

Deliverable 9.2.3

Project ID 654241

Project Title A comprehensive and standardised e-infrastructure for
analysing medical metabolic phenotype data.

Project Acronym PhenoMeNal

Start Date of the Project 1st September 2015

Duration of the Project 36 Months

Work Package Number 9

Work Package Title WP9 Tools, Workflows, Audit and Data Management

Deliverable Title D9.2.3 Services Virtual Machine Image to facilitate the
PhenoMeNal toolsets and pipelines, both locally and in
the grid.

Delivery Date M16

Work Package leader IPB

Contributing Partners IPB, ICL, UU, EMBL-EBI, UL, CRS4, UOXF

Authors Steffen Neumann, Noureddin Sadawi, Jianliang Gao,
Daniel Schober, Christoph Ruttkies, Kristian Peters,
Philippe Rocca-Serra, David Johnson, Alejandra
Gonzalez-Beltran, Reza Salek, Michael van Vliet, Luca
Pireddu, Ola Spjuth, Stephanie Herman, Pablo Moreno.

Abstract
Description of the architecture of the service VMIs with user-facing web interfaces

 2

and how service VMIs performing the container orchestration are installed in the
Virtual Research Environment (VRE). Stable releases are planned bi-annually, the
first one in 2017.02. The chosen cloud and software architectures are well-aligned
with emerging bioinformatics efforts for use in national and European scientific cloud
infrastructures.

 3

CONTENTS	

1.	 EXECUTIVE	SUMMARY	...	4	

2.	 WORK	TOWARDS	PROJECT	OBJECTIVES	...	4	

3.	 DETAILED	REPORT	ON	THE	DELIVERABLE	...	5	
3.1.	 Service	VMIs	with	User	web	interfaces	...	6	
3.2.	 Service	VMIs	performing	the	container	orchestration	..	11	
3.3.	 Guidelines	and	conventions	for	testing	and	streamlining	releases	15	
3.4.	 Release	plan	and	process	for	the	PhenoMeNal	Research	Environment	17	

4.	 WORK	PLAN	...	20	

5.	 DELIVERY	AND	SCHEDULE	...	21	

6.	 CONCLUSION	..	21	

 4

1. EXECUTIVE SUMMARY

We here report on the harmonised ecosystem of interacting services necessary to
facilitate core PhenoMeNal toolsets and pipelines, both locally and in the cloud. In this
report we describe the architecture of the service Virtual Machine Images (VMIs) with
the user-facing web interfaces, where we offer Galaxy as a visual workflow engine and
Jupyter for interactive explorative analysis in R and Python. We also describe how the
service VMIs performing the container orchestration are installed in the Virtual Research
Environment (VRE) in an automated fashion, shielding the users and local
administrators from the complexity of building their own cloud infrastructure.

The VMIs described here build on the work from deliverables, D5.2 (A beta-version of
PhenoMeNal integration VMI capable of proof-of-concept integration with other VMIs.
Initial services online supporting Phenomenal data standards), D9.2.1 (PhenomeNal-
Preprocess Virtual Machine Image to enable data producers to locally process raw data
into standards formats supported in PhenoMeNal) and D9.2.2 (PhenoMeNal-Data
Virtual Machine Image to enable sharing and dissemination of standardised and
processed omics data to participating online repositories, like MetaboLights), which
produced the Continuous Integration system, Virtual Machines Images (VMIs) for
compute infrastructure, data standardisation and storage repository upload,
respectively. Furthermore, we have created a VRE release plan scheduling the public
releases of the PhenoMeNal infrastructure with dependencies for the first two use cases
data processing workflows in February 2017. In conjunction with the compute VMIs due
in D9.2.4, we have all the required components and scheduled the release process to
launch the first release of PhenoMeNal Alanine in 2017.02.

2. WORK TOWARDS PROJECT OBJECTIVES

A summary of work towards the project objectives:

Objective 9.1: “Specify and integrate software pipelines and tools utilised in the
PhenoMeNal e-Infrastructure into VMIs, adhering to data standards developed in WP8
and supporting the interoperability and federation middleware developed in WP5. Most
tools will be already available (see table 1.1) and we will develop new applications to
complete ‘missing links’ in pipelines. Although two explicit releases for VMIs are listed

 5

as deliverables below, we will use public repositories and continuous integration to
always provide development snapshots of the infrastructure VMIs.”

● We have created cloud-ready VMIs for the Galaxy and Jupyter user facing web
applications.

● All the VMIs are available on the PhenoMeNal public container registry.
● We have created a release plan with four defined stable releases during the

project runtime that include the tools that have passed a multi-layer testing
procedure.

Objective 9.2: “Develop methods to scale-up software pipelines for high-throughput
analysis, supporting distributed execution on e.g. local clusters, private clouds,
federated clouds, or GRIDs.”

● We have created cloud-ready VMIs for the Galaxy and Jupyter user facing web
applications.

● All the VMIs are available on the PhenoMeNal public container registry.
● All of the software packaged in containers has been tested to run on scalable

infrastructure on the Google Cloud Platform (GCP), Amazon Web Services
(AWS) and three different OpenStack installations (EMBL-EBI Embassy cloud,
the German scientific de.NBI cloud1 and the commercial Swedish operator
CityCloud)

3. DETAILED REPORT ON THE DELIVERABLE

In this document we report on the delivery of the Services Virtual Machine Images
(VMIs) to facilitate the PhenoMeNal toolsets and pipelines, as shown in the overview in
Figure 1. In particular, we describe:

1. The service VMIs with the user-facing web interfaces, where we offer Galaxy as
a workflow engine and Jupyter for interactive explorative analysis in R and
Python;

2. The service VMIs performing the container orchestration, which are installed in
the Virtual Research Environment (VRE);

3. The containerization conventions and testing of the tools required in the use case
workflows;

4. The release process for the VRE.

1 http://www.denbi.de/localmedia/documents/quarterly_newsletter_05.pdf

 6

Figure 1: Architectural overview. Shown in green are the user-facing service VMIs with
the web interfaces to design and run workflows (Galaxy) as well as programmatic
access to specific research questions (Jupyter). As container orchestration service we
use kubernetes, which is shown in orange. This central component is being used to
control the life cycle of both the service VMIs and the compute VMIs shown in pink (the
latter will be described in detail in D9.2.4).

3.1. Service VMIs with User web interfaces

A central component of the PhenoMeNal platform are the web interface VMIs that are
deployed in cloud environments by bioinformaticians and local cloud administrators for
the actual end-users, e.g., clinicians, biochemists. In PhenoMeNal we chose Galaxy to
be the web interface VMI for visual workflow development and Jupyter2 to be the web
interface VMI for programmatic access to the containerized tools (see more details in
the following sections). Both Galaxy and Jupyter are long-living service VMIs and are
distinct from the short-living compute service VMIs – e.g., defined data analysis tools
running particular jobs. By contrast, the latter are only destined to run until they have
finished the assigned computational task.

2 "Jupyter." http://jupyter.org/. Accessed 16 Dec. 2016.

 7

Galaxy for visual workflow development

In PhenoMeNal we chose the Galaxy environment because it allows users to create and
manipulate workflows in a very flexible way. Galaxy is a web application that provides a
graphical user interface which can be easily used and customised by the end user.
Galaxy is a well established Bioinformatics Workflow environment with a rich community
of users and developers supporting it. According to the recent survey carried out in the
field of Metabolomics and reported in Deliverable 8.1, it was by far the most well known
workflow environment among practitioners in the field.

Within PhenoMeNal, we deploy a Galaxy instance in the cloud environment of each
VRE. To achieve that, it is vital to design and create the appropriate infrastructure. The
underlying technical infrastructure is described in the section “Service VMIs performing
the container orchestration”, where we describe how we facilitate running and accessing
the compute VMIs (which represent the individual tools and components of the
workflows, due in D9.2.4).

Jupyter for programmatic access to containerised tools

Jupyter Notebook3 is a web application that allows users to create and share
documents – called notebooks – that contain live code, equations, visualizations and
explanatory text. Compared to Galaxy, Jupyter is a more flexible tool that provides a
mixed command line and graphical interface, allowing advanced users to
programmatically leverage the platform. For instance, it is simple with Jupyter to
generate interactive results and publication-ready graphics in downstream analyses.

The scripting/coding nature of Jupyter allows users to run workflows of containerized
tools programmatically, through the Kubernetes4 REST API. To demonstrate its
potential within PhenoMeNal, we have created an OpenMS5 preprocessing workflow
using the PhenoMeNal OpenMS container combined with an R-based downstream
analysis.

In the downstream analysis notebook, the most important feature is the interactivity,
enabling parameters to be changed and code to be rerun and directly evaluated using
visualizations and direct output. Default analysis workflows can be shared with
colleagues and collaborators and further customized for individual studies, to promote

3 "Jupyter." http://jupyter.org/. Accessed 16 Dec. 2016.
4 “Kubernetes - Production-Grade Container Orchestration” http://kubernetes.io/. Accessed 20 Dec 2016
5 "OpenMS." 17 Jun. 2016, http://www.openms.de/. Accessed 16 Dec. 2016.

 8

and increase consistency between studies and decrease time spent on rewriting
processing workflows.

To emphasize the convenience that Jupyter Notebook provides, we are currently
working on a reproduction of the data processing and analysis done by C. Ranninger et
al.6 The preprocessing is done with the containerised OpenMS, using the same
parameters that were used in the actual study. The whole workflow, preprocessing and
downstream analysis will be deployed and controlled from the Jupyter interface.
Furthermore, to demonstrate scalability, the same workflow will be run with a larger
dataset, namely the one published by A. Ganna et al.7 as shown in Figure 2.

6 C. Ranninger et al. (2016). Improving global feature detectabilities through scan range splitting for
untargeted metabolomics by high-performance liquid chromatography-Orbitrap mass spectrometry,
Analytica Chimica Acta, 930, 13-22
7 A. Ganna et al. (2014). Large-scale metabolomic profiling identifies novel biomarkers for incident
coronary heart disease, PLOS Genetics, 10(12)

 9

Figure 2. Screenshot from a Jupyter Notebook showing an excerpt of the source code
for the creation of a volcano plot (above) and below the generated plots.

Database and backend service VMI

Several tools require accessing and performing complex searches on molecular
databases like PubChem. For example, the Open Source MetFrag software performs
these queries to annotate high-precision tandem mass spectra of metabolites, which is
a first and critical step for the identification of a molecule's structure. Candidate
molecules of different databases are fragmented in silico and matched against mass to
charge values, and a score is calculated using the fragment peak matches. However,
performing these database queries on public databases connected to the Internet is a
major bottleneck for a tool like MetFrag due to load limits on the public service and data
transfer speeds over the internet. Therefore, when they are required, making these data

 10

resources a part of the PhenoMeNal cloud infrastructure is a key to reduce processing
times.

We have created the “metfrag-cli”8 VMI to integrate MetFrag in our platform (it is already
available as Galaxy tool in our public Galaxy instance). To ensure it runs swiftly, we
have implemented a service VMI facilitating the metfrag-cli VMI by creating local
database mirrors of the PubChem9 database, as shown in FIgure 3. PubChem contains
structures and associated biological data on almost 93 million compounds. These VMIs
consist of a database VMI running the PostgreSQL RDBMS, which has access to local
storage providing the data resources, and a second backend VMI serving as a data
importer that downloads all necessary datasets once and copies them via the database
container to the distributed storage. Once the data import is finished, the metfrag-cli and
other VMIs requiring database access are able to query data via the database VMI. The
import VMI can then be used to keep the local database mirrors up to date by
periodically fetching the updates from the online repositories. As the database storage
is distributed within the PhenoMeNal cloud infrastructure, the same data can be queried
from several instances of the database VMI.

8 "GitHub - phnmnl/container-metfrag-cli: Command line interface of" 3 Nov. 2016,
https://github.com/phnmnl/container-metfrag-cli. Accessed 16 Dec. 2016.
9 "PubChem." https://pubchem.ncbi.nlm.nih.gov/. Accessed 16 Dec. 2016.

 11

Figure 3: Architectural overview of database VMIs. The Database VMI is connected to
a local storage located within the PhenoMeNal cloud infrastructure. Data are imported
and updated via the Data-Import VMI connected to the Database VMI.

3.2. Service VMIs performing the container orchestration

The process of installing and configuring a complete PhenoMeNal infrastructure with all
required resources (Galaxy and Jupyter on top of multiple Kubernetes nodes, network
topology and storage volumes etc.) on a given cloud provider would be cumbersome if
done manually. Instead, we are providing a completely automated installation
procedure, which allows the end user to have the defined interface service VMIs
running through a cloud provider only minutes after providing its cloud credentials on
top of the scalable Kubernetes cluster.

Installation of the service VMIs in a cloud infrastructure

The first phase consists of instantiating the resources on the cloud providers. For this
step, there are cloud-provider-specific automation engines like AWS CloudFormation or
OpenStack Heat, but to avoid a vendor lock-in, we are using the Open Source project
Terraform10 to define the required infrastructure: VMs, networks, firewalls and storage
volumes can easily be defined, leaving to Terraform the task to understand

10 https://www.terraform.io/

 12

dependencies between all these resources and the order in which they must be created.
At the time of writing, Terraform supports all the major public cloud providers (AWS,
Google Cloud, Azure, Rackspace, as well as OpenStack).

After a set of resources is created by Terraform, the second phase consists in the
installation and configuration of the underlying components of the PhenoMeNal-specific
software stack. Here, we are using the Open Source Ansible framework11 to customise
the operating system and install the container engine (Docker), container orchestrator
(Kubernetes), required overlay network layer (currently flannel, others available) and
shared file system provision (currently GlusterFS) for running a scalable PhenoMeNal
VRE. The shared filesystem is created spanning over several VMs with the Open
Source GlusterFS12 network filesystem. This storage is then used by both the
PhenoMeNal services – e.g. Galaxy – and the compute nodes, to exchange input and
output data sets. This part is known as the “software” provisioning layer, and as
mentioned, is executed through Ansible. At the end of this “software” provisioning
process, the interface service VMIs (Galaxy and Jupyter) are started on top of
Kubernetes for the user. We use the Helm13 framework to install all Kubernetes
managed applications. We have contributed Ansible roles and variable definitions14 to
the upstream project so that Ansible can install and communicate with a Helm daemon
running on a provisioned Kubernetes cluster.

To start the interface service VMIs, Helm downloads and configures the containerised
components – the upper layers of the PhenoMeNal specific software stack. Helm was
chosen because it deploys the Service VMIs automatically and encapsulates their
deployment, making this process independent of whatever was used to deploy the
underlying Kubernetes cluster.

Helm uses uses Go templates to make parametrized deployments of complex
Kubernetes API object constructs and uses YAML with placeholders for variables that
can be set on deployment time. This strategy facilitates the deployment process. For
instance, for the PhenoMeNal Galaxy VRE, two Kubernetes Pod objects (one for
Galaxy, one for PostgreSQL), two Kubernetes Service objects (to access Galaxy and to
access PostgreSQL from Galaxy), a Kubernetes Secret object (for storing encrypted
database access), a Kubernetes Configuration Map object (which stores database
settings) and Ingresses objects are necessary. Each of these contain a number of
variables, from user names to ports or volumes (storage) preferences, that can vary

11 https://www.ansible.com/
12 https://www.gluster.org/
13 https://github.com/kubernetes/helm
14 https://github.com/kubernetes-incubator/kargo/issues/661

 13

from a local deployment meant for testing compared to a production deployment at a
cloud provider (and from cloud provider to cloud provider). Manual Kubernetes object
deployment would require a number of steps to create all these objects, and changing
YAML files for each different type of installation. The Helm based installation takes care
of all of this through a single call, including variable setup for the different scenarios.

In order to run the specified two phases of the provisioning, we initially selected the
deployment project MANTL, which is unfortunately not actively maintained anymore by
its main contributor, Cisco Systems. Hence, we currently use the PhenoMeNal in-house
developed KubeNow15, using the Kubernetes community-developed KubeAdm16
administration interface. KubeAdm’s deployment enables the creation of immutable
images and is considered to be very performant in large deployments (hundreds of
nodes). KubeNow merges some ideas (such as edge nodes or the embedded usage of
reverse proxies) from the previously used MANTL.

We are also investigating Kargo, which has support for complex cloud environments
and High Availability, as it manages the whole complexity of a Kubernetes deployment.
Both KubeNow and Kargo make use of the same tool sets for the provisioning
(Terraform and Ansible), as described above. Kargo17 is a community developed
project, recently incorporated as an official Kubernetes project, and receives a lot of
attention from the community and also companies like OpenStack, Mirantis and
CoreOS.

Kargo was already used at the beginning of PhenoMeNal (in a non-automated way) to
provision the existing PhenoMeNal public instances available at the EBI EMBASSY
Cloud, but was missing important features required in the PhenoMeNal deployment use
case. In particular, Kargo did initially not allow to provision clusters with a single public
IP, nor did have built-in support for the required shared file system or the Helm package
manager. These abilities were contributed by PhenoMeNal developers to the
community maintained Kargo project.

Kargo deals with the complexity of setting up a production grade Kubernetes cluster, yet
this complexity makes the production of an immutable image more complicated. A
Kargo deployment of about 4 nodes, which should suffice for many PhenoMeNal use
cases, takes around 15 minutes, and this cluster can later be expanded. It is expected
that the newer Ansible 2.2 reduces this further. Kargo can also be deployed on top of
bare metal running a variety of Linux distributions (Ubuntu, Debian, Fedora, CentOS,

15 https://github.com/kubenow/KubeNow
16 http://kubernetes.io/docs/admin/kubeadm/
17 https://github.com/kubernetes-incubator/kargo

 14

RHEL and CoreOS currently). This scenario is not supported in PheNoMeNal, but would
be possible for institutions that might prefer in-house bare metal instead of on-premises
or public cloud installations.

For the first PhenoMeNal release we will use KubeNow. For future releases we will
need to consider the trade-off between requirements and complexity. Not depending on
a single software solution that might be abandoned is important for meeting the
sustainability goals of PhenoMeNal in the long term.

Within PhenoMeNal, such deployments have been demonstrated on the Google Cloud
Platform (GCP), Amazon Web Services (AWS) and three different OpenStack
installations (EMBL-EBI Embassy cloud, the German scientific de.NBI cloud18 and the
commercial Swedish operator CityCloud). PhenoMeNal is currently in contact with the
Amazon Web Service team for sponsorship to regularly demonstrate and test the
installation in their environment.

The installation configurations for the two phases are developed in the repository
https://github.com/phnmnl/cloud-deploy-kubenow. The structure is such that the
description can be readily used by the EBI Cloud Portal developed by the EMBL-EBI
Technology and Science Integration (TSI) team, and thus the upcoming version of the
PhenoMeNal Cloud Research Environment features a user-friendly portal-guided
installation option.

Local OpenStack installations behind strict firewall configurations require that the
installation be initiated from the inside. For this case, a scripted installation is available
to invoke the two phases (Terraform, Ansible and Helm). A graphical interface
equivalent to the EBI Cloud Portal for such walled-garden installations is planned for
later in the project.

Installation of downscaled service VMIs on a local computer

For smaller compute requirements, the software stack can also be installed on a
powerful workstation or even on a laptop. For developers, the upper layers of the
PhenoMeNal-specific software stack (Galaxy, Jupyter and the containerised tools) can
be installed using the Minikube environment, which configures all components
optimizing them for local development. In PhenoMeNal we use Minikube to lift up all the
required Kubernetes components for a working local installation for tool development
purposes. The actual deployment of the individual PhenoMeNal VMIs is still performed

18 http://www.denbi.de/localmedia/documents/quarterly_newsletter_05.pdf

 15

with Helm19, i.e. we use Helm to deploy the Service VMIs into both local or cloud-
provisioned Kubernetes cluster.

The Helm package management thus encapsulates the deployment of our service VMIs
and makes them independent of the process by which the required Kubernetes cluster
is provisioned; so whether the end-user prefers Minikube, a PhenoMeNal-based
provisioned Kubernetes cluster, turn-key Kubernetes on GCE or AWS, or any method of
provisioning such a cluster, the PhenoMeNal service VMIs can be deployed without
distinctions. A QuickStart guide for the Helm-based installation is available from the
PhenoMeNal Wiki: https://github.com/phnmnl/phenomenal-h2020/wiki/QuickStart-
Installation-for-Local-PhenoMeNal-Workflow.

3.3. Guidelines and conventions for testing and streamlining releases

The development and operation of an infrastructure like PhenoMeNal requires
automated testing of all components and processes. A dedicated workshop at the EBI in
November 2016 was organised to discuss and formulate standards and conventions for
testing containers, as well as for streamlining current and future releases. As an
outcome we created guidelines to ensure we meet these standards and conventions
with the goal of guaranteeing the sustainability and longevity of containers and the
whole technical infrastructure: (https://github.com/phnmnl/phenomenal-
h2020/wiki/Dockerfile-Guide):

● Naming scheme: container-app-name, phnmnl/app-name
● Versioning scheme: app-name:software_version:build_version
● Defining best practices for continuous integration

We have created improved Dockerfile definitions and Jenkins job templates for
building/testing/storing those new images, and we are updating current projects to meet
the new standards. Implementing the new integration conventions requires a lot of effort
and coordination between the different WPs.

During the workshop we defined testing guidelines at different levels20:

Tool Unit testing refers to unit tests for individual tools. Especially for tools developed
within the PhenoMeNal consortium, we increase the test coverage. These are light-
weight tests that make sure that binaries can run or are present within the created
container. Failure at these testing level means that the container built is not pushed to
our container registry, and hence only previously passing versions are available for
usage until these test are satisfied at the current version.

19 https://github.com/kubernetes/helm
20 https://github.com/phnmnl/phenomenal-h2020/wiki/Container-testing-guides

 16

Container testing: refers to the test of a tool in its runtime environment – the packaged
container running within the context of a container orchestrator (Kubernetes) to process
representative subsamples of real data sets. Within the PhenoMeNal infrastructure we
are using containerization to manage software (tools) and their dependencies as
complete packages. This packaging is of great help in achieving platform independence
and reproducibility of analyses. However, to ensure their proper operation, these
containers need to be tested in an scenario that it is as close as possibly to where they
will be ultimately used: a VRE which runs on top of a Kubernetes cluster. We have
implemented automated container testing for the tools we integrated in our platform,
and we integrated this testing with Jenkins as part of our global project test
management portal. The standard tests implemented for our containers verify the
correctness of container definitions, as implemented by the developers, by rebuilding
containers and running them on known inputs to verify successful execution and the
correctness of the output. The tests are automatically run whenever new changes are
committed to the container specification, and previous Tool Unit testing is passed.

Workflow testing: refers to testing complete Galaxy workflows in headless mode to
verify their correct execution. Our guidelines define a testing model for workflow
workflows where test cases a composed of input datasets, workflow parameters, and
the corresponding expected output datasets; this model is analogous to typical
component integration testing. We have developed a workflow test harness
(https://github.com/phnmnl/wft4galaxy) that uses this model to automate workflow
testing. Using our testing harness, the author of a workflow can define test cases in a
simple configuration file (in YAML format) which references the prepared input and
output dataset files and defines any relevant workflow parameters, see Figure 4 for an
example. The workflow testing software takes care of all the details pertaining to the
execution of the workflow (e.g., instantiating the workflow on the infrastructure,
uploading and downloading test datasets, etc.) and verifying that the observed and
expected results match. Following our accepted software containerization strategy, a
Docker container with the testing harness has been created, allowing it to be used
without any previous software installation. Moreover, our workflow testing harness is
well integrated with the Jenkins testing platform used by PhenoMeNal. By combining
these two tools, we are able to completely automate the testing of standard workflows
that are maintained in our (and others’) public repositories and go to form a
PhenoMeNal workflow library.

 17

Figure 4: Example of a workflow test definition. The file defines a test case for a
workflow with one input dataset and two output datasets.

Infrastructure testing: refers to testing the deployment of the whole PhenoMeNal
stack on a local workstation, local OpenStack installation, or public cloud provider.

This comprehensive testing architecture on all levels is novel in Bioinformatics and sets
PhenoMeNal apart from other cloud projects. Although testing adds to the complexity of
building VMIs, it allows us to promptly find software bugs that would otherwise remain
hidden. Our testing scheme also facilitates the collaboration between the various
Bioinformaticians and software / tool developers and meets the Sustainability goals as
defined in the Release plan (see below).

3.4. Release plan and process for the PhenoMeNal Research Environment

A PhenoMeNal (stable) release comprises two sets of components for deploying and
running a PhenoMeNal VRE:

1. The core PhenoMeNal cloud infrastructure contains sets of scripts that are
responsible for installing PhenoMeNal core components on top of existing local,
cloud or OpenStack environments and configured to orchestrate and deploy the
PhenoMeNal VMIs in an automated way.

2. The PhenoMeNal VMIs which deliver services and workflows. Here, we subsume
all the individual tools that are encapsulated in containers which can be deployed
in the PhenoMeNal infrastructure.

The installation and provisioning was described in detail in the chapter “Service VMIs
performing the container orchestration” above, in the following we describe the release
process and tests for inclusion of the individual tools and VMIs.

 18

PhenoMeNal VREs can be deployed from the either the development builds and as
stable versions. The stable versions are available as bi-annual releases (Table 1), while
development versions can be deployed any time from the latest builds from our
continuous integration (CI) service.

Release Date Codename Version Supported

February 2017 Alanine 2017.02 +1 year

August 2017 Betaine 2017.08 +1 year

February 2018 Cysteine 2018.02 +1 year

August 2018 Dopamine 2018.08 +1 year

February 2019 Epinephrin
e

2019.02 +1 year

Table 1: The current (stable) release plan. The maintenance of the 2018.08 version and
release of 2019.02 will be handled under the sustainability plan.

Development builds, also referred to as “bleeding edge”, are for testing and getting
access to the latest and greatest that PhenoMeNal has to offer, and we have started to
reach out to the metabolomics developer community to also incorporate tools developed
outside of PhenoMeNal. We encourage tool developers that want to integrate their tools
into PhenoMeNal to use the development version and provide valuable feedback as
input for the upcoming stable releases. While we keep all builds of the stable release,
we only keep the last successful builds of the development branch. Thus, development
builds are not intended to be used in production environments.

Stable builds are a selection of the tools that are considered production ready. These
tools have passed all of our automated tests that are part of our testing framework. For
a tool at a specified version to be included in a PhenoMeNal release, it needs to pass its
Tool Unit tests, its Container tests and must not cause a failure for the Workflow tests in
which it participates. That means they are tested properly, are maintainable, and have
been well documented. An important aspect of a stable release is reproducibility. A user
should be able to deploy an instance of a stable PhenoMeNal VRE on his/her preferred
provider (or even locally for that matter), and be able to run individual tools or complete
workflows resulting in identical results for the same input data. We accomplish this by
storing all the release container images, properly version tagged, at each stable release
in our container registry.

 19

The release process includes an alpha release where we freeze the collection of
containers to undergo integration and usability testing. 2-4 weeks after the alpha
release we do a beta release where any bugs found in previous versions should be
fixed. The last step, before the actual release, is the RC (release candidate) where we
check if the supporting documentation is sufficient and make the final preparations for
the actual release.

We target to produce stable releases two times per year. Not all tools in a previous
version will be guaranteed to be present in a new release. Tools can be replaced or
obsoleted in newer versions to ensure that the individual tools work together in a
workflow to produce the expected results.

Integration of tools into the build and release process

In the beginning of the incorporation of a tool in PhenoMeNal, the developers create a
container that encapsulates the dependencies of the tool and the tool itself. This
container must be made available through the public PhenoMeNal github repository
(https://github.com/phnmnl), where the convention is to start the repository name with
‘container-’ and use the git branch ‘develop’ for main development.

In this repository we also require from the tool developers to supply several files and
configurations, that are used to different aspects in the build and deployment process:

● A README.md that explains what the tool does and how it is used21. The
Information is also picked up and presented in the PhenoMeNal AppDB22

● A container configuration (e.g. Dockerfile) to build the tool and dependencies and
package into a container23.

● Testing scripts (e.g. testRun.sh and required data) that are needed to run tests
on the tool and the container24

● A tool definition/configuration file (e.g. galaxy-tool.xml) to make the tool available
in the Galaxy workflow engine25

All the details and practices that should be followed by the tool developers are present
in our dedicated Developer Documentation as part of the PhenoMeNal Wiki26

21 https://github.com/phnmnl/phenomenal-h2020/wiki/The-Guideline-for-Container-GitHub-Respository-
README.md-Creation
22 http://portal.phenomenal-h2020.eu/app-library
23 https://github.com/phnmnl/phenomenal-h2020/wiki/Dockerfile-Guide
24 https://github.com/phnmnl/phenomenal-h2020/wiki/Container-testing-guides
25 For more details, refer Galaxy Manual on writing Tool wrappers:
https://wiki.galaxyproject.org/Admin/Tools/AddToolTutorial

 20

In order to add the tool to the PhenoMeNal build process, it is required to to add a build
job for the container to the PhenoMeNal Jenkins (http://phenomenal-h2020.eu/jenkins/)
providing the continuous integration and deployment service. Job creation is based on a
Jenkins job template27 with several mandatory steps, including proper versioning and
testing of the container and embedded tool. All the steps required are documented at
https://github.com/phnmnl/phenomenal-h2020/wiki/Jenkins-Guide. This is being done by
one of the PhenoMeNal members who will also provides stewardship of the integration
of the tool in the PhenoMeNal. Once integrated, any change in the github repository will
then trigger an automated build and test procedure. When both build and test finish
successfully, the container image is stored in the PhenoMeNal container registry, ready
for deployment. If the procedure is not successful, the owner of the failing tool container
will be notified and be requested to fix the failure.

If the container passes all tests, it is considered to be included in the next stable release
and changes are merged with the ‘main’ branch in the corresponding GitHub repository
of the tool.

4. WORK PLAN

Structure and management of WP9 tasks

As for the rest of the project, all WP9 activities has been managed and tracked by our
Pivotal Tracker project28 and dedicated online hangouts.

Program code and VRE installation are managed in public repositories under
https://github.com/phnmnl, together with issue tracking and commit histories.

Utilization of resources

Person Month (PM) contribution towards this deliverable

Partner EMBL-
EBI

ICL IPB UB UOXF UU CEA INRA UL CRS4

PMs 4 3 2 0.5 2 4 2 1 1 1

26 https://github.com/phnmnl/phenomenal-h2020/wiki/Developer-Documentation
27 http://phenomenal-h2020.eu/jenkins/job/container-template-project/ (Configuration details of the
template can only be seen and changed with an account).
28 http://phenomenal-h2020.eu/home/about/project-management-tool/

 21

Next steps

The next step will be the delivery of the “D9.2.4 - Compute Virtual Machine Image to
enable standardised compute capabilities” and complete the first release “Alanine”, and
reach out to a broader metabolomics and medical user and developer community.

Updated releases will cover a larger number of tools and thus workflows required for
clinical data processing, covering all steps in data management from preprocessing,
data processing, statistical analysis, data reduction, publication and storage of the
ultimate scientific results generated. We also aim to standardise data exchange formats
not only for the input and metadata, but also within the workflows.

5. DELIVERY AND SCHEDULE

The deliverable is submitted on time.

6. CONCLUSION

In this report we described the architecture of the service VMIs with the user-facing web
interfaces, where we offer Galaxy as a workflow engine and Jupyter for interactive
explorative analysis in R and Python, and how the service VMIs performing the
container orchestration are installed in the Virtual Research Environment (VRE) in an
automated fashion, shielding the users and local administrators from the complexity of
building their own cloud infrastructure. Together with the compute VMIs due in D9.2.4,
we have all the required components and laid out the release process to launch the first
release of PhenoMeNal Alanine in 2017.02.

The chosen cloud and software architectures are well-aligned with emerging
bioinformatics infrastructures in other disciplines. This will facilitate the adoption by both
developers and users, and paves the way for the use of PhenoMeNal in national and
european scientific cloud infrastructures.

