updated 
according to ABCAS (Australian Beef Chiller Assessment System) stan-
dards, to reduce the technical variability of their evaluations. The rib eye 
was exposed to air for at least 20 min up to 3 h after cutting, allowing the 
meat to bloom before the MSA marbling assessment carried out using a 
visual standard. Blooming refers to the color change due to oxygenation 
of myoglobin that occurs when a meat surface is exposed to oxygen 
(Jacob, 2020). The grading is done with visual standard cards (provided 
by ABCAS) to assess AUS-MEAT and MSA scores. 

2.3. Near-infrared spectroscopy measurements 

Spectra were recorded using the SCiO™ molecular sensor (Consumer 
Physics Inc., Tel Aviv, Israel), a handheld web-based wireless spec-
trometer that operates in reflectance mode in the NIR region between 
740 and 1070 nm (13,514 and 9346 cm− 1) of wavelength at intervals of 
1 nm (13 cm− 1) which is the default mode of the spectrometer. The size 
of the area analyzed by the sensor is 1 mm2. The instrument was cali-
brated every day before starting the spectra collection, then five scans 
per sample were taken in 5 different positions on the surface of Long-
issimus thoracis muscle by applying an adapter to the scanning head in 
order to maintain a fixed distance from the sample of 1 cm over the 
surface and avoid any external light source. The average time to scan 
each animal was roughly 1 min. An internet connection was needed for 
the scans to be saved. The two 3G chiller assessors followed the same 
approach choosing each position according to the dimension of the rib 
eye to be representative of the entire surface. Reflectance values were 
collected through the SCiO™ online application (“The Lab”) (Consumer 
Physics Inc., Tel-Aviv, Israel), converted to absorbance as log(1/reflec-
tance) and each final spectrum to be used for the development of pre-
diction models was then calculated as the average of the 5 scans. 

2.4. Chemometrics analysis 

Chemometric analysis was performed to obtain the prediction 
models for MSA and AUS-MEAT marbling scores using spectral and 
reference data. Several processes have been used to develop these 
models. The first process used WinISI 4 software (Infrasoft International, 
Port Matilda, PA, USA) where the calibrations were developed through 
modified partial least square (mPLS) regression analysis. The second 
process used the Pirouette 4.5 software (Infometrix, Inc., Woodinville, 
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WA, USA) where calibrations were developed with a classical PLS 
regression analysis. Both processes used spectral information as inde-
pendent variables, and correlated with the corresponding reference 
values to predict MSA marbling and AUS-MEAT scores. With the first 
process using the WinISI 4 software, the scores were predicted for the 
French and Italian datasets individually; then, the Italian and French 
datasets were also merged to get a wider variability. However the results 
from the merged dataset must be interpreted with caution since differ-
ences could arise from carcass graders, instruments or slaughterhouses 
conditions as in the study performed by Fowler, Wheeler, Morris, Mor-
timer, and Hopkins (2021) and Stewart et al. (2021). 

Firstly, spectral outliers were eliminated using the Mahalanobis 
distance (Global H > 3.0). Then, different scatter corrections such as 
detrending (D), standard normal variate (SNV), and multiplicative 
scatter correction (MSC) were applied to the raw spectra as pre- 
treatment to reduce noise effect and variability due to the scatter (De 
Marchi, Costa, Goi, Penasa, & Manuelian, 2019). Afterwards, each of 
these pre-processing techniques was combined with derivative mathe-
matical treatments: 0,0,1,1; 1,4,4,1; 1,8,8,1; and 2,10,10,1. Here, the 
first digit represents the number of the derivative, the second represents 
the gap over which the derivative is calculated, the third is the number 
of data points in the first smoothing and the fourth is the number of data 
points in the second smoothing (Shenk and Westerhaus, 1991). After the 
mPLS regression analysis, 2 rounds of outliers’ elimination were per-
formed, and the critical T-statistic value was set to ±2.5 standard error 
to define chemical outliers. Two rounds of outlier elimination was the 
best compromise to keep sample variability. Fernández-Cabanás, Pol-
villo, Rodríguez-Acuña, Botella, and Horcada (2011) also used two 
rounds of outlier removal and stated that, according to their previous 
works, these consistent anomalies can be detected for different products 
with the first two runs. Hence, when predicted values were greater than 
±2.5 standard error from the reference values, the sample was removed 
from the dataset to be used for the final calibration. 

The prediction models were tested within and across countries per-
forming both a 15-fold cross-validation and an external validation. For 
the former, the dataset of each country individually and the merged 
dataset were split into 15 equal groups with similar mean and standard 
deviation, one part was used to validate the model created using the 
remaining groups and this process was repeated until each group was 
used as validation set once. For the latter, the division into calibration 
and validation set was done in 2 ways: (i) the full French, Italian, and 
merged datasets were randomly divided, ensuring a similar mean and 
standard deviation for both MSA and AUS-MEAT scores, in a subset of 
64% of samples to produce a prediction equation to be tested on the 
remaining 34% of samples; (ii) each country was used alternatively as 
calibration and test set for the other, i.e. French dataset was used to 
create the model to be tested on the Italian dataset and vice versa. 

With the second process using Pirouette 4.5 (Infometrix, Inc., 
Woodinville, WA, USA), the samples were also divided into calibration 
and validation sets. Two-third of the samples were selected randomly 
and used as calibration data set. The sample with the largest MSA value 
was included in the calibration set and the rest of the samples were used 
as validation data set. 

Orthogonal signal correction (OSC) factor was used during the 
development of the regression equations and this preprocessing tech-
nique is used to remove information unrelated to the target variables 
based on constrained principal component analysis. Orthogonal signal 
correction has been shown to provide better results when compared to 
traditional signal correction as well as with those of no pre-processing 
(Wold, Antti, Lindgren, & Öhman, 1998). 

Different spectral data transformed were tested – smoothing, first 
and second derivatives. The number of PLS factors in the equations was 
determined by leave-one-out cross validation. The leave-one-out cross- 
validation procedure works by omitting one observation, recalculating 
the equation using the remaining data, and then predicting the omitted 
observation. This routine is repeated until each observation in the data 

set is used once as validation data. 
Thus, for both processes, the best model was assessed according to 

the optimal number of latent variables (LV) chosen based on the lowest 
root mean square error, the bias, the coefficient of determination of 
calibration (R2

C), of cross-validation (R2
CV), and of external validation 

(R2
Ext), the standard error of calibration (SEc), of cross validation (SEcv), 

and of external validation (SEp), and the residual predictive deviation of 
cross-validation (RPDCV) and of external validation (RPDEXT), calculated 
as the ratio between the standard deviation (SD) of the validation 
dataset and SECV and SEP, respectively. Hence, we had one goodness-of- 
fit statistics output for each approach (i.e. within country and across 
countries). The normality of the residuals for the predicted models was 
assessed and a t-test was performed to determine whether the bias 
differed statistically from zero. 

2.5. Discriminant analysis 

In addition, another approach conducted was to apply a partial least 
square discriminant analysis (PLS-DA) on 2 datasets. The first dataset 
was made of 677 samples, of which the sex of the animal was known. 
The second dataset was made of all of the 829 samples, with unknown 
information about breed and sex of the animals. The NIR data were 
analyzed according to their spectrum after segregating the carcasses in 3 
MSA marbling homogeneous classes (low, medium, high) according to 
their frequencies. 

Using the first dataset, each class was created within sex and breed to 
avoid their effect on the MSA score, obtaining classes containing about 
33% of samples. In the second dataset, the classes were created by taking 
the average of the thresholds for Limousine and Charolais classes. 

Discriminant analysis on AUS-MEAT could not provide satisfactory 
results and were therefore not shown. Subsequently, meat samples were 
randomly split into a training and a validation set to build the model in 
absence of the validation set and therefore obtain a prediction which is 
independent of the model optimization (Westerhuis et al., 2008). Cali-
bration set created from the first dataset included 166, 172, and 170 
samples with low, medium, and high MSA marbling value, respectively. 
Then 54, 57, and 58 samples belonging to low, medium, and high class 
respectively were assigned to the validation set. On the other hand, 231, 
189, and 202 samples from the second dataset, with low, medium, and 
high MSA marbling value respectively were used for calibration set; the 
validation set was created with 63, 67, and 77 samples belonging to low, 
medium, and high class, respectively. The calculated thresholds for each 
MSA class created within breed and sex were reported in Table 1. 

Using SAS software v. 9.4 (SAS Institute Inc., Cary, NC, USA), the 

Table 1 
Thresholds of MSA marbling classes according to the category of animals.  

Dataset 
1 

Charolais Limousin 

MSA 
Class 

Low Medium High Low Medium High 

Male MSA ≤
270 

270 <
MSA ≥

340 

MSA 
> 340    

Female 
MSA ≤

310 
310 <

MSA ≥370 
MSA 
> 370 

MSA 
≤ 290 

290 <
MSA ≥

370 

MSA 
> 370 

Dataset 
2a 

All 
animals      

MSA 
Class Low Medium High     

MSA ≤
290 

290 <
MSA ≥360 

MSA 
> 360     

a Dataset 2 includes data from all animals without considering any informa-
tion about breed and sex 
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elimination of spectral outliers on the training set was performed using 
the Mahalanobis distance and the parameters of the PLS-DA model were 
optimized using leave-one-out cross-validation on the training dataset. 
The process was repeated until the addition of more components to the 
model did not produce a decrease in the cross-validation error rate. The 
PLS algorithm was followed by the adoption of the DISCRIM procedure 
using the PLS score as predictors to classify samples of the validation set. 
The confusion table which describes the classification performance of 
the discrimination model was then evaluated with three outcomes: 
sensitivity, specificity, and overall accuracy for each class. 

Sensitivity (%) =
TP

TP + FN
X 100  

Specificity(%) =
TN

FP + TN
X 100  

Accuracy (%) =
TP + TN

TP + TN + FP + FN
X 100  

where FP, FN, TP and TN, are the number of false positives, false neg-
atives, true positives and true negatives, predicted in external valida-
tion, respectively. 

Sensitivity and specificity are used to calculate the true rates, in fact 
the sensitivity is the model ability to correctly associate the sample to 
the real class to which it belongs, whereas specificity is the ability to 
correctly identify which class the sample does not belong to (Almeida, 
Fidelis, Barata, & Poppi, 2013). Accuracy is the overall proportion of 
samples correctly classified. The overall accuracy of the confusion ma-
trix was also assessed with receiver operating characteristic (ROC) 
curves where AUC-ROC corresponds to the area under a ROC curve and 
a single value measures the overall performance of a binary classifier 
(Hanley & McNeil, 1982). It ranges from 0.5 to 1 where the lowest value 

represents a random classifier and the maximum value represents a 
perfect classifier (Hanley & McNeil, 1982). Three AUC-ROC curves were 
measured to evaluate the ability of the model to discriminate between 
the different classes and this was done for both models. The two PLS-DA 
were then compared to see which one provides the best results. The 
quality of the PLS-DA models was evaluated with the following pa-
rameters (R2 and Q2) representing the explained variance and the pre-
dictive capability of the model, respectively. R2X and R2Y represent the 
fraction of variance of the X and Y matrix, respectively. Q2Y represents 
the predictive accuracy of the model, with the cumulative (cum) values 
of R2X, R2Y and Q2Y equating to ~1 indicating an effective model (Kong 
et al., 2015). Permutation tests were performed with SIMCA 17.0 
(Sartorius, 2020) on the validation set. Hundred permutations were 
done for each model and to reduce the risk of overfitting. Plots showing 
the correlation coefficients between the original Y and the permuted Y 
versus the R2Y and Q2 were obtained. 

The fitted regression lines were displayed, connecting the observed 
Q2 to the centroid of permuted Q2 cluster. The model is considered valid 
if all Q2 values from the permuted data set to the left are lower than the 
Q2 value on the actual data set to the right and if the regression line has a 
negative value of intercept on the y-axis. 

3. Results 

3.1. Marbling measurement and near-infrared spectra 

The distribution of MSA and AUS-MEAT scores within country and 
relative descriptive statistics are shown in Figs. 1 and 2. French data 
showed a slighter lower mean but a greater coefficient of variation (CV) 
than Italian ones (Fig. 1). Fig. 2 shows samples from each country 
grouped by classes of AUS-MEAT, specifically class 0, 1, 2 and > 2. 

The average raw absorbance spectrum for French and Italian 

Fig. 1. Distribution of MSA marbling scores and descriptive statistics within country.  
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carcasses are depicted in Fig. 3, showing the same trend of the curves 
with a narrow peak observed at 762 nm (13,123.36 cm− 1) and a wider 
one around 984 nm (10,162.60 cm− 1), but a difference in absorbance. 
The total Italian (a) and French (b) spectra colored according to the level 
of marbling are shown in Fig. 4. 

3.2. Near-infrared spectroscopy prediction models 

Statistics of the best prediction for each country and for the 2 data-
sets merged are shown in Table 2 with the first process using WinISI 4 
and Table 3 with the second process using Pirouette 4.5. 

With the first process using WinISI 4, the model was developed using 
a 15-fold cross-validation. No scatter correction was applied for MSA 
and AUS-MEAT scores except for the prediction of the latter in the 
French dataset, where SNV was used. Latent variables ranged from 5 to 7 
for MSA and from 7 to 9 for AUS-MEAT. Overall, the equations for MSA 
marbling were developed by applying a first derivative, over a gap of 
four data points for the individual countries and 8 data points for the 
merged dataset. On the other hand, the best models for AUS-MEAT were 
obtained without calculating derivative for the French and Italian 
dataset but using the first order of derivatization applied over a gap of 8 
data points for the complete dataset with both countries merged. The 
outliers detected were < 11.2% for all the cases. The best prediction 
model for MSA scores was obtained using data from France (R2

CV = 0.58, 
RPD = 1.69), whereas the best one for AUS-MEAT scores was developed 

using Italian samples (R2
CV = 0.47, RPD = 1.33). 

The external validation performed within and across countries 
confirmed the results obtained from the cross-validation (Table 4). The 
best R2

CV and R2
Ext for MSA marbling were reached using the French 

dataset but overall, final prediction accuracies did not really differ be-
tween countries nor using the merged dataset. Low prediction accuracy 
(R2

Ext < 0.3) was obtained for AUS-MEAT scores when performing 
external validation using all the datasets, therefore results were not re-
ported in the table and no other calibrations were developed for the 
AUS-MEAT parameter. Lastly, when external validation was carried out 
across countries, the LV used for the development of MSA model were 5 
for France and 7 for Italy and the results differed significantly. In 
particular, the Italian data allowed the development of the best pre-
diction model (RPDExt = 1.14) once used as calibration set and then the 
equation has been validated on the French dataset. The linear regression 
of MSA marbling reference versus predicted values when performing the 
external validation within country is shown in Fig. 5. Residual of pre-
diction equations were normally distributed, and bias did not differ 
statistically from zero. 

With the second process using Pirouette 4.5, the spectra from both 
countries were pre-processed by using a first derivative. Both datasets 
provided similar R2

CV (0.59 for France and 0.58 for Italy). Detailed results 
are shown in Table 3. These results are similar from the results of the 
first process. 

Fig. 2. Distribution of AUS-MEAT marbling scores within country.  

Fig. 3. Average raw NIR spectra of French (a) and Italian (b) datasets.  
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3.3. MSA marbling classes discrimination 

Tables 5 and 6 show the results obtained from the PLS-DA models for 
the validation set created selecting randomly 25% of the samples in both 
datasets. Similar results were obtained for both datasets using 11 LV. 
The greatest sensitivity was reached for samples correctly predicted to 
have low MSA scores (72.2% in the dataset with known sex and breed 
[Table 5] and 66.7% in the dataset with random sex and breed 
[Table 6]). Lower sensitivity was obtained for samples belonging to 
medium (52.6% in first dataset [Table 5] and 52.2% in the second 
dataset [Table 6])) and high MSA classes (58.6% in the first dataset 
[Table 5] and 63.6% in the second dataset [Table 6]). On the other hand, 
specificity ranged from 74.4% to 83.1% for all the classes. The confusion 

matrix for both datasets had an overall accuracy of 61%. 
The AUC-ROC curves for both datasets also provided similar results. 

The AUC values for the prediction for the low and high classes were 
above 0.8 in both datasets. Results for the AUC values are shown in 
Fig. 7. The prediction for the medium classes had values above 0.5 in 
both datasets but <0.8 (Fig. 7). 

The permuted R2 and Q2 for the low and high classes were lower than 
the original values on the right (Fig. 8(a); Fig. 8(c) respectively). This 
suggests that the model fitting was valid, and this was unlikely to be 
built randomly. The permuted R2 and Q2 for the medium classes had 
similar values to the original showing that the prediction for the medium 
class could be built randomly (Fig. 8(b)). 

Fig. 4. Raw NIR spectra of (a) Italian samples and (b) French samples, colored according to the MSA marbling score.  
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4. Discussion 

The objective of this study was to develop NIRS prediction models for 
MSA and AUS-MEAT marbling scores with spectra collected using a 
portable and handheld NIR spectrometer. The spectra were collected in 
the slaughterhouse and validated within and across two countries 
mainly for the two major French beef breeds (Limousine and Charolais). 
It was ensured that the variability among the instruments used in the 
two countries did not make the comparison flawed since NIR 

spectrometers often require standardization methods (Bouveresse & 
Massart, 1996; Shenk & Westerhaus, 1991). We therefore carried out the 
measurements on the same carcasses with the same SCiO instruments. 
Inter and intra instrument variability was negligible and therefore we 
concluded that the instruments perform similarly. 

The spectra were collected in reflectance mode and then recorded as 
absorbance, which is calculated as log10(1/Reflectance). In the litera-
ture, NIR reflectance spectroscopy showed a higher accuracy in pre-
dicting fat content using both benchtop (Alomar, Gallo, Castañeda, & 

Table 2 
Fitting statistics of modified partial least squares regression models (mPLS) in 15-fold cross-validation for MSA marbling score and AUS-MEAT score within and across 
countries, developed using near-infrared reflectance spectroscopy on beef Longissimus thoracis.  

Trait Country Scatter correctiona MTb nc outliers LVd SEC
e R2

C
f SECV

g R2
CV

h RPDExt
i 

MSA Italy Nonej,k 1,4,4,1 400 19 7 54.49 0.57 57.92 0.51 1.61  
France None 1,4,4,1 429 48 5 66.05 0.60 67.84 0.58 1.69  
Italy + France None 1,8,8,1 829 78 7 64.46 0.56 65.64 0.54 1.59 

AUS-MEAT Italy None 0,0,1,1 400 20 8 0.55 0.50 0.57 0.47 1.33  
France SNVk 0,0,1,1 173 19 9 0.62 0.48 0.69 0.36 1.02  
Italy + France None 1,8,8,1 573 61 7 0.57 0.47 0.58 0.44 1.27  

a Scatter correction = pre-processing technique to reduce noise. 
b MT = mathematical treatment (first digit indicates the derivative treatment). 
c n = total number of samples. 
d LV = optimal number of latent variables. 
e SEC = standard error of calibration. 
f R2

C = coefficient of determination of calibration. 
g SECV = standard error of cross-validation. 
h R2

CV = coefficient of determination of cross-validation. 
i RPD = ratio of performance to deviation. 
j none = no correction. 
k SNV = standard normal variate. 

Table 3 
Statistics for PLS models for prediction of meat MSA marbling with Pirouette 4.5.  

Trait Country Scatter correctiona MTb nc outliers LVd SEC
e R2

C
f SECV

g R2
CV

h 

MSA Italy OSC 1D 400 4 4 56.76 0.51 54.09 0.58  
France OSC 1D 429 0 9 76.15 0.53 70.71 0.59  

a Scatter correction = pre-processing technique to reduce noise. 
b MT = mathematical treatment (first digit indicates the derivative treatment). 
c n = total number of samples. 
d LV = optimal number of latent variables. 
e SEC = standard error of calibration. 
f R2

C = coefficient of determination of calibration. 
g SECV = standard error of cross-validation. 
h R2

CV = coefficient of determination of cross-validation. 

Table 4 
Fitting statistics of modified partial least square regression models using external validation for MSA marbling within and across countries.    

Within countries 

Calibration set (66%) Validation set (34%) 

Trait Country LVa SECV
b R2

CV
c  Bias Slope SEP

d R2
Ext

e RPDExt
f 

MSA Italy 7 57.27 0.51  10.64 0.97 72.37 0.46 1.34  
France 10 65.96 0.60  − 2.65 0.88 83.1 0.46 1.36  
Italy + France 10 64.49 0.57  − 4.72 0.96 79.89 0.44 1.23  

Across countries 

MSA France 5 67.84 0.58 Italy 78.5 0.86 105.47 0.44 0.89  
Italy 7 57.92 0.51 France − 26.44 0.89 100.11 0.29 1.14  

a LV = optimal number of latent variables. 
b SECV = standard error of cross-validation. 
c R2

CV = coefficient of determination of cross-validation. 
d SEP = standard error of external validation. 
e R2

Ext = coefficient of determination of external validation. 
f RPDExt = ratio of performance to deviation in external validation. 
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Fuchslocher, 2003; Ripoll et al., 2008) and handheld (Goi, Hocquette, 
Pellattiero, & De Marchi, 2022) devices in beef and also in other species 
(Dixit et al., 2017). 

This study had a relatively large sample size of 829 animals 
compared to other studies mostly ranging between 30 and 150 (Pre-
volnik, Čandek-Potokar, & Škorjanc, 2011). A large sample size ac-
counting for high variance for the predicted traits is crucial to develop 
robust models. 

4.1. Near-infrared spectra and prediction models 

4.1.1. Spectra specificities 
The average NIR spectra reported in Fig. 3 ranges between 740 and 

1070 nm, which corresponds to the Herschel region. According to Beć, 
Grabska, and Huck (2020) and Schrieve, Melish, and Ullman (1991) this 
spectral region is characterized by a narrow range, a low to moderate 
chemical specificity, a low sensitivity, an overlapping contributions in 
the spectra, and by difficulties in spectral interpretation. Beć et al. 
(2020) stated that meat includes a certain number of chromophores that 
are oxymyoglobin, water, fat, and protein which have an absorption 
band in the NIR region. In our study, the VIP profile indicated the 
important regions of the spectra, considering 1 as a threshold for MSA 
values (Fig. 6). VIP scores indicate the importance of each variable in the 
projection used in a PLS (Banerjee et al., 2013) model and is often used 
for variable selection. The most important parts of the spectra were: 
740–772 nm, 826–843 nm, 862–867 nm, 918–948 nm, 963–969 nm, 
and 1054–1070 nm. The peak observed at 762 nm (13,123.36 cm− 1) is 
assumed to be related to OH third overtone or produced by the oxidation 
of myoglobin or deoxymyoglobin as stated by Cozzolino and Murray 
(2002), while according to Allen, Hall, Dhillon, Owen, and Beard (2012) 
the band nearby 970 nm (10,309.28 cm− 1) nm is related with OH second 
overtone associated to the water content in the samples. The absorption 
peak at 920 nm (10,869.57 cm− 1) has been associated with the 2nd 
overtone of the stretching vibrational mode of the C–H bond (Wilson, 
Nadeau, Jaworski, Tromberg, & Durkin, 2015). Lipids and water consist 

Fig. 5. Real vs. Predicted MSA marbling score values when performing external validation within country (data from Table 3).  

Table 5 
Confusion matrix for MSA marbling classes with Model performance using 
samples with known information of animal sex and breed.  

MSA class Low 
(predicted) 

Medium 
(predicted) 

High 
(predicted) 

Total 

Low (Actual) 39 13 2 54 
Medium 

(Actual) 
15 30 12 57 

High (Actual) 7 17 34 58  

Model performance, % 
Sensitivity 72.2 52.6 58.6  
Specificity 74.4 70.9 83.1  
Overall 

Accuracy  
61    

Table 6 
Confusion matrix for MSA marbling with samples of different animals without 
any information of breed and sex.  

MSA class Low 
(predicted) 

Medium 
(predicted) 

High 
(predicted) 

Total 

Low (Actual) 42 18 3 63 
Medium 

(Actual) 
21 35 11 67 

High (Actual) 3 25 49 77  

Model performance, % 
Sensitivity 66.7 52.2 63.6  
Specificity 77.8 67.9 84.6  
Overall 

Accuracy  
60.9    
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of several overlapping peaks as a result of C–H bond vibrations within 
the different structural groups (single bond CH3, >CH2, triple bond CH 
and > CH (aromatic)) of the lipid molecules (Jansen, Wu, van der Steen, 
& van Soest, 2014). Therefore, our data will be mostly influenced by the 
level of oxidation of myoglobin and water content of each carcasses as 
demonstrated by Wold et al. (2022). It has been shown that the con-
centration of myoglobin as well as its level oxygenation in meat has a 
strong impact on the NIR spectra and can give deviations in the esti-
mated marbling scores (Wold et al., 2022). This impact of myoglobin 
oxidation should therefore be considered for the industrial imple-
mentation of NIR spectrometer. 

4.1.2. Model validation 
With the first process, when performing the MSA calibration, the 

deleted outliers ranged between 4.8 and 11.2% and 5 LV were used for 
the French dataset which was slightly lower than that used to obtain the 
best model for the Italian and the merged dataset (Table 2). 

With the second process, 9 LV were used for French dataset and 4 LV 
for Italy, while 4 outliers were removed from the Italian dataset and no 
outlier from the French one. 

In order to validate the model, the interpretation of R2
CV was based on 

the work by Karoui et al. (2006). This study reported that a prediction 
model with R2

CV between 0.66 and 0.81 could give an approximate 
quantitative estimation of the reference value, a R2

CV between 0.82 and 
0.90 could give a good estimation, and above 0.91 could give an 
excellent estimation. With the first process and when performing cross- 
validation, samples from France provided the greatest accuracy with 
both processes. However, these samples had the highest SECV. This 
higher SECV could be explained by the fact that samples from France 
included animals from different sexes and breeds. The Italian samples 
had the lowest SECV since the animals all had the same characteristics. 
Sample uniformity can therefore help to reduce SECV. 

The interpretation of RPD was based on the criteria established by 
Williams (2014) who indicated that prediction model with an RPD 
below 1.9 is not recommended to be used, an RPD between 2.5 and 2.9 
could be applied for screening, an RPD above 3.0 could be adequate for 
quality control, and a RPD above 4.0 could be adequate for any appli-
cation. This parameter provides a metric of model validity which is more 
objective since it is a non-dimensional statistic. When performing cross- 
validation, RPD value was at most 1.69. Thus, we can observe that the 
prediction models for MSA marbling provided better results than for 
AUS-MEAT marbling which had RPD of <1.4 in all datasets. When 

considering the RPD for MSA marbling, no difference was detected be-
tween the Italian and the merged dataset. 

When performing the external validation within country (Table 4), 
R2

Ext was slightly lower than using cross-validation as expected, and all 
the datasets achieved an almost equal value between them as reported in 
Fig. 5. The same occurred with the RPD. When performing the validation 
across countries, the more accurate model when considering the R2

Ext 
was developed using the French dataset and validated on the Italian one, 
however due to the greater SEP it resulted being unsatisfactory with 
reference to RPDExt. Furthermore, the small variation among the sam-
ples (standard deviation of 0.15) most likely decreased the predictive 
performance and robustness of the calibration model, generating a low 
R2. 

Overall, according to the criteria of estimation of goodness of the 
models, similar results were obtained from both processes. OSC did 
provide better results as discussed by Wold et al., 1998. These models 
cannot be considered good enough to be applied in place of marbling 
evaluation by graders. Nevertheless, low or moderate phenotypic cor-
relations between the reference and its prediction may not reflect the 
genetic association that exists between them (Costa, Visentin, De 
Marchi, Cassandro, & Penasa, 2019). Moreover, studies on dairy cows 
have demonstrated that infrared predictions could be weakly associated 
with the measured trait at either phenotypic and genetic level, but still 
their association can be considered good for selection purposes (Bene-
det, Costa, De Marchi, & Penasa, 2020; Costa et al., 2021). Therefore, 
although the prediction accuracy is not sufficient for a punctual deter-
mination, the prediction can be used as a proxy of the real target trait 
and be used to discriminate between low and high values of MSA as well 
as for genetic purposes. 

For a chiller assessor to gain/retain ABCAS accreditation, he must be 
able to classify correctly 70% of carcasses within ±50 marbling units 
from the reference score and 100% between 100 units of the reference 
score (Rosenvold, 2012). From this prediction model, we therefore 
investigated what percentage of the data was correctly predicted in the 
range ± 50. According to our results, only about 50% of marbling scores 
were correctly predicted within ±50 units and 83.4% within ±100. 
Therefore, SCiO spectrometer cannot be accredited for the assessment of 
marbling based on the current prediction model. 

4.2. Technical limitations 

As shown by different studies, the efficiency of prediction on meat 

Fig. 6. Variable Importance in the Projection (VIP) profile of the selected Partial Least Square Regression (PLSR) model predicting MSA marbling scores. X axis : 
Wavelength (nm) Y axis : Variable Importance in the projection. 
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depends on the state of the sample, whether minced or intact. Better 
predictions are made with minced samples due to a more homogeneous 
mixture (Barlocco, Vadell, Ballesteros, Galietta, & Cozzolino, 2006; 
Prevolnik, Čandek-Potokar, & Škorjanc, 2004). On intact sample, the 
NIR signal is therefore affected by the heterogeneity of the sampling site 
(Przybylski & Hopkins, 2015). Homogenization gives better results 
because fiber arrangement has been destroyed and randomized thereby 
averaging the effect of scattering but this is a strong limitation for on- 
line applications (Tøgersen, Arnesen, Nilsen, & Hildrum, 2003). Intact 
muscles, on the other hand, can act as optical fibers that conduct light 
along their lengths and reduce reflectance (Przybylski & Hopkins, 
2015). This can therefore explain why our prediction models could not 
give totally satisfactory results since the spectra were collected on intact 
samples. If the contribution of muscle heterogeneity to the variability in 
NIR predictions was known, it would be possible to estimate how much 
of this variation in predictions is due to other factors and how much NIR 
needs to be enhanced to improve its accuracy. As it was reported by 
Rosenvold (2012), when collecting the spectra, even whether efforts are 
done to adjust the probe in order to capture as much signal from the fat 

as possible, it is inevitable that information will be captured from other 
tissues. We experienced the same situation when collecting spectra with 
SCiO spectrometer where we eventually had some absorbance on the 
muscle and not on the intramuscular fat. This can therefore increase 
noise and decrease predictivity. 

Furthermore, MSA marbling AUS-MEAT scores (considered as the 
reference value) are visual parameters with technical variability, and 
this introduces additional error into the model of prediction despite its 
positive correlation with intramuscular fat levels obtained in the lab 
(Frank et al., 2016). The different pre-processing methods used to 
reduce the effect of heterogeneity cannot increase NIR sensitivity. 

The NIR sensitivity could be enhanced by increasing the number of 
scan replication (Rødbotten, Nilsen, & Hildrum, 2000; Rosenvold, 
2012). For this reason, we collected 5 scans per carcass despite NIR 
measurement was done on the production chain, which is fast and 
cannot be slowed down. Rosenvold (2012) could reach the targeted 
standard (70% in the range ± 50) with 40 scans. This will unfortunately 
increase the time of scanning for each carcass and limit online appli-
cation since, in practice, the number of scans could not be increased 

Fig. 7. ROC curves for the prediction for each class (a) considering sex and breed’ (b) without considering sex and breed. TPR = True positive rate, FPR = False 
Positive rate. 
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indefinitely. When collecting the spectra, we used a stand-off to avoid 
the meat touching the probe glass window and limit interference with 
the surrounding light. This stand-off could be removed to increase 
sensitivity and this could increase the signal captured from the sample 
(Rady, Fischer, Reeves, Logan, & James Watson, 2020). However, if this 
approach was proven as useful, it might require more frequent cleaning 
of the probe window (Rosenvold, 2012). 

Near-infrared models lacked robustness and did not gave completely 
satisfactory predictions when used on a new batch. Also, a similar type 
of sensor (900–1700 nm) could not give satisfactory results as shown in a 
study by Coombs, Fajardo, and González (2021). We should also 

consider that industrial conditions are exposed to fluctuations in hu-
midity and temperature (Przybylski & Hopkins, 2015). One solution 
could be the use of fiber optic probes. Better results could be achieved by 
acquiring adding spatial information to spectral information as Hypec-
tral imaging does. Hyperspectral imaging integrates spectroscopy and 
computer vision techniques and this provided better results to predict 
marbling score for the Japanese standard classification (Velásquez, 
Cruz-Tirado, Siche, & Quevedo, 2017).Other types of statistical ap-
proaches may be suggested in order to increase accuracy, such as neural 
networks (Prevolnik et al., 2011), decision tree (Velásquez et al., 2017) 
and a model updating method based on just-in-time learning (Zhang 

Fig. 8. Permutation plots for the (a) low, (b) medium, and (c) high class.  
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et al., 2022). 

4.3. MSA class prediction 

Beef industry does not need to accurately predict marbling score but 
it rather aims to ensure good eating quality of beef to the consumer, thus 
reaching a minimum level of marbling accordingly. In other words, 
classifying carcasses in low-, medium- and high- marbling groups could 
be sufficient from a commercial point of view. Previous studies have 
demonstrated that the intramuscular fat deposition, and therefore 
marbling, are influenced by a wider range of factors, such as breed, sex, 
age, and diet (Nguyen, Nguyen, & Malau-Aduli, 2021; Park et al., 2018). 
Differences were found in the accuracies of prediction of fatty acids for 
Aberdeen Angus and cross bred Limousine (Prieto et al., 2011). One 
reason could be the differences in the adipocyte size between breeds that 
can influence the NIR spectra collected. These results therefore suggest 
the use of specific prediction equations for individual breeds and sexes 
(Prieto et al., 2011). 

From the confusion matrix, the predictability for the low marbling 
levels is generally higher. Therefore, marbling scores lower than 270 are 
better predicted for both sexes and breeds. This is quite close to our 
average MSA values considering the range of ±50. The overall accuracy 
of the confusion matrix was 61%, meaning that 61% of all the carcasses 
were correctly classified. However, with this approach, we still could not 
reach the targeted range for MSA accreditation of carcass graders (70% 
of well classified samples within ±50). 

The interpretation for the AUC-ROC curves was done based on a 
previous study done by (Yang & Berdine, 2017). It was suggested that a 
value of AUC = 0.5 allows no discrimination, AUC value between 0.5 
and 0.6 gives a poor discrimination, AUC value between 0.6 and 0.7 
gives an acceptable discrimination, AUC value between 0.7 and 0.8 
gives an excellent discrimination and AUC value >0.9 gives an 
outstanding discrimination. From this, we can conclude that our model 
could predict the low and high class given that the AUC values were 
above 0.8 for both models. 

As the two PLS-DA models with or without the inclusion of data 
related to animal breed and sex provided similar results, our study 
suggests that the prediction of MSA classes could be done independently 
of sex and breed information with a large dataset. Results could be 
improved by having more animals in each class. 

5. Conclusion 

The measurement of carcass quality traits in the chiller can be 
laborious since commercial slaughterhouses need to acquire chiller as-
sessors, finance the acquisition and retention of the accreditation for 
assessors. This process can be expensive for small or large scale 
slaughterhouses. Therefore, in order to maximize economic benefits and 
increase grading accuracy as well as reliability, NIRS can offer a viable 
solution. This study was performed on a large sample size to evaluate if 
the spectra obtained from a handheld NIR spectrometer could help to 
predict MSA and AUS-MEAT marbling scores. Different procedures were 
applied using different software in order to develop the best models. The 
chemometrics procedures could not provide completely satisfactory 
results for prediction of individual scores for both measured traits, 
preventing the predicted values from being used as a substitute for the 
official evaluation of marbling by accredited operators. The PLS-DA 
model could predict extreme classes (low and high). In the context of 
this study, carcasses with a marbling score higher than 370 were 
considered high. This value can relatively be low compared to the whole 
MSA marbling scale which has a maximum value of 1190. This is 
because Australian breeds (especially English native breeds) have more 
intramuscular fat than European breeds. Our results are therefore more 
adapted to the European context. Better results can be achieved by 
performing the analysis on a dataset with large variability in each class. 
Moreover, there could be a genetic association between infrared 

predicted and reference traits which might be sufficient for selection 
purposes and it is worth noting that this device allows the reading of a 
sample rapidly, obtaining a very high number of phenotypes in many 
slaughterhouses when compared to the activity that the few official 
graders present in Europe can perform. The investigations in this study 
therefore led to the conclusion that, hand held spectrometers can be 
suitable to predict classes of marbling rather than individual marbling 
scores. For meat companies that wish to use such small, simple, and 
cheap NIR devices with narrow spectral range, further calibrations 
should be performed on a wide variety of animals and marbling levels, 
taking into account technical variability for both carcass graders and 
slaughtering conditions including constraints in commercial 
slaughterhouses. 
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