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and how service VMIs performing the container orchestration are installed in the 
Virtual Research Environment (VRE). Stable releases are planned bi-annually, the 
first one in 2017.02. The chosen cloud and software architectures are well-aligned 
with emerging bioinformatics efforts for use in national and European scientific cloud 
infrastructures. 
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1. EXECUTIVE SUMMARY 
 

We here report on the harmonised ecosystem of interacting services necessary to 
facilitate core PhenoMeNal toolsets and pipelines, both locally and in the cloud. In this 
report we describe the architecture of the service Virtual Machine Images (VMIs) with 
the user-facing web interfaces, where we offer Galaxy as a visual workflow engine and 
Jupyter for interactive explorative analysis in R and Python. We also describe how the 
service VMIs performing the container orchestration are installed in the Virtual Research 
Environment (VRE) in an automated fashion, shielding the users and local 
administrators from the complexity of building their own cloud infrastructure.  

The VMIs described here build on the work from deliverables, D5.2 (A beta-version of 
PhenoMeNal integration VMI capable of proof-of-concept integration with other VMIs. 
Initial services online supporting Phenomenal data standards), D9.2.1 (PhenomeNal-
Preprocess Virtual Machine Image to enable data producers to locally process raw data 
into standards formats supported in PhenoMeNal) and D9.2.2 (PhenoMeNal-Data 
Virtual Machine Image to enable sharing and dissemination of standardised and 
processed omics data to participating online repositories, like MetaboLights), which 
produced the Continuous Integration system, Virtual Machines Images (VMIs) for 
compute infrastructure, data standardisation and storage repository upload, 
respectively. Furthermore, we have created a VRE release plan scheduling the public 
releases of the PhenoMeNal infrastructure with dependencies for the first two use cases 
data processing workflows in February 2017. In conjunction with the compute VMIs due 
in D9.2.4, we have all the required components and scheduled the release process to 
launch the first release of PhenoMeNal Alanine in 2017.02. 

 
2. WORK TOWARDS PROJECT OBJECTIVES  
 

A summary of work towards the project objectives: 

Objective 9.1: “Specify and integrate software pipelines and tools utilised in the 
PhenoMeNal e-Infrastructure into VMIs, adhering to data standards developed in WP8 
and supporting the interoperability and federation middleware developed in WP5. Most 
tools will be already available (see table 1.1) and we will develop new applications to 
complete ‘missing links’ in pipelines. Although two explicit releases for VMIs are listed 
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as deliverables below, we will use public repositories and continuous integration to 
always provide development snapshots of the infrastructure VMIs.” 

● We have created cloud-ready VMIs for the Galaxy and Jupyter user facing web 
applications. 

● All the VMIs are available on the PhenoMeNal public container registry. 
● We have created a release plan with four defined stable releases during the 

project runtime that include the tools that have passed a multi-layer testing 
procedure. 
 

Objective 9.2: “Develop methods to scale-up software pipelines for high-throughput 
analysis, supporting distributed execution on e.g. local clusters, private clouds, 
federated clouds, or GRIDs.” 

● We have created cloud-ready VMIs for the Galaxy and Jupyter user facing web 
applications. 

● All the VMIs are available on the PhenoMeNal public container registry. 
● All of the software packaged in containers has been tested to run on scalable 

infrastructure on the Google Cloud Platform (GCP), Amazon Web Services 
(AWS) and three different OpenStack installations (EMBL-EBI Embassy cloud, 
the German scientific de.NBI cloud1 and the commercial Swedish operator 
CityCloud) 

 
3. DETAILED REPORT ON THE DELIVERABLE 

 

In this document we report on the delivery of the Services Virtual Machine Images 
(VMIs) to facilitate the PhenoMeNal toolsets and pipelines, as shown in the overview in 
Figure 1. In particular, we describe: 

1. The service VMIs with the user-facing web interfaces, where we offer Galaxy as 
a workflow engine and Jupyter for interactive explorative analysis in R and 
Python; 

2. The service VMIs performing the container orchestration, which are installed in 
the Virtual Research Environment (VRE); 

3. The containerization conventions and testing of the tools required in the use case 
workflows; 

4. The release process for the VRE. 
                                            
1 http://www.denbi.de/localmedia/documents/quarterly_newsletter_05.pdf  
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Figure 1: Architectural overview. Shown in green are the user-facing service VMIs with 
the web interfaces to design and run workflows (Galaxy) as well as programmatic 
access to specific research questions (Jupyter). As container orchestration service we 
use kubernetes, which is shown in orange. This central component is being used to 
control the life cycle of both the service VMIs and the compute VMIs shown in pink (the 
latter will be described in detail in D9.2.4). 

3.1. Service VMIs with User web interfaces 

A central component of the PhenoMeNal platform are the web interface VMIs that are 
deployed in cloud environments by bioinformaticians and local cloud administrators for 
the actual end-users, e.g., clinicians, biochemists. In PhenoMeNal we chose Galaxy to 
be the web interface VMI for visual workflow development and Jupyter2 to be the web 
interface VMI for programmatic access to the containerized tools (see more details in 
the following sections). Both Galaxy and Jupyter are long-living service VMIs and are 
distinct from the short-living compute service VMIs – e.g., defined data analysis tools 
running particular jobs. By contrast, the latter are only destined to run until they have 
finished the assigned computational task.  

  

                                            
2 "Jupyter." http://jupyter.org/. Accessed 16 Dec. 2016. 
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Galaxy for visual workflow development 

In PhenoMeNal we chose the Galaxy environment because it allows users to create and 
manipulate workflows in a very flexible way. Galaxy is a web application that provides a 
graphical user interface which can be easily used and customised by the end user. 
Galaxy is a well established Bioinformatics Workflow environment with a rich community 
of users and developers supporting it. According to the recent survey carried out in the 
field of Metabolomics and reported in Deliverable 8.1, it was by far the most well known 
workflow environment among practitioners in the field.  

Within PhenoMeNal, we deploy a Galaxy instance in the cloud environment of each 
VRE. To achieve that, it is vital to design and create the appropriate infrastructure. The 
underlying technical infrastructure is described in the section “Service VMIs performing 
the container orchestration”, where we describe how we facilitate running and accessing 
the compute VMIs (which represent the individual tools and components of the 
workflows, due in D9.2.4). 

Jupyter for programmatic access to containerised tools 

Jupyter Notebook3 is a web application that allows users to create and share 
documents – called notebooks – that contain live code, equations, visualizations and 
explanatory text. Compared to Galaxy, Jupyter is a more flexible tool that provides a 
mixed command line and graphical interface, allowing advanced users to 
programmatically leverage the platform. For instance, it is simple with Jupyter to 
generate interactive results and publication-ready graphics in downstream analyses.  

The scripting/coding nature of Jupyter allows users to run workflows of containerized 
tools programmatically, through the Kubernetes4 REST API. To demonstrate its 
potential within PhenoMeNal, we have created an OpenMS5 preprocessing workflow 
using the PhenoMeNal OpenMS container combined with an R-based downstream 
analysis. 

In the downstream analysis notebook, the most important feature is the interactivity, 
enabling parameters to be changed and code to be rerun and directly evaluated using 
visualizations and direct output. Default analysis workflows can be shared with 
colleagues and collaborators and further customized for individual studies, to promote 

                                            
3 "Jupyter." http://jupyter.org/. Accessed 16 Dec. 2016. 
4 “Kubernetes - Production-Grade Container Orchestration” http://kubernetes.io/. Accessed 20 Dec 2016 
5 "OpenMS." 17 Jun. 2016, http://www.openms.de/. Accessed 16 Dec. 2016. 
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and increase consistency between studies and decrease time spent on rewriting 
processing workflows.  

To emphasize the convenience that Jupyter Notebook provides, we are currently 
working on a reproduction of the data processing and analysis done by C. Ranninger et 
al.6 The preprocessing is done with the containerised OpenMS, using the same 
parameters that were used in the actual study. The whole workflow, preprocessing and 
downstream analysis will be deployed and controlled from the Jupyter interface. 
Furthermore, to demonstrate scalability, the same workflow will be run with a larger 
dataset, namely the one published by A. Ganna et al.7 as shown in Figure 2. 

 

                                            
6 C. Ranninger et al. (2016). Improving global feature detectabilities through scan range splitting for 
untargeted metabolomics by high-performance liquid chromatography-Orbitrap mass spectrometry, 
Analytica Chimica Acta, 930, 13-22 
7 A. Ganna et al. (2014). Large-scale metabolomic profiling identifies novel biomarkers for incident 
coronary heart disease, PLOS Genetics, 10(12) 
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Figure 2. Screenshot from a Jupyter Notebook showing an excerpt of the source code 
for the creation of a volcano plot (above) and below the generated plots. 

Database and backend service VMI 

Several tools require accessing and performing complex searches on molecular 
databases like PubChem. For example, the Open Source MetFrag software performs 
these queries to annotate high-precision tandem mass spectra of metabolites, which is 
a first and critical step for the identification of a molecule's structure. Candidate 
molecules of different databases are fragmented in silico and matched against mass to 
charge values, and a score is calculated using the fragment peak matches. However, 
performing these database queries on public databases connected to the Internet is a 
major bottleneck for a tool like MetFrag due to load limits on the public service and data 
transfer speeds over the internet. Therefore, when they are required, making these data 
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resources a part of the PhenoMeNal cloud infrastructure is a key to reduce processing 
times. 

We have created the “metfrag-cli”8 VMI to integrate MetFrag in our platform (it is already 
available as Galaxy tool in our public Galaxy instance). To ensure it runs swiftly, we 
have implemented a service VMI facilitating the metfrag-cli VMI by creating local 
database mirrors of the PubChem9 database, as shown in FIgure 3. PubChem contains 
structures and associated biological data on almost 93 million compounds. These VMIs 
consist of a database VMI running the PostgreSQL RDBMS, which has access to local 
storage providing the data resources, and a second backend VMI serving as a data 
importer that downloads all necessary datasets once and copies them via the database 
container to the distributed storage. Once the data import is finished, the metfrag-cli and 
other VMIs requiring database access are able to query data via the database VMI. The 
import VMI can then be used to keep the local database mirrors up to date by 
periodically fetching the updates from the online repositories. As the database storage 
is distributed within the PhenoMeNal cloud infrastructure, the same data can be queried 
from several instances of the database VMI. 

 

 

                                            
8 "GitHub - phnmnl/container-metfrag-cli: Command line interface of ...." 3 Nov. 2016, 
https://github.com/phnmnl/container-metfrag-cli. Accessed 16 Dec. 2016. 
9 "PubChem." https://pubchem.ncbi.nlm.nih.gov/. Accessed 16 Dec. 2016. 
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Figure 3: Architectural overview of database VMIs. The Database VMI is connected to 
a local storage located within the PhenoMeNal cloud infrastructure. Data are imported 
and updated via the Data-Import VMI connected to the Database VMI.  

3.2. Service VMIs performing the container orchestration 

The process of installing and configuring a complete PhenoMeNal infrastructure with all 
required resources (Galaxy and Jupyter on top of multiple Kubernetes nodes, network 
topology and storage volumes etc.) on a given cloud provider would be cumbersome if 
done manually. Instead, we are providing a completely automated installation 
procedure, which allows the end user to have the defined interface service VMIs 
running through a cloud provider only minutes after providing its cloud credentials on 
top of the scalable Kubernetes cluster. 

Installation of the service VMIs in a cloud infrastructure 

The first phase consists of instantiating the resources on the cloud providers. For this 
step, there are cloud-provider-specific automation engines like AWS CloudFormation or 
OpenStack Heat, but to avoid a vendor lock-in, we are using the Open Source project 
Terraform10 to define the required infrastructure: VMs, networks, firewalls and storage 
volumes can easily be defined, leaving to Terraform the task to understand 
                                            
10 https://www.terraform.io/  
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dependencies between all these resources and the order in which they must be created. 
At the time of writing, Terraform supports all the major public cloud providers (AWS, 
Google Cloud, Azure, Rackspace, as well as OpenStack).  

After a set of resources is created by Terraform, the second phase consists in the 
installation and configuration of the underlying components of the PhenoMeNal-specific 
software stack. Here, we are using the Open Source Ansible framework11 to customise 
the operating system and install the container engine (Docker), container orchestrator 
(Kubernetes), required overlay network layer (currently flannel, others available) and 
shared file system provision (currently GlusterFS) for running a scalable PhenoMeNal 
VRE. The shared filesystem is created spanning over several VMs with the Open 
Source GlusterFS12 network filesystem. This storage is then used by both the 
PhenoMeNal services – e.g. Galaxy – and the compute nodes, to exchange input and 
output data sets. This part is known as the “software” provisioning layer, and as 
mentioned, is executed through Ansible. At the end of this “software” provisioning 
process, the interface service VMIs (Galaxy and Jupyter) are started on top of 
Kubernetes for the user. We use the Helm13 framework to install all Kubernetes 
managed applications. We have contributed Ansible roles and variable definitions14 to 
the upstream project so that Ansible can install and communicate with a Helm daemon 
running on a provisioned Kubernetes cluster. 

To start the interface service VMIs, Helm downloads and configures the containerised 
components – the upper layers of the PhenoMeNal specific software stack. Helm was 
chosen because it deploys the Service VMIs automatically and encapsulates their 
deployment, making this process independent of whatever was used to deploy the 
underlying Kubernetes cluster.  

Helm uses uses Go templates to make parametrized deployments of complex 
Kubernetes API object constructs and uses YAML with placeholders for variables that 
can be set on deployment time. This strategy facilitates the deployment process. For 
instance, for the PhenoMeNal Galaxy VRE, two Kubernetes Pod objects (one for 
Galaxy, one for PostgreSQL), two Kubernetes Service objects (to access Galaxy and to 
access PostgreSQL from Galaxy), a Kubernetes Secret object (for storing encrypted 
database access), a Kubernetes Configuration Map object (which stores database 
settings) and Ingresses objects are necessary. Each of these contain a number of 
variables, from user names to ports or volumes (storage) preferences, that can vary 

                                            
11 https://www.ansible.com/  
12 https://www.gluster.org/  
13 https://github.com/kubernetes/helm  
14 https://github.com/kubernetes-incubator/kargo/issues/661  
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from a local deployment meant for testing compared to a production deployment at a 
cloud provider (and from cloud provider to cloud provider). Manual Kubernetes object 
deployment would require a number of steps to create all these objects, and changing 
YAML files for each different type of installation. The Helm based installation takes care 
of all of this through a single call, including variable setup for the different scenarios.  

In order to run the specified two phases of the provisioning, we initially selected the 
deployment project MANTL, which is unfortunately not actively maintained anymore by 
its main contributor, Cisco Systems. Hence, we currently use the PhenoMeNal in-house 
developed KubeNow15, using the Kubernetes community-developed KubeAdm16 
administration interface. KubeAdm’s deployment enables the creation of immutable 
images and is considered to be very performant in large deployments (hundreds of 
nodes). KubeNow merges some ideas (such as edge nodes or the embedded usage of 
reverse proxies) from the previously used MANTL.  

We are also investigating Kargo, which has support for complex cloud environments 
and High Availability, as it manages the whole complexity of a Kubernetes deployment. 
Both KubeNow and Kargo make use of the same tool sets for the provisioning 
(Terraform and Ansible), as described above. Kargo17 is a community developed 
project, recently incorporated as an official Kubernetes project, and receives a lot of 
attention from the community and also companies like OpenStack, Mirantis and 
CoreOS.  

Kargo was already used at the beginning of PhenoMeNal (in a non-automated way) to 
provision the existing PhenoMeNal public instances available at the EBI EMBASSY 
Cloud, but was missing important features required in the PhenoMeNal deployment use 
case. In particular, Kargo did initially not allow to provision clusters with a single public 
IP, nor did have built-in support for the required shared file system or the Helm package 
manager. These abilities were contributed by PhenoMeNal developers to the 
community maintained Kargo project.  

Kargo deals with the complexity of setting up a production grade Kubernetes cluster, yet 
this complexity makes the production of an immutable image more complicated. A 
Kargo deployment of about 4 nodes, which should suffice for many PhenoMeNal use 
cases, takes around 15 minutes, and this cluster can later be expanded. It is expected 
that the newer Ansible 2.2 reduces this further. Kargo can also be deployed on top of 
bare metal running a variety of Linux distributions (Ubuntu, Debian, Fedora, CentOS, 

                                            
15 https://github.com/kubenow/KubeNow  
16 http://kubernetes.io/docs/admin/kubeadm/  
17 https://github.com/kubernetes-incubator/kargo  
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RHEL and CoreOS currently). This scenario is not supported in PheNoMeNal, but would 
be possible for institutions that might prefer in-house bare metal instead of on-premises 
or public cloud installations. 

For the first PhenoMeNal release we will use KubeNow. For future releases we will 
need to consider the trade-off between requirements and complexity. Not depending on 
a single software solution that might be abandoned is important for meeting the 
sustainability goals of PhenoMeNal in the long term. 

Within PhenoMeNal, such deployments have been demonstrated on the Google Cloud 
Platform (GCP), Amazon Web Services (AWS) and three different OpenStack 
installations (EMBL-EBI Embassy cloud, the German scientific de.NBI cloud18 and the 
commercial Swedish operator CityCloud). PhenoMeNal is currently in contact with the 
Amazon Web Service team for sponsorship to regularly demonstrate and test the 
installation in their environment.  

The installation configurations for the two phases are developed in the repository 
https://github.com/phnmnl/cloud-deploy-kubenow. The structure is such that the 
description can be readily used by the EBI Cloud Portal developed by the EMBL-EBI 
Technology and Science Integration (TSI) team, and thus the upcoming version of the 
PhenoMeNal Cloud Research Environment features a user-friendly portal-guided 
installation option.  

Local OpenStack installations behind strict firewall configurations require that the 
installation be initiated from the inside. For this case, a scripted installation is available 
to invoke the two phases (Terraform, Ansible and Helm). A graphical interface 
equivalent to the EBI Cloud Portal for such walled-garden installations is planned for 
later in the project. 

Installation of downscaled service VMIs on a local computer 

For smaller compute requirements, the software stack can also be installed on a 
powerful workstation or even on a laptop. For developers, the upper layers of the 
PhenoMeNal-specific software stack (Galaxy, Jupyter and the containerised tools) can 
be installed using the Minikube environment, which configures all components 
optimizing them for local development. In PhenoMeNal we use Minikube to lift up all the 
required Kubernetes components for a working local installation for tool development 
purposes. The actual deployment of the individual PhenoMeNal VMIs is still performed 

                                            
18 http://www.denbi.de/localmedia/documents/quarterly_newsletter_05.pdf  
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with Helm19, i.e. we use Helm to deploy the Service VMIs into both local or cloud-
provisioned Kubernetes cluster.  

The Helm package management thus encapsulates the deployment of our service VMIs 
and makes them independent of the process by which the required Kubernetes cluster 
is provisioned; so whether the end-user prefers Minikube, a PhenoMeNal-based 
provisioned Kubernetes cluster, turn-key Kubernetes on GCE or AWS, or any method of 
provisioning such a cluster, the PhenoMeNal service VMIs can be deployed without 
distinctions. A QuickStart guide for the Helm-based installation is available from the 
PhenoMeNal Wiki: https://github.com/phnmnl/phenomenal-h2020/wiki/QuickStart-
Installation-for-Local-PhenoMeNal-Workflow.  

3.3. Guidelines and conventions for testing and streamlining releases 

The development and operation of an infrastructure like PhenoMeNal requires 
automated testing of all components and processes. A dedicated workshop at the EBI in 
November 2016 was organised to discuss and formulate standards and conventions for 
testing containers, as well as for streamlining current and future releases. As an 
outcome we created guidelines to ensure we meet these standards and conventions 
with the goal of guaranteeing the sustainability and longevity of containers and the 
whole technical infrastructure: (https://github.com/phnmnl/phenomenal-
h2020/wiki/Dockerfile-Guide): 

● Naming scheme: container-app-name, phnmnl/app-name 
● Versioning scheme: app-name:software_version:build_version 
● Defining best practices for continuous integration 

We have created improved Dockerfile definitions and Jenkins job templates for 
building/testing/storing those new images, and we are updating current projects to meet 
the new standards. Implementing the new integration conventions requires a lot of effort 
and coordination between the different WPs. 

During the workshop we defined testing guidelines at different levels20: 

Tool Unit testing refers to unit tests for individual tools. Especially for tools developed 
within the PhenoMeNal consortium, we increase the test coverage. These are light-
weight tests that make sure that binaries can run or are present within the created 
container. Failure at these testing level means that the container built is not pushed to 
our container registry, and hence only previously passing versions are available for 
usage until these test are satisfied at the current version. 
                                            
19 https://github.com/kubernetes/helm  
20 https://github.com/phnmnl/phenomenal-h2020/wiki/Container-testing-guides  
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Container testing: refers to the test of a tool in its runtime environment – the packaged 
container running within the context of a container orchestrator (Kubernetes) to process 
representative subsamples of real data sets. Within the PhenoMeNal infrastructure we 
are using containerization to manage software (tools) and their dependencies as 
complete packages. This packaging is of great help in achieving platform independence 
and reproducibility of analyses. However, to ensure their proper operation, these 
containers need to be tested in an scenario that it is as close as possibly to where they 
will be ultimately used: a VRE which runs on top of a Kubernetes cluster. We have 
implemented automated container testing for the tools we integrated in our platform, 
and we integrated this testing with Jenkins as part of our global project test 
management portal. The standard tests implemented for our containers verify the 
correctness of container definitions, as implemented by the developers, by rebuilding 
containers and running them on known inputs to verify successful execution and the 
correctness of the output. The tests are automatically run whenever new changes are 
committed to the container specification, and previous Tool Unit testing is passed.  

Workflow testing: refers to testing complete Galaxy workflows in headless mode to 
verify their correct execution. Our guidelines define a testing model for workflow 
workflows where test cases a composed of input datasets, workflow parameters, and 
the corresponding expected output datasets; this model is analogous to typical 
component integration testing. We have developed a workflow test harness 
(https://github.com/phnmnl/wft4galaxy) that uses this model to automate workflow 
testing. Using our testing harness, the author of a workflow can define test cases in a 
simple configuration file (in YAML format) which references the prepared input and 
output dataset files and defines any relevant workflow parameters, see Figure 4 for an 
example. The workflow testing software takes care of all the details pertaining to the 
execution of the workflow (e.g., instantiating the workflow on the infrastructure, 
uploading and downloading test datasets, etc.) and verifying that the observed and 
expected results match. Following our accepted software containerization strategy, a 
Docker container with the testing harness has been created, allowing it to be used 
without any previous software installation. Moreover, our workflow testing harness is 
well integrated with the Jenkins testing platform used by PhenoMeNal. By combining 
these two tools, we are able to completely automate the testing of standard workflows 
that are maintained in our (and others’) public repositories and go to form a 
PhenoMeNal workflow library. 
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Figure 4: Example of a workflow test definition. The file defines a test case for a 
workflow with one input dataset and two output datasets. 

Infrastructure testing: refers to testing the deployment of the whole PhenoMeNal 
stack on a local workstation, local OpenStack installation, or public cloud provider.  

This comprehensive testing architecture on all levels is novel in Bioinformatics and sets 
PhenoMeNal apart from other cloud projects. Although testing adds to the complexity of 
building VMIs, it allows us to promptly find software bugs that would otherwise remain 
hidden. Our testing scheme also facilitates the collaboration between the various 
Bioinformaticians and software / tool developers and meets the Sustainability goals as 
defined in the Release plan (see below). 

3.4. Release plan and process for the PhenoMeNal Research Environment  

A PhenoMeNal (stable) release comprises two sets of components for deploying and 
running a PhenoMeNal VRE: 
 

1. The core PhenoMeNal cloud infrastructure contains sets of scripts that are 
responsible for installing PhenoMeNal core components on top of existing local, 
cloud or OpenStack environments and configured to orchestrate and deploy the 
PhenoMeNal VMIs in an automated way. 

2. The PhenoMeNal VMIs which deliver services and workflows. Here, we subsume 
all the individual tools that are encapsulated in containers which can be deployed 
in the PhenoMeNal infrastructure. 

 
The installation and provisioning was described in detail in the chapter “Service VMIs 
performing the container orchestration” above, in the following we describe the release 
process and tests for inclusion of the individual tools and VMIs. 
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PhenoMeNal VREs can be deployed from the either the development builds and as 
stable versions. The stable versions are available as bi-annual releases (Table 1), while 
development versions can be deployed any time from the latest builds from our 
continuous integration (CI) service. 

Release Date Codename Version Supported 

February 2017  Alanine 2017.02 +1 year 

August 2017 Betaine 2017.08 +1 year 

February 2018 Cysteine 2018.02 +1 year 

August 2018 Dopamine 2018.08 +1 year 

February 2019 Epinephrin
e 

2019.02 +1 year 

Table 1: The current (stable) release plan. The maintenance of the 2018.08 version and 
release of 2019.02 will be handled under the sustainability plan. 

Development builds, also referred to as “bleeding edge”, are for testing and getting 
access to the latest and greatest that PhenoMeNal has to offer, and we have started to 
reach out to the metabolomics developer community to also incorporate tools developed 
outside of PhenoMeNal. We encourage tool developers that want to integrate their tools 
into PhenoMeNal to use the development version and provide valuable feedback as 
input for the upcoming stable releases. While we keep all builds of the stable release, 
we only keep the last successful builds of the development branch. Thus, development 
builds are not intended to be used in production environments.  

Stable builds are a selection of the tools that are considered production ready. These 
tools have passed all of our automated tests that are part of our testing framework. For 
a tool at a specified version to be included in a PhenoMeNal release, it needs to pass its 
Tool Unit tests, its Container tests and must not cause a failure for the Workflow tests in 
which it participates. That means they are tested properly, are maintainable, and have 
been well documented. An important aspect of a stable release is reproducibility. A user 
should be able to deploy an instance of a stable PhenoMeNal VRE on his/her preferred 
provider (or even locally for that matter), and be able to run individual tools or complete 
workflows resulting in identical results for the same input data. We accomplish this by 
storing all the release container images, properly version tagged, at each stable release 
in our container registry.  
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The release process includes an alpha release where we freeze the collection of 
containers to undergo integration and usability testing. 2-4 weeks after the alpha 
release we do a beta release where any bugs found in previous versions should be 
fixed. The last step, before the actual release, is the RC (release candidate) where we 
check if the supporting documentation is sufficient and make the final preparations for 
the actual release. 

We target to produce stable releases two times per year. Not all tools in a previous 
version will be guaranteed to be present in a new release. Tools can be replaced or 
obsoleted in newer versions to ensure that the individual tools work together in a 
workflow to produce the expected results. 

Integration of tools into the build and release process 

In the beginning of the incorporation of a tool in PhenoMeNal, the developers create a 
container that encapsulates the dependencies of the tool and the tool itself. This 
container must be made available through the public PhenoMeNal github repository 
(https://github.com/phnmnl), where the convention is to start the repository name with 
‘container-’ and use the git branch ‘develop’ for main development. 

In this repository we also require from the tool developers to supply several files and 
configurations, that are used to different aspects in the build and deployment process: 

● A README.md that explains what the tool does and how it is used21. The 
Information is also picked up and presented in the PhenoMeNal AppDB22  

● A container configuration (e.g. Dockerfile) to build the tool and dependencies and 
package into a container23. 

● Testing scripts (e.g. testRun.sh and required data) that are needed to run tests 
on the tool and the container24 

● A tool definition/configuration file (e.g. galaxy-tool.xml) to make the tool available 
in the Galaxy workflow engine25  

All the details and practices that should be followed by the tool developers are present 
in our dedicated Developer Documentation as part of the PhenoMeNal Wiki26 

                                            
21 https://github.com/phnmnl/phenomenal-h2020/wiki/The-Guideline-for-Container-GitHub-Respository-
README.md-Creation  
22 http://portal.phenomenal-h2020.eu/app-library  
23 https://github.com/phnmnl/phenomenal-h2020/wiki/Dockerfile-Guide  
24 https://github.com/phnmnl/phenomenal-h2020/wiki/Container-testing-guides  
25 For more details, refer Galaxy Manual on writing Tool wrappers: 
https://wiki.galaxyproject.org/Admin/Tools/AddToolTutorial 
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In order to add the tool to the PhenoMeNal build process, it is required to to add a build 
job for the container to the PhenoMeNal Jenkins (http://phenomenal-h2020.eu/jenkins/) 
providing the continuous integration and deployment service. Job creation is based on a 
Jenkins job template27 with several mandatory steps, including proper versioning and 
testing of the container and embedded tool. All the steps required are documented at 
https://github.com/phnmnl/phenomenal-h2020/wiki/Jenkins-Guide. This is being done by 
one of the PhenoMeNal members who will also provides stewardship of the integration 
of the tool in the PhenoMeNal. Once integrated, any change in the github repository will 
then trigger an automated build and test procedure. When both build and test finish 
successfully, the container image is stored in the PhenoMeNal container registry, ready 
for deployment. If the procedure is not successful, the owner of the failing tool container 
will be notified and be requested to fix the failure.  

If the container passes all tests, it is considered to be included in the next stable release 
and changes are merged with the ‘main’ branch in the corresponding GitHub repository 
of the tool. 

 
4. WORK PLAN 
 

Structure and management of WP9 tasks 

As for the rest of the project, all WP9 activities has been managed and tracked by our 
Pivotal Tracker project28 and dedicated online hangouts. 

Program code and VRE installation are managed in public repositories under 
https://github.com/phnmnl, together with issue tracking and commit histories.  

Utilization of resources 

Person Month (PM) contribution towards this deliverable 

Partner EMBL-
EBI 

ICL IPB UB UOXF UU CEA INRA UL CRS4 

PMs 4 3 2 0.5 2 4 2 1 1 1 

                                                                                                                                             
26 https://github.com/phnmnl/phenomenal-h2020/wiki/Developer-Documentation  
27 http://phenomenal-h2020.eu/jenkins/job/container-template-project/ (Configuration details of the 
template can only be seen and changed with an account). 
28 http://phenomenal-h2020.eu/home/about/project-management-tool/ 
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Next steps 

The next step will be the delivery of the “D9.2.4 - Compute Virtual Machine Image to 
enable standardised compute capabilities” and complete the first release “Alanine”, and 
reach out to a broader metabolomics and medical user and developer community.  

Updated releases will cover a larger number of tools and thus workflows required for 
clinical data processing, covering all steps in data management from preprocessing, 
data processing, statistical analysis, data reduction, publication and storage of the 
ultimate scientific results generated. We also aim to standardise data exchange formats 
not only for the input and metadata, but also within the workflows.  

 
5. DELIVERY AND SCHEDULE  
 

The deliverable is submitted on time. 

 
6. CONCLUSION 
 

In this report we described the architecture of the service VMIs with the user-facing web 
interfaces, where we offer Galaxy as a workflow engine and Jupyter for interactive 
explorative analysis in R and Python, and how the service VMIs performing the 
container orchestration are installed in the Virtual Research Environment (VRE) in an 
automated fashion, shielding the users and local administrators from the complexity of 
building their own cloud infrastructure. Together with the compute VMIs due in D9.2.4, 
we have all the required components and laid out the release process to launch the first 
release of PhenoMeNal Alanine in 2017.02. 

The chosen cloud and software architectures are well-aligned with emerging 
bioinformatics infrastructures in other disciplines. This will facilitate the adoption by both 
developers and users, and paves the way for the use of PhenoMeNal in national and 
european scientific cloud infrastructures. 

 


