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Abstract Cluster analysis over Moving Object Databases (MODs) is a challenging research topic that has 
attracted the attention of the mobility data mining community. In this paper, we study the temporal-constrained 
sub-trajectory cluster analysis problem, where the aim is to discover clusters of sub-trajectories given an ad-hoc, 
user-specified temporal constraint within the dataset’s lifetime. The problem is challenging because: (a) the time 
window is not known in advance, instead it is specified at query time, and (b) the MOD is continuously updated 
with new trajectories. Existing solutions first filter the trajectory database according to the temporal constraint, 
and then apply a clustering algorithm from scratch on the filtered data. However, this approach is extremely 
inefficient, when considering explorative data analysis where multiple clustering tasks need to be performed 
over different temporal subsets of the database, while the database is updated with new trajectories. To address 
this problem, we propose an incremental and scalable solution to the problem, which is built upon a novel 
indexing structure, called Representative Trajectory Tree (ReTraTree). ReTraTree acts as an effective spatio-
temporal partitioning technique; partitions in ReTraTree correspond to groupings of sub-trajectories, which are 
incrementally maintained and assigned to representative (sub-)trajectories. Due to the proposed organization of 
sub-trajectories, the problem under study can be efficiently solved as simply as executing a query operator on 
ReTraTree, while insertion of new trajectories is supported. Our extensive experimental study performed on real 
and synthetic datasets shows that our approach outperforms a state-of-the-art in-DBMS solution supported by 
PostgreSQL by orders of magnitude.  
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1. Introduction 
Nowadays, huge volumes of location data are available due to the rapid growth of positioning devices (GPS-
enabled smartphones, on-board navigation systems in vehicles, vessels and planes, smart chips for animals, 
etc.). This explosion of data already contributes in what is called the Big Data era, raising new challenges for 
the mobility data management and exploration field (Giannotti et al. 2011; Pelekis and Theodoridis 2014). 
 Efficient and scalable trajectory cluster analysis is one of these challenges (Zheng 2015; Yuan et al. 2016). 
The research so far has focused on adapting well-known solutions that are effective for legacy data types to 
trajectory datasets. Thus, a typical approach is to transform trajectories to multi-dimensional (usually, point) 
data, in order for well-known clustering algorithms to be applicable. For instance, CenTR-I-FCM (Pelekis et al. 
2011) builds upon a Fuzzy C-Means variant. Another approach is to focus on effective and efficient trajectory 
similarity search, which is the basic building block of every clustering approach. Once one has defined an 
effective similarity metric, she can adapt well-known algorithms to tackle the problem. For instance, TOPTICS 
(Nanni and Pedreschi 2006) adapts OPTICS (Ankerst 1999) to enable whole-trajectory clustering (i.e. clustering 
the entire trajectories), and TRACLUS (Lee et al. 2007) exploits on DBSCAN (Ester et al. 1996) to support sub-
trajectory clustering. 
 Sub-trajectory clustering is a typical cluster analysis problem in Moving Object Databases (MOD). Fig. 1 
illustrates a working example, i.e. a dataset consisting of four trajectories, T1, …, T4 (please note that the time 
dimension has been ignored for visualization reasons). Upon this dataset, the goal of sub-trajectory cluster 
analysis is to identify two clusters (coloured red and blue, respectively) and five outliers (coloured black). The 
challenging issue is to depart from the (entire) trajectory grouping into clusters, by first identifying the best 
partitioning of each trajectory into sub-trajectories and then performing cluster analysis upon those entities. For 
instance, due to the deviation of the trajectories illustrated in Fig. 1(a) at the end of their lifespan, clustering the 
entire trajectories might probably result to either no cluster at all (with all four trajectories labelled as outliers) 
or a single cluster consisting of all four trajectories; with the result depending on the sensitivity of the 
underlying trajectory similarity function and auxiliary parameters of the clustering algorithm. On the other hand, 
working at the sub-trajectory level we will be able to identify the red and blue clusters of sub-trajectories as well 
as the black outliers (see Fig. 1(b)). 

  
(a) (b) 

Fig. 1 Four trajectories (a) before (b) after sub-trajectory clustering 

 Finding a solution to the above described sub-trajectory clustering problem is challenging; what is even more 
challenging, is how one can support incremental and progressive cluster analysis in the context of dynamic 
applications, where (i) new trajectories arrive at frequent rates, and (ii) the analysis is performed over different 
portions of the dataset, and this might be repeated several times per analysis task.  
 As motivational example, consider the Location-based Services (LBS) scenario where LBS users transmit 
their trajectories to a central LBS server, e.g. when their trip is completed. From the server side, a MOD system 
is responsible for organizing user traces, aiming to support extensive (usually incremental and explorative) 
querying and mining processes. Since users (the data producers) transmit their location information in batch 
mode and asynchronously, the underlying data management framework should be able to handle this kind of 
information transmission. In other words, as we are especially interested in cluster analysis, the data server 
should be able to cluster users’ trajectories in an incremental fashion. Clearly, the above techniques fail to meet 
such a specification. 
 Coming back to the example of Fig. 1, two main challenges need to be confronted: (i) given the addition of a 
new trajectory in the existing set of four trajectories, how can cluster analysis be performed over the updated 
data without applying the (quite expensive) clustering process from scratch, and (ii) how could we organize 
these trajectories so as to retrieve clusters valid in an ad-hoc temporal period of interest, without re-applying the 
clustering for the user-defined temporal period?  
 In this paper, we address the challenge of efficient and effective temporal-constrained sub-trajectory cluster 
analysis, by proposing an incremental and progressive solution to the problem. To this end, we propose a novel 
indexing scheme for large MODs, which is designed upon optimally selected samples of sub-trajectories, called 
Representative Trajectories, hence the term ReTraTree. Each sub-trajectory of this type acts as the 
representative of a group (cluster) of sub-trajectories. Thus, ReTraTree may be considered as a data structure 



that organizes (sub-)trajectories in a hierarchical fashion, while having small, but in any case adaptable, memory 
footprint. Based on its design, ReTraTree is able to incrementally partition and cluster trajectories as they are 
inserted in the MOD. Interestingly, the actual clustering process for the user-defined temporal period of interest, 
called Query-based Trajectory Clustering (QuT-Clustering), is performed as simply as a query execution upon 
the ReTraTree. 
 The contributions of our work are summarized below: 

• we introduce the temporal-constrained sub-trajectory cluster analysis problem, which is a key problem 
for supporting progressive clustering analysis; 
• we design ReTraTree, an efficient indexing scheme for large dynamic MODs, which is based on 
representative trajectories found in the dataset; 
• as a solution to the problem of study, we devise QuT-Clustering, a sub-trajectory clustering algorithm 
running as simply as a query operator upon ReTraTree; 
• we facilitate incremental trajectory cluster analysis by exploiting the incremental maintenance of 
ReTraTree along with the query-based clustering approach of QuT-Clustering; 
• we perform an extensive experimental study upon real and synthetic datasets, which demonstrates that 
our in-DBMS implementation outperforms a state-of-the-art PostgreSQL extension by several orders of 
magnitude. 

 The rest of the paper is organized as follows: Section 2 formally defines the problem of temporally-
constrained sub-trajectory cluster analysis. Section 3 presents the ReTraTree structure and its maintenance 
algorithms while Section 4 puts ReTraTree in action, in other words it provides the QuT-Clustering algorithm, 
also providing a complexity analysis of the entire framework. Section 5 presents our experimental study. 
Section 6 reviews related work. Section 7 concludes the paper and outlines future research directions. 
  
2. Problem Setting 
In this section, we provide the necessary definitions and terminology. Table 1 summarizes the definitions of the 
symbols used in the paper. 

Table 1: Symbol table 
Symbols Definitions 

D a dataset D = {T1, … , TN} of N trajectories 
T a trajectory of D, whose length is |T| (in terms of number of points composing it) 

xt.s (xt.e) 
starting (ending) timestamp of the time-varying object x, e.g. Tt.s (Tt.e) is the minimum (maximum) 
timestamp of trajectory T 

l lifespan of D, namely the temporal period [min(Tt.s), max(T’t.e)), ∀ T, T’ ∈ D 
pi i-th (3D) point of trajectory T, pi = (xi, yi, ti) 
ei i-th (3D) line segment of T, ei = (pi, pi+1) 
li lifespan of line segment ei, namely the temporal period [ti, ti+1) 
S set of sub-trajectories partitioning trajectory T 
Si i−th sub-trajectory of trajectory T 

V(e, e’) voting function between two segments e and e’ belonging to trajectories T and T’, respectively 
𝑉!!! voting descriptor of trajectory T with respect to T’ 
𝑉!! voting descriptor of trajectory T with respect to trajectory dataset D 
𝑉!! voting of a trajectory dataset D with respect to T 
𝑉!!! voting descriptor of trajectory dataset D with respect to trajectory dataset D’ 
R Sample of representative sub-trajectories R ={R1,..., RM} 

C 
clustering of sub-trajectories in M clusters, C = {𝐶!! ,… ,𝐶!!},  𝐶!!  ∩ 𝐶!!  = ∅, i ≠ j, with sub-
trajectory Ri representing cluster 𝐶!!  of sub-trajectories 

M cardinality of C (and R) 
Out set of outlier sub-trajectories 
W the user-defined time window (W ∈ l) for which we want to discover the sub-trajectory clusters 

 Definition 1 (Voting between segments of two trajectories): Given two segments e and e’ belonging to 
trajectories T and T’, respectively, the voting function V(e, e’) that calculates the voting e receives by e’ is given 
by Eq.(1): 

𝑉 𝑒, 𝑒′ = 𝑒!  
!! !,!!
!∙!!  (2)

 

where the control parameter σ > 0 shows how fast the function (“voting influence”) decreases with distance.  
  



 Since Euclidean distance D(t) is symmetric, distance d(e, e’) is symmetric as well. As such, it holds that V(e, 
e’) = V(e’, e); it also holds that 0 ≤ V(e, e’) ≤ 1. If the two segments are almost identical, i.e. distance d(e, e’) is 
close to zero, the voting function gets value close to 1. On the other hand, high values of distance d(e, e’) result 
in voting close to zero.   
 We can generalize the above discussion to define the representativeness of a trajectory with respect to 
another trajectory. Notice that the definition that follows is applicable to sub-trajectories as well (since a sub-
trajectory is itself a trajectory, essentially a set of consecutive segments). 
 Definition 2 (Voting descriptor and average voting of a trajectory with respect to another trajectory): Given 
a trajectory T of length |T| and another trajectory T’, the voting descriptor 𝑉!!! of T with respect to T’ is a 
vector 

𝑉!!!: 𝑉 𝑒1,∗ ,… , 𝑉 𝑒 𝑇 −1,∗  (3)
 

of dimensionality |T|−1 where wildcard ′ ∗ ′ corresponds to the segment of T’ that minimizes distance d(ei, ·), i 
= 1, …, |T|−1. By 𝑎𝑣𝑔 𝑉𝑇𝑇′  we denote the average of the values of the vector 𝑉!!! of trajectory T with respect 
to trajectory T’. 

 Obviously, the voting descriptor is not symmetric, i.e. 𝑉!!! ≠ 𝑉!!! .  
 Definition 3 (Voting descriptor of a trajectory with respect to a trajectory dataset): Given a trajectory 
dataset D and a trajectory T of cardinality |T|, T ∉ D, the voting descriptor 𝑉!! of T with respect to D is a 
vector 

𝑉!!: 𝑉 𝑒!,∗
!!∈!

,… , 𝑉 𝑒 ! !!,∗
!!∈!

 (4)
 

of dimensionality |T|−1 where wildcard ∗ corresponds to the segment of each T’ in D that minimizes distance 
d(ei, ·), i = 1, …, |T|−1. 
 Recall that (i) the vote a segment can receive by another segment is a value ranging from 0 to 1, according to 
Eq.(2), and (ii) only one segment from each trajectory votes for a given segment of another trajectory, i.e. its 
nearest. This implies that the total voting – the sum of votes – received by a given segment is a value ranging 
from 0 (if all members of D vote 0) to N (if all members of D vote 1). To exemplify the above, back to the 
example of Fig. 1, voting descriptor 𝑉!!

!!,!!,!!  presents in general higher values than voting descriptor 𝑉!!
!!,!!,!!  

since T1 is more centrally located than T4 in the dataset.  
 Definition 4 (Voting of a trajectory dataset with respect to a trajectory): Given a trajectory dataset D of 
cardinality N and a trajectory T of cardinality |T|, T ∉ D, voting 𝑉!!  of D with respect to T is a value 

𝑉!! = 𝑎𝑣𝑔 𝑉!!!   
!!∈!

 (5)
 

that accumulates the average voting of all trajectories 𝑇′ ∈ 𝐷 with respect to 𝑇. 
 Definition 5 (Voting of a trajectory dataset with respect to another trajectory dataset): Given a trajectory 
dataset D of cardinality N and another (reference) trajectory dataset D’ of cardinality N’, D ∩ D’ = ∅, voting 
𝑉!!! of D with respect to D’ is a value calculated as follows: 

𝑉!!! = 𝑉!!
!∈!!

 (6)
 

 Now we define the temporally-constrained sub-trajectory clustering problem that we address in this paper. 
Let W represent a time window within the lifespan of D, i.e. W ∈ l. Further, let DW denote the set of sub-
trajectories partitioning the trajectories in D, which are temporal-constrained within W. Formally: 
 Problem (Temporal-constrained sub-trajectory clustering): Given (i) a trajectory database D = {T1, …, TN} 
of lifespan l, consisting of N trajectories of moving objects, and (ii) a time window W (W ∈ l), the temporal-
constrained sub-trajectory clustering problem is to find: (a) a set C = {𝐶!! ,… ,𝐶!!} of M clusters of sub-
trajectories, 𝐶!!  ∈ DW, i = 1, …, M, around respective sub-trajectories R = {R1, …, RM}, Ri ∈ 𝐶!! , i = 1, …, M, 
called representative sub-trajectories, and (b) a set Out of outlier sub-trajectories, Out ∈ DW, so that voting 
𝑉!!!!
!  of dataset DW−R with respect to R is maximized: 

(𝑅,𝐶,𝑂𝑢𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑉!!!!
!  (7)

 



 The above problem is quite challenging, for a number of reasons. First, the segmentation (or partitioning) of 
trajectories found in D in sub-trajectories cannot be predefined nor is the result of a third-party trajectory 
segmentation algorithm, such as (Buchin et al. 2010; Lee et al. 2007; Li et al. 2010b). Instead, it is problem-
driven: it is the clustering algorithm that solves the above problem that is responsible to find the best 
segmentation of trajectories into sub-trajectories. Practically, it is the clustering algorithm that is responsible to 
detect the red and blue parts of trajectories in Fig. 1, given that the analyst requires a clustering providing as 
time window W the whole lifespan of the dataset. Second, the optimization of the above scenario is a hard 
problem, since the solution space is huge. Third, one has to define the technique for selecting the set of the most 
representative sub-trajectories, whose cardinality M is unknown. Fourth, as already discussed, in a real MOD 
setting, the solution should support incremental updates. Put differently, data updates should be accommodated 
as soon as they come and update the existing clusters at low cost, instead of performing a new clustering process 
from scratch. Finally and most importantly, since clustering is applied over different portions of the dataset, and 
this might be repeated several times per analysis task, the solution to the problem should be repeatable for all 
the different time windows W that are of interest during explorative analysis. This comprises a novel feature and 
a major contribution of our work, since existing solutions for sub-trajectory clustering are not able to support 
progressive clustering analysis taking into account temporal constraints as filters. 
 

3. The ReTraTree Indexing Scheme 
We start this section with an overview of the ReTraTree indexing scheme (Section 3.1) and we continue with 
the algorithms that are necessary for its maintenance (Sections 3.2 – 3.4).  
3.1 ReTraTree Overview 
ReTraTree consists of four levels: the two upper levels operate on the temporal dimension while the 3rd level is 
built upon the spatio-temporal characteristics of the trajectories. The idea is to hierarchically partition the time 
domain by first segmenting trajectories into sub-trajectories according to fixed equi-sized disjoint temporal 
periods, called chunks (1st level partitioning). Then, each chunk is organized into sub-chunks, which form a 
partitioning of sub-trajectories within each chunk (2nd level partitioning). Notice that sub-chunks may overlap in 
time, i.e. they are not temporally disjoint. 
 Example 1 Fig. 2 illustrates six trajectories, T1,…, T6 spanning in two days (called Day 1 and Day 2). The 
dataset is split into two chunks at day-level, with mauve (green) colored sub-trajectories corresponding to the 
evolution of moving objects on Day 1 (Day 2, respectively). Furthermore, the chunk corresponding to Day 1 is 
subdivided to two sub-chunks, corresponding to <T1, T2, T3, T4> and <T5, T6>, respectively. Although not 
illustrated in the figure, the first sub-chunk is valid during [20:00, 0:00) of Day 1 while the second sub-chunk is 
valid during [22:00, 0:00) of Day 1, thus they are overlapping in time. Especially for the first sub-chunk, we 
also illustrate the projection of the four trajectories on the spatial domain, which corresponds to Fig. 1(b).  

 
Fig. 2 Six trajectories, spanning in 2 days, split into daily chunks 

 Next, the sub-trajectories of each sub-chunk are clustered on the spatio-temporal domain with a sampling-
based algorithm. In the previous example, this step results in the formation of two clusters of sub-trajectories (in 
red and blue) and five outlier sub-trajectories (in black), see Fig. 1(b). Thus, ReTraTree maintains only the 
representatives at the 3rd level of the structure, while the actual clustered data are archived at the 4th level.  
 Fig. 3 (and the paragraphs that follow) present ReTraTree in detail. Note that the top-three levels of the 
ReTraTree reside in main memory and only the 4th level is disk-resident. 
 1st level (chunks). The root of the ReTraTree consists of p entries, p ≥ 1, corresponding to chunks sorted by 
time (in the example of Fig. 2, at daily level). Note that for each chunk Hi , i = 1, …, p, there is no need to 
maintain the actual temporal periods in the index nodes since they correspond to fixed equal-length splitting 
intervals. Each entry Hi maintains only a pointer to the respective set of sub-chunks Hi,n, n ≥ 1, under this chunk. 
The set of all chunks forms the 1st level of the structure. 
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 2nd level (sub-chunks). For each chunk, there is a set of sub-chunks, actually a sequence of triples < Hi,n.per, 
Hi,n.R, Hi,n.Out >, n ≥ 1, where per is a temporal period [pert.s, pert.e) when the sub-chunk is valid (in the 
example of Fig. 2, [20:00, 0:00) and [22:00, 0:00), respectively for the two sub-chunks of Day 1), while R (Out) 
are pointers to the set of representative (outlier, respectively) sub-trajectories belonging to sub-chunk Hi,n. The 
sequence of triplets is ordered by <pert.s, pert.e>. The set of all sets of sub-chunks forms the 2nd level of the 
structure.  
 3rd level (cluster representatives). For each sub-chunk, the entries of set R consist of pairs <Rj, 𝐶!!>, j ≥ 0, 
where each entry includes the representative sub-trajectory Rj and a pointer 𝐶!! to the subset of sub-trajectories 
belonging to that sub-chunk and forming a cluster around Rj. Note that j = 0 implies that there may exist sub-
chunks with zero clusters (i.e. including outliers only). The set of all sets of cluster representatives (along with 
the pointers to actual data) forms the 3rd level of the structure. 
 4th level (raw trajectory data and outliers). The sets of actual sub-trajectories that compose clusters 𝐶!! are 
stored at the 4th level of the structure. For each sub-chunk Hi,n, there corresponds a set Di,n consisting of triples 
<sub-trajectory-id, 𝐶!!, sub-trajectory-3D-polyline> that keep the information about which sub-trajectory 
belongs to which cluster. On the other hand, set Out contains the outlier sub-trajectories of that sub-chunk. The 
outlier sub-trajectories are appropriately indexed in a 3D-R-tree structure (Theodoridis et al. 1996). The 
clustering process of sub-trajectories belonging to a sub-chunk, during which we detect sets S and Out, is a key 
process for ReTraTree and is described in detail in Section 5. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3 Overview of the ReTraTree indexing scheme 
 How ReTraTree handles a new trajectory is discussed in the subsections that follow. 
3.2 Hierarchical temporal partitioning 
Given a trajectory database D of lifespan l (whose duration is denoted as |l|), a new trajectory T, and a fixed 
partitioning granularity p, applicable at the ReTraTree 1st level, T is partitioned into a number of sub-trajectories 
Si, i ≥ 1, where the sub-trajectory Si is the restriction of T inside a temporal period pi, 

𝑝! =
|𝑙| ∙ 𝑖 − 1

𝑝
,
|𝑙| ∙ 𝑖
𝑝

, 1 ≤ 𝑖 ≤ 𝑝 

where |𝑙| 𝑝 is the length of each time interval (i.e. the duration of the lifespan of each chunk) and timestamps 
𝐷!.! + |𝑙| ∗ 𝑖 − 1 𝑝,  2 ≤ 𝑖 ≤ 𝑝 are called splitting timestamps. As such, every trajectory in the dataset is 
partitioned into sub-trajectories using the same (pre-defined, according to granularity p) splitting timestamps. 
This chunking process is applied incrementally, whenever a batch of new recordings from a moving object 
arrives. In case of a new trajectory with temporal information that exceeds the last existing chunk, a new chunk 
is created and the set of chunks CK is extended. 
 At the 2nd level, each chunk is subdivided into (possibly, overlapping) sub-chunks. Specifically, a chunk is  
split into sub-chunks by grouping the sub-trajectories contained in the chunk, according to the following 
definition. 
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 Definition 6 (Grouping of sub-trajectories in the same sub-chunk): Given a temporal tolerance parameter τ 
and two sub-trajectories S ∊ T and S’ ∊ T’ belonging to the same chunk, these sub-trajectories can be grouped 
together in the same sub-chunk if their starting (ending) timepoints differ at most τ/2, respectively. Formally, it 
should hold that: 

𝑆!.! − 𝑆′!.! ≤ 𝜏
2 ∧ 𝑆!.! − 𝑆′!.! ≤ 𝜏

2 (8)
 

 Note that the above definition is not deterministic as there might be a sub-trajectory S’’ ∊ T’’ that also 
satisfies this condition. We handle this case by grouping the sub-trajectories when this condition is satisfied for 
the first time. Thus, we do not define and we do not search for a kind of “best-matching” sub-chunk. The 
reasons for this choice is that we are in favor of a very efficient insertion process, while we do not care about an 
optimal matching as this issue will be handled when the analyst asks for a clustering analysis. Regarding 
tolerance parameter τ, it is a user-defined parameter and can be exploited to impose an either stricter or looser 
notion of grouping. It also implies that e.g. when τ is set to 10 minutes, a sub-trajectory of less than 20 minutes 
duration cannot be grouped together with a sub-trajectory of more than 30 minutes duration. 
3.3 Sampling-based sub-trajectory clustering 
As already mentioned in Section 3, maximizing Eq. (7) is a hard problem. In order to tackle it we adopt a 
methodology for the optimal segmentation and selection of a sample of sub-trajectories from a trajectory 
dataset. Thus, in Fig. 4, we outline the Sampling-based Sub-Trajectory Clustering (S2T-Clustering) algorithm, a 
two-step process that relies on a sub-trajectory sampling method, proposed in (Panagiotakis et al. 2012). Briefly, 
S2T-Clustering relies on the output of the afore-mentioned sampling method (1st step), which is a set of sub-
trajectories in the MOD that can be considered as representatives of the entire dataset. These samples serve as 
the seeds of the clusters, around which clusters are formed based on a greedy clustering algorithm (2nd step). 
Algorithm S2T-Clustering 

Input: MOD D = {T1 , T2 , … , TN }, ε, δ 
Output: Sampling set R, Clustering C, Outlier set Out. 
1. (R, S) ß Sampling(D, ε) 
2. (C, Out) ß GreedyClustering(R, S, δ) 
3. return (R, C, Out) 
 

Fig. 4 S2T-Clustering for building ReTraTree sub-chunks 
 The first step of S2T-Clustering algorithm (line 1) invokes the Sampling method, which aims to solve an 
optimization problem, namely to maximize the number of sub-trajectories represented in a sampling set. In a 
few words, Sampling calculates the voting descriptor 𝑉!! of all trajectories T in D with respect to D, as 
described in Def. 3. Then, based on this signal, each trajectory is partitioned into sub-trajectories having 
homogeneous representativeness (i.e. the representativeness of all segments in a sub-trajectory does not deviate 
over a user-defined threshold), irrespectively of their shape complexity. According to (Panagiotakis et al. 2012), 
a trajectory should have at least w points in order for the segmentation to take place. Thus, w is an application-
based parameter of Sampling that acts as a lower bound of the length of a trajectory under segmentation. 
Subsequently, Sampling selects a sampling set R={R1,…,RM} of sub-trajectories, which are hereafter considered 
as the representatives of D. Note that the number M of sub-trajectories is not user-defined; instead, it is 
dynamically calculated by the method itself. This is achieved by tuning Sampling with a parameter ε (ε>0 and 
εà0), the role of which is to terminate the internal iterative optimization process when the optimization formula 
is lower than a given threshold (i.e. the ε parameter). Back to the example of Fig. 1, the above voting-and-
segmentation phase would result in segmenting trajectory T1 into three sub-trajectories (coloured red, blue, and 
black, respectively, in Fig. 1) according to its representativeness; similar for the rest trajectories of the MOD.) 
Then, Sampling would intuitively select two sub-trajectories as representatives, one from the blue sub-
trajectories, and one from the red sub-trajectories. 
 At its second step (line 2), S2T-Clustering uses sampling set R in order to cluster the sub-trajectories of the 
dataset according to the following idea: each sub-trajectory in the sampling set is considered to be a cluster 
representative. More specifically, clustering is performed by taking into account sampling set R = {R1,…,RM} 
and vector of votes (i.e. representativeness) 𝑉!!

!! (actually we use the average voting 𝑎𝑣𝑔 𝑉!!
!! ) between sub-

trajectories of the original MOD Si ∈ D − R with respect to the representative sub-trajectories Rj ∈ R. Recall that 
𝑉!!
!! (Def. 2) consists of |Si| elements, where each one represents the voting that the segments of Si receive from 

the segments of Rj. To this end, in order for the S2T-Clustering algorithm to maximize Eq. (7) for the special 
case where the time window W corresponds to the lifespan l of D, the cluster 𝐶!! of a representative sub-
trajectory of the sampling dataset Rj ∈ R, i.e. the set of sub-trajectories that are assigned to cluster 𝐶!!, is 
provided by: 



𝐶!! = 𝑆! ∈ 𝐷 − 𝑅: 𝑎𝑣𝑔 𝑉!!
!! ≥ 𝑎𝑣𝑔 𝑉!!

!! ,∀𝑅! ∈ 𝑅 ∧ 𝑎𝑣𝑔 𝑉!!
!! ≥ 𝛿  (9)

 

 On the other hand, set Out of outliers consists of sub-trajectories that have been assigned to no cluster: 

𝑂𝑢𝑡 = 𝑆! ∈ 𝐷 − 𝑅 − 𝐶!! ,∀𝑅! ∈ 𝑅  (10)
 

 The algorithm outlined in Fig. 4 simply iterates through all the representative sub-trajectories Rj ∈ R of the 
sampling dataset R and applies the constraints of Eq. (9). Parameter δ is a positive real number between 0 and 1 
that acts as a lower bound threshold of similarity between sub-trajectories and representatives. As such, it 
controls the size of the clusters C and the outlier set Out. 
3.4 ReTraTree maintenance 
S2T-Clustering does not support arbitrary time windows nor dynamic data. The additional challenge that we 
have to address is to efficiently support such a clustering for arbitrary time windows and dynamic data. To 
achieve this, we need to efficiently support insertions of new trajectories in the ReTraTree. 
 The incremental maintenance of the ReTraTree, whenever a batch of recordings of a moving object (i.e. a 
trajectory T) arrives, is supported by the ReTraTree-Insert algorithm outlined in Fig. 5. We have already 
described how our method incrementally performs the first phase of partitioning in the time dimension (line 1). 
The update_chunks function returns the set of chunks H and the respective set of sub-trajectories S that 
correspond to the input trajectory T, i.e. the sub-trajectories Si that intersect temporally with chunk Hi. Then, the 
algorithm assigns each sub-trajectory Si to an appropriate sub-chunk (lines 2-4). This is actually checked by the 
find_subchunk function which, instead of applying Def. 6 between Si and the other sub-trajectories in the sub-
chunk, simply tests whether the following inequality holds: |Si,t.s – Hi,n,t.s| ≤ τ /2  ∧ |Si,t.e – Hi,n,t.e | ≤ τ /2. To gain 
this efficiency, the implicit assumption is that the temporal borders of each sub-chunk are left unchanged since 
its initialization with its first sub-trajectory. If there is not a matching sub-chunk with respect to time (line 5), a 
new sub-chunk is created, which is initialized with an empty representative set R, and an outliers set Out 
including the unmatched sub-trajectory (line 17). If there is an appropriate sub-chunk for the sub-trajectory 
under processing (line 5), the algorithm tries to greedily assign it to the best existing cluster (lines 6-13). If this 
attempt fails (line 14), the algorithm invokes ReTraTree-Handle-Outlier algorithm (outlined in Fig. 6). 
  
 Algorithm ReTraTree-Insert 
Input: ReTraTree root, trajectory T, τ, ε, δ 
1. (H, S)ßupdate_chunks(root, T) 
2. for each pair (Hi, Si) ∈ (H, S) do 
3.     clustered = false 
4.     Hi,n = find_subchunk(Si, Hi) 
5.     if Hi,n ≠ ∅ then 
6.         max_vi = -1 
7.         for each Rj ∈ Hi,n.R do 
8.             if (non_common_lifespan(Si, Rj) < τ) then 

9.                     v = 𝑎𝑣𝑔 𝑉!!
!!  

10.             if (v ≥ δ AND v > max_vi) then 
11.                     assign Si to 𝐶!!  
12.                     max_vi = v 
13.                     clustered = true 
14.             if (clustered = false) then 
15.                     ReTraTree-Handle-Outlier(root, Hi,n, Si, ε, δ) 
16.     else 
17.         update_chunk(Si, Hi) 
18. return 
 

Fig. 5  ReTraTree-Insert algorithm 
 In particular, the second algorithm adds the sub-trajectory into the outliers’ set of the sub-chunk, which acts 
as a temporary relation upon which S2T-Clustering is applied, whenever the size of the relation exceeds a 
threshold α (e.g. α Mb that may correspond to a percentage of the dataset) with respect to its size, at the time of 
the previous invocation of the algorithm (line 2). Then, a new set of representative sub-trajectories will extend 
the existing set of representatives, only if it is δ-different from them (line 4). For each of the resulting new 
outliers, we re-insert the sub-trajectory from the top of the ReTraTree structure. This implies that we recursively 
apply ReTraTree-Insert for that sub-trajectory in order to search for other sub-chunks wherein it could be 
clustered or to form a new sub-chunk. This recursion is continued until an outlier is either clustered or 
partitioned to smaller pieces, due to successive applications of S2T-Clustering. In case the size of an outlier 
becomes smaller than w, we archive it in the relation containing the raw data. Before applying a clustering 
analysis task and if the tree has been updated since the insertion of this specific trajectory, we give a last chance 



to these small outliers to be clustered by re-dropping them from the top of the structure. In other words, for a 
(sub-)trajectory Tk, if its length |Tk| < w and Tk has not been assigned to a cluster, then, since it cannot be further 
segmented (and thus become again candidate to be clustered in a different sub-chunk); it cannot also be 
clustered before new trajectories update the tree. 
 
Algorithm ReTraTree-Handle-Outlier 
Input: ReTraTree root, sub-chunk Hi,n, outlier Si, τ, ε, δ 
1. Hi,n.Out ß Hi,n.Out  ∪ Si 
2. if |Hi,n.Out| > α then 
3.     (R, C, Out) ß S2T-Clustering(Hi,n.Out, ε, δ) 
4.     Hi,n.R ß Hi,n.R ∪ {R’ ⊆ R | ΝΟΤ δ-join(Hi,n.R, R)} 
5.     for each outlier O in Out do 
6.         if |O| < w then 
7.             archive O 
8.         else 
9.             ReTraTree-insert(root, O, τ, ε, δ) 
10. return 
 

Fig. 6 ReTraTree-Handle-Outlier algorithm 

4. ReTraTree in Action 
ReTraTree maintains clustered sub-trajectories at its leaves. However, given a temporal period, it is not enough 
to retrieve the clusters (i.e. the sub-trajectories “following” the representatives) that overlap this period. The 
reason is that the sub-trajectory clustering of overlapping sub-chunks may form representatives that: (a) are 
almost identical (as such, a ‘merge’ operation should take place in order to report only one cluster as the union 
of the two (or more) clusters built around the similar representatives), and/or (b) can be continued by others (as 
such, an ‘append’ operation should take place to identify the longest clusters, i.e. representatives). 
 In other words, an algorithm is required that takes ReTraTree as input and searches within it in order to 
identify the longest patterns with respect to the user requirements (e.g. discover all valid clusters during a 
specific period of time). This is made feasible through appropriate ‘merge’ and ‘append’ operations applied to 
the query results. To the best of our knowledge, such a query-based clustering approach is novel in the mobility 
data management and mining literature. 
4.1  QuT-Clustering 
Given two representatives Ri and Rj if (a) the two representatives have the same lifespan with respect to 
threshold τ and (b) the two representatives are also similar w.r.t. similarity threshold δ (this means that they 
origin from different sub-chunks), then this implies a ‘merge’ operation. On the other hand, if (a) Ri ends close 
to the timepoint when the Rj starts with respect to threshold t, (b) the Euclidean distance of the last point of Ri is 
close (with respect to a distance threshold d) to the first point of Rj, and (c) a sufficient number of the same 
moving objects are represented by both representatives (with respect to a percentage threshold γ), this implies an 
‘append’ operation. Fig. 7 illustrates representatives of a chunk consisting of two chunks. A merge operation 
occurs between R1 and R2, whereas R5 and R6 will both be maintained in the final outcome although they have 
similar lifespans. An append operation occurs between R3 and R4. 
 

 
Fig. 7 Representatives of a chunk with two sub-chunks (dashed vs. continuous polylines) organized in a temporal 

priority queue of two groups (blue vs. red polylines) 
  
 Algorithm QuT-Clustering provided in Fig. 8 proposes such a solution on top of ReTraTree. The user gives 
as parameters the period of interest W, and the algorithm traverses the tree and returns clusters valid in this 
period. 
  

t 

x 
R2 
R1 

> τ 

R3 
R4 

R7 
 

R5 

R6 

sweep line 



Algorithm QuT-Clustering 
Input: ReTraTree root, temporal period W 
Output: Clusters C valid inside W 
1. Hß{Hi, | overlap(root.Hi, W)} 
2. for each Hi ∈ H do 
3.   Hi,n ß{Hi,n, | overlap(W, Hi,n.per)} 
4.   TEQ_PQßbulk_push_TEQ(TEQ_PQ, Hi,n, τ) 
5.   while TEQ_PQ ≠ Ø do 
6.        R ß temporal_interleaving(R ∪ TEQ_PQ.pop()) 
7.        for each Rj ∈ R do 
8.             Roverlap ß temporal_overlap(Rj, R, t) 
9.      for each Rk ∈ Roverlap do 
10.           if (non_common_lifespan(Rj, Rk) < τ) then 
11.                if (𝑎𝑣𝑔 𝑉!!

!!   ≥ δ) then 
12.                     merge(Rj, Rk) 
13.           else if (|Rj,t.e – Rk,t.s| < t) then 
14.                if (euclidean_dist(p(Rj,t.e), p(Rk,t.s)) < d) AND  (common_IDs(Rj, Rk) > γ) then 
15.                     append(Rj, Rk) 
16.           else 
17.                               continue 
18.       Rclusteredß{Rj ∈ R, | |Rj,t.e - Hi,t.e| > τ} 
19.       RßR-Rclustered 
20.       CßC ∪ Rclustered 
21.  return C 
 

Fig. 8 QuT-Clustering algorithm 
 More specifically, the algorithm initially finds the chunks and then the sub-chunks that overlap the given 
period (lines 1-3). These sub-chunks are organized in a priority queue (line 4), which orders groups of 
representatives of the sub-chunks. Each group contains temporally successive representatives that are at most in 
temporal distance τ from each other. To exemplify this ordered grouping of sub-chunks, Fig. 7 shows the 
representative sub-trajectories (excluding outliers) of a single chunk, which consists of two sub-chunks, 
distinguished as dashed vs. continuous polylines. Note that for simplicity, y-dimension is omitted and specific 
borders of sub-chunks are not depicted, while the representatives form two groups, colored blue and red, 
respectively. Subsequently, the algorithm pops each group one-by-one and sorts all representatives with respect 
to time dimension, by interleaving the already sorted (from the step that constructs the priority queue) 
representatives coming from different sub-chunks (line 6). This is done by including representatives left from a 
previous round of the algorithm. Then, the algorithm sweeps the temporally interleaved representatives along 
the time dimension (line 7) and, for each of them, identifies the subset of its subsequent representatives in time 
that their lifespan overlap with the lifespan of the currently investigated representative, after the extension of the 
latter towards the future by t timepoints. For each pair of representatives Rj and Rk, the algorithm checks 
whether a merge operation (lines 10-12) or an append operation (lines 13-15) is necessary. In any other case 
(line 17) the algorithm simply continues with the next representative, and maintains both representatives intact. 
After each sweep, the algorithm maintains in the next round only those representatives that end at most τ 
seconds before the border of the current chunk (e.g. R7, in Fig. 7), as candidates for merging with subsequent 
representatives (lines 18-20). The rest of the representatives are part of the final outcome of the algorithm. 
 Regarding the technical details, a ‘merge’ operation practically maintains (in the working set of 
representatives R) one of the two representatives (e.g. the first) in the remaining process. The other 
representative is appropriately flagged so as to be able to retrieve the raw data that correspond to this cluster, if 
needed. For the ‘append’ operation, we need to retrieve the identifiers of the sub-trajectories (not the sub-
trajectories themselves) that correspond to the clusters implied by the representatives and apply a set 
intersection operation. This is facilitated by traditional indexing structures, such as by indexing the pair of 
representative id (i.e. cluster identifier) and sub-trajectory id of the raw data relation at the 4th level of 
ReTraTree. Practically, an ‘append’ procedure replaces from the working set of representatives S the two 
representatives with one of those sub-trajectories that exist in both clusters. Note that the chosen sub-trajectory 
is selected randomly and it is the one used in the remaining process. Using another non-random choice at this 
step would be possible but not desired, as it would imply retrieval of the actual sub-trajectories. Finally, note 
that for simplicity reasons, we use the same threshold τ to compute the equivalence classes, as well as for 
considering whether two representatives refer to the same temporal period. In practice, these two easily 
configured parameters may be different, depending on the analysis scenarios pursued by the user. Similarly, 
threshold t corresponds to a small duration value, for instance, t = 0 in order to be as strict as possible. 
4.2 Architectural aspects 
The architecture of our framework is illustrated in Fig. 9. The core of the framework is the ReTraTree structure 
that is fed by either new incoming trajectories or data that have been processed in a previous round and could 
not be clustered. In both cases the ReTraTree-Insert algorithm handles the insertion. The trajectories are 



partitioned according to the in-memory part of the structure and stored on disk-based partitions. The trajectories 
assigned to an existing representative trajectory) are archived on disk in clustered partitions. Instead, 
trajectories that were not clustered are organized on disk in an (intermediate) outlier partition. When the size of 
the partitions exceeds a threshold, the S2T-Clustering algorithm applies the Voting process upon which the 
Segmentation of the trajectories takes place. The resulting sub-trajectories and their voting descriptors form the 
input of the Sampling module that selects new (i.e. non-existing) representatives that are back-propagated to the 
in-memory part of the ReTraTree. The new representative trajectories and the raw sub-trajectories form the 
input of the GreedyClustering module. If a sub-trajectory is clustered around a new representative, it is archived 
on disk. Otherwise it is an outlier and is re-inserted to ReTraTree, as it may now be accommodated in the index. 
This is due to its segmentation during the operation of S2T-Clustering, or due to the creation of new matching 
sub-chunks or representatives in the index. Finally, the analyst uses the QuT-Clustering algorithm to perform 
interactive clustering analysis by providing different time windows W as input. 

 
Fig. 9 Architectural aspects of ReTraTree 

4.3 Complexity Analysis 
Concluding the discussion about our proposal, we provide a complexity analysis of (i) loading the ReTraTree 
structure and (ii) performing QuT-Clustering, according to the algorithms proposed so far. The assumption we 
make throughout our analysis is that the distribution of trajectories during the dataset’s lifetime is uniform; in 
other words, selecting two random timepoints, ti and tj, the number of trajectories being ‘alive’ at ti and tj, 
respectively, remains more or less the same. In real world datasets, we do not expect to find perfect compliance 
to this, but we believe that this is a realistic assumption.  
 Lemma 1: Under the uniformity assumption, the loading cost of the ReTraTree is: 

𝒪 𝑝 ∙ 𝑇! ∙ 𝑁 + 𝐻 ∙ 𝑅! ∙ 𝑙𝑜𝑔 𝑇! ∙ 𝑁 𝐻 ∙ 𝑅  
where 𝐻 is the average number of sub-chunks per chunk, 𝑅  is the average number of representative sub-
trajectories per sub-chunk and 𝑇!  denotes the average number of trajectory points in a database consisting of N 
trajectories. 
 Proof: Considering that 𝐻 is the average number of sub-chunks per chunk and 𝑅  denotes the average number 
of representative sub-trajectories per sub-chunk, ReTraTree can be considered as p balanced trees of h = 2 
(excluding the root and the 3D-Rtrees found at the 1st and the 4th level of the structure, respectively) with the 
upper bound for the maximum number of leaves per tree being upper bounded by 𝐻 ∙ 𝑅. Given the above, each 
sub-chunk has an average size of 𝑇! ∙ 𝑁 𝐻 ∙ 𝑅 segments. Setting threshold α of each sub-chunk to this value, 
ReTraTree will invoke the S2T-Clustering algorithm 𝒪(𝑝 ∙ 𝐻 ∙ 𝑅) times [result 1].  
 Regarding the cost of S2T-Clustering algorithm, it is composed by the costs of its two components, namely 
Sampling and Greedy-Clustering (see Fig. 4). As it has been shown in (Panagiotakis et al. 2012), the most 
computationally intensive part of the Sampling method is the voting process with 𝒪 𝑇! ∙ 𝑁 ∙ 𝑙𝑜𝑔 𝑇! ∙ 𝑁  cost 
for each trajectory in a database consisting of N trajectories indexed by a 3D-Rtree structure. Note that in our 
case, we maintain a forest of such trees, where each of them corresponds to the segments of the sub-trajectories 
that belong to the dynamically changing set of outliers of a sub-chunk. Therefore, in our case the number N of 
trajectories corresponds to the number of sub-trajectories that have been assigned to this set. Regarding Greedy-
Clustering, as the voting vectors are pre-calculated during the Sampling step, its cost is dominated by the size of 
the representatives set 𝑅. More specifically, the cost is 𝒪 𝑅 ∙ 𝑙𝑜𝑔 𝑇! ∙ 𝑁 , i.e. the cost of performing 𝑅 
trajectory-based range queries in the database [result 2]. 
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 Since the size of the outliers of a sub-chunk set is estimated to be 𝑇! ∙ 𝑁 𝐻 ∙ 𝑅, the cost of the S2T-Clustering 
algorithm in a sub-chunk is:  𝒪 𝑇! ∙ 𝑁 𝐻 ∙ 𝑅 ∙ 𝑙𝑜𝑔 𝑇! ∙ 𝑁 𝐻 ∙ 𝑅 + 𝑅 ∙ 𝑙𝑜𝑔 𝑇! ∙ 𝑁 𝐻 ∙ 𝑅  [result 3]. 
 By combining results 1-3 above (i.e. multiply the 𝑝 ∙ 𝐻 ∙ 𝑅 number of leaves with the cost of the S2T-
Clustering algorithm of a single sub-chunk), we have proven Lemma 1. n 
 From a different point of view, the cost per trajectory insertion can be split in four parts: (i) the cost of 
chunking and sub-chunking the original trajectory to sub-trajectories, (ii) for each sub-trajectory, the cost of 
finding the matching representative, (iii) the cost of invoking the S2T-Clustering algorithm, which is only in 
case that the sub-trajectory overflows threshold α of the sub-chunk, and (iv) the cost of checking whether the 
new representatives extracted by S2T-Clustering can be inserted into the already identified representatives. 
Regarding the cost of each part, that of (i) is trivial, while that of (ii) and (iv) is 𝒪(R) in both cases, since it 
implies a scan on the set of representatives, which however is small (R<<N). Obviously, the cost per trajectory 
insertion is dominated by the S2T-Clustering algorithm. 
 Lemma 2: Under the uniformity assumption, the cost of the QuT-Clustering algorithm is: 

𝒪 𝐻 ∙ 𝑅 !  
where 𝐻 is the average number of sub-chunks per chunk and 𝑅  is the average number of representative sub-
trajectories per sub-chunk. 
 Proof: As already shown, under uniformity assumption, each chunk maintains 𝒪(𝐻 ∙ 𝑅) representatives. 
Thus, invoking QuT-Clustering will eventually scan a number of 𝒪( |𝑊|

𝑝 ∙ 𝐻 ∙ 𝑅) representatives, where 
|𝑊|

𝑝  is the number of the involved chunks. However, at any time, the algorithm maintains a priority queue 
of 𝒪(𝐻 ∙ 𝑅) representatives (worst case scenario). Note that sorting this priority queue costs 𝒪(𝐻 ∙ 𝑅) only, since 
the sets of representatives of the corresponding sub-chunks are already sorted, thus a merge-sort performs the 
required temporal interleaving. Given this, as the representatives reside in memory and there is no special 
organization at this level, for each of these representatives the algorithm will scan all the other representatives in 
the worst case, thus leading to 𝒪( 𝐻 ∙ 𝑅 !) cost. n 
 Interestingly, the cost of the QuT-Clustering algorithm is independent to the size of the database, thus it is a 
highly efficient solution for progressive temporally-constrained sub-trajectory clustering analysis. This is 
validated in the experimental study that follows. 
5. Experimental Study 
In this section, we present our experimental study. ReTraTree and its algorithms were implemented in-DBMS in 
Hermes2 MOD engine over PostgreSQL, by using the GiST extensibility interface provided by PostgreSQL. 
More specifically, the top three levels of ReTraTree that reside in memory were implemented as temporary 
tables, while the 4th level was stored in traditional tables, upon which the 3D-Rtrees were built. Although our 
proposal is generic, we chose to put extra effort to implement it on a real-world MOD management system 
rather than an ad hoc implementation, because of the initially placed goal to support progressive clustering 
analysis. We argue that this is an important step towards bridging the MOD management and mobility mining 
domains, as state-of-the-art frameworks (Giannotti et al. 2011) could make use of the efficiency and the 
advantage of our proposal to execute clustering analysis tasks via simple SQL. This way, our approach becomes 
practical and useful in real-world application scenarios, where concurrency and recovery issues are taken into 
consideration. 
 All the experiments were conducted on an Intel Xeon X5675 Processor 3.06GHz with 48GB Memory 
running on Debian Release 7.0 (wheezy) 64-bit. We used PostgreSQL 9.4 Server with the default configuration 
for the memory parameters (shared_buffers, temp_buffers, work_mem, etc.). The outline of our experimental 
study is as follows: in Section 5.1, we discuss the setting of various parameters. In Section 5.2 we present 
baseline solutions with which we compare our proposals. In Section 5.3 we describe the datasets that we used in 
this study. In Section 5.4, we apply a qualitative analysis to verify that our proposal operates as expected by 
using datasets with ground truth. In Section 5.5 we provide a sensitivity analysis with respect to various 
parameters. In Section 5.6 we continue the qualitative evaluation of our approach in real datasets with general-
purpose clustering validation metrics. In Section 5.7, we evaluate the maintenance of ReTraTree in terms of 
loading performance and size. In Section 5.8, we measure the I/O performance of ReTraTree with respect to the 
QuT-Clustering algorithm, the performance of which is assessed in Section 5.9. 
5.1 Parameter settings 
Regarding parameter settings, as our approach makes use of the sampling methodology of (Panagiotakis et al. 
2012), we followed the best practices presented in that work. More specifically, the value of parameter σ was 
set to 0.1% of the dataset diameter, while that of ε was set to 10-3. We would like to note that we made several 
                                                                    
2 Hermes@PostgreSQL MOD engine. URL: http://infolab.cs.unipi.gr/hermes/ 



experiments by modifying the values of these parameters and the differences in the results were negligible, thus 
in a way we re-validated our earlier experience in the current setting.  
 As far as it concerns the parameters that affect the construction of ReTraTree, their effect is rather 
straightforward. Here we report our findings, which have been experimentally validated. More specifically, the 
more we increase p, the more chunks we create and hence the more the partitions (i.e. relations in our 
implementation). As the number of these partitions increases, the size and the construction time of ReTraTree 
decreases as the structure holds the same amount of data, but in smaller relations (i.e. smaller indexes). 
Moreover, as by increasing p we have a smaller structure size, the runtime of QuT-Clustering will be smaller. 
Regarding the τ parameter, the smaller it is, the more the number of sub-chunks and hence the more relations; 
thus, we fall at the previous case. In addition, the smaller the similarity threshold δ, the more the sub-trajectories 
that are assigned to already existing clusters. This implies that fewer sub-trajectories will end up to the outliers’ 
set and hence the S2T-Clustering algorithm runs fewer times. This means that the lower the δ the lower the 
construction time of the ReTraTree. Finally, regarding the value of α that is the threshold of the size of the 
outliers’ set above which the S2T-Clustering algorithm is applied, the more we increase α, the fewer times the 
S2T-Clustering will run and consequently the smaller the construction time of ReTraTree. In our experiments we 
fixed threshold α to 5% of the dataset size. 
 In the subsequent sections we report on the effect of the important parameter of the time window W, while in 
Section 5.5 we particularly study the effect on both the efficiency and the quality of QuT-Clustering when 
varying the values of the remaining parameters, whose effect is not trivial to foresee without experimentation. 
5.2 Baseline solution 
 To the best of our knowledge the ReTraTree structure and the corresponding QuT-Clustering algorithm is a 
novel solution to the temporally-constrained sub-trajectory cluster analysis problem and there is no comparable 
technique. Furthermore, as already mentioned, the S2T-Clustering algorithm has some unique characteristics that 
make it appropriate as part of our solution. The most important characteristic is that it provides a greedy solution 
to the problem for the degenerated case where the time window W is equal to the entire lifespan of the dataset. 
This is a key observation that we exploit in our approach by organizing our data in sub-chunks consisting of 
sub-trajectories having the same lifespan and applying S2T-Clustering to them. In Section 5.3 we demonstrate 
that the state-of-the-art TRACLUS algorithm (Lee et al. 2007) that is utilized also by the TCMM framework (Li 
et al. 2010b) cannot identify the clusters in datasets including ground truth. Moreover, in (Panagiotakis et al. 
2012) it is shown that an efficient solution for the sampling process that the S2T-Clustering algorithm utilizes, it 
requires a 3D-Rtree index. 
 Given the above, in this empirical study we set the following comparable pairs: (i) we compare the 
ReTraTree structure with the 3D-Rtree structure. A secondary but important reason for this choice is that 3D-
Rtree is the prevailing structure that state-of-the-art spatial DBMS vendors have chosen to support in their 
products (e.g. PostGIS, Oracle Spatial); (ii) we compare the S2T-Clustering algorithm with QuT-Clustering 
algorithm for the degenerated case where the time window W is equal to the entire lifespan of the dataset. Of 
course, our approach is applicable in any user-defined time window W. Thus, in this case the comparable pair is 
on the one hand the QuT-Clustering and on the other hand again the S2T-Clustering algorithm after having 
restricted the dataset to the selected time window W. This implies that an analyst should first apply a temporal 
range query to restrict the dataset inside W, then build a 3D-Rtree on the restricted dataset and afterwards run 
the S2T-Clustering algorithm. This is the best choice to perform a progressive clustering analysis without the 
ReTraTree and this is how the analysts work currently. 
5.3 Datasets 
In this study we used two real datasets (IMIS and GeoLife) and one synthetic (called SMOD); Table 2 presents 
their statistics3. 
 IMIS - IMIS is a real dataset consisting of the trajectories of 2,181 ships sailing in the Eastern Mediterranean 
for one week; data are collected through the Automatic Identification System (AIS) through which ships are 
obliged to broadcast their position for maritime regulatory purposes.  
 GeoLife - the GeoLife dataset (Zheng at el. 2010) contains 18,668 trajectories of 178 users in a period of 
more than four years. This popular dataset represents a wide range of movements, including not only urban 
transportation (e.g. from home to work and back) but also different kinds of activities, such as sports activities, 
hiking, cycling, entertainment, sightseeing and shopping. 
 SMOD - Synthetic MOD (SMOD) consists of 400 trajectories and is used solely for the ground truth 
verification. The creation scenario of the synthetic dataset is the following: the objects move upon a simple 
graph that consists of the following destination nodes (points) with coordinates A(0, 0), B(1, 0), C(4, 0), and 
D(2, 1) illustrated in Fig. 10.  
                                                                    
3 The GeoLife dataset is publicly available. The other two datasets are publicly available at chorochronos.datastories.org repository under the 

names ‘imis7days’ and ‘smod’, respectively. 



 
Figure 10. The 2-D map of SMOD with the three one-directional and one bidirectional road 

 We assume that half of the objects move with normal speed (i.e. 2 units per second) and the rest of them 
move with high speed (i.e. 5 units per second). To be more realistic, we have also added 50 db Gaussian white 
noise to the spatial coordinates of SMOD. The objects move under the following scenario (rules), for a lifetime 
of one hundred seconds: There exist three one-directional roads (A → B, B → D, D → C) and one bi-directional 
road (B ⇆ C). At t = 0 sec, all objects start from point A. Thus, the first destination of all objects is point B. 
Since half of the objects move with different speed, half of them (i.e. 200 objects) will arrive to point B at t = 20 
sec and the rest of them at t = 50 sec. 
 When an object arrives at a destination point, it ends its trajectory with a probability of 15%. Otherwise, it 
continues with the same speed to the next point. If there exist more than one possible next point, it decides 
randomly about the next destination. 

Table 2: Dataset Statistics 
Statistic SMOD IMIS GeoLife 

# Trajectories 400 2,181 18,668 
# Segments 35,273 12,516,337 24,159,325 

Dataset duration 100 sec 7 days  ~5 years 
Avg. segment length (m) 8 169.5 72 

Avg. segment speed (m/sec) 7.8 6 5 
Avg. sampling rate (sec) 1 37 4 

Avg. trajectory speed (m/sec) 2.9 3.7 3.9 
Avg. # points per trajectory 89 5,739 1,295 

Avg. trajectory duration 1.5 min 2.8 days 2.7 hours 
Avg. trajectory length (km) 0.7 972.4 93 

5.4 Quality of clustering analysis in synthetic datasets including ground truth 
To the best of our knowledge there is no real trajectory dataset that provides ground truth that can be utilized for 
validating clustering techniques. Thus, our premise is to evaluate our approach qualitatively by using a  
synthetic dataset. The description of SMOD implies that the possible ending times of a moving object are t ≈ 20, 
t ≈ 50, t ≈ 80 or t ≈ 100. Based on this fact and by setting the chunk size equal to the duration of the dataset (i.e. 
100 sec) we infer that the ReTraTree construction process should create 4 sub-chunks. We also infer the lifespan 
l of each sub-chunk. The invocation of the ReTraTree-Insert that builds these sub-chunks, concludes to apply 
the S2T-Clustering algorithm in each of these sub-chunks, which in its turn results in discovering representatives 
(i.e. clusters) in each of them. This ground truth is illustrated in Table 3.  

Table 3. The ground truth in SMOD 
Sub-chunk Path Time periods (clusters) 

H1,1 
l = [0, 100] 

A→B [0, 20], [0, 50] 
B→C [20, 80], [50, 100] 
B→D [20, 52], [50, 100] 
C→B [80, 100] 
D→C [52, 100] 

H1,2 

l = [0, 80] 
A→B [0, 20], [20, 80] 
B→C [20, 80] 

H1,3 
l = [0, 50] 

A→B [0, 20] [0, 50] 
B→D [20, 52] 

H1,4 

l = [0, 20] A→B [0, 20] 

 For instance, sub-chunk H1,1 with lifespan [0, 100] (i.e. objects that move through out the dataset’s lifespan) 
includes eight representatives, for each of which we note its lifespan. For example, in H1,1 there are two sub-
trajectory clusters on the path A→B, with lifespans [0, 20], [0, 50], respectively. 
 We have loaded the SMOD dataset to the ReTraTree. We set the temporal tolerance parameter to τ = 2 (i.e. 
we impose 1 second difference in the starting/ending timepoints). The resulting ReTraTree discovered indeed 
four sub-chunks with lifespans: [0, 100], [0, 81], [0, 54] and [0, 20]. By incrementally applying S2T-Clustering 
in each of them, we resulted in the discovery of the representatives. Fig. 11 illustrates the representatives of the 



four sub-chunks. By combining each row in Table 3 with Fig. 10(a)-(d), we conclude that ReTraTree discovers 
the correct representatives, with their lifespans only slightly deviating from ground truth. 

 

 

(a) (c) 

  

(b) (d) 

Fig. 11 The representatives of the four sub-chunks 
 We now investigate how the QuT-Clustering algorithm would operate by setting the temporal period W e.g. 
to the whole lifespan of the dataset. We used the values 5 sec, 10 m and 50% for (t, τ), d and γ respectively. 
After all append and merge operations take place, the resulting representatives are depicted in Fig.12, which is 
almost identical to the expected ground truth. 

 
Figure 12: QuT-Clustering results with W=[0, 100] 

 In order to measure the stability of our method to noise effects, we have added more Gaussian white noise 
with Signal to Noise Ratio (SNR) level SNR = 30 db. The initial SMOD with additive noise of SNR = 50 db 
and the new SMOD with SNR = 30 db projected in 2-D spatial and 3-D spatiotemporal space is illustrated in 
Fig. 13. A small number of objects (i.e. outliers, four in our experiment) randomly move in space other than the 
roads that the other objects reside. These are also depicted in Fig. 13. In addition, the speed of outliers is 
updated randomly. Furthermore, for the sake of simplicity we assume that the chunk size is the whole lifespan 
of the dataset. According to this, the ground truth is restricted to the eight different paths that are valid for sub-
chunk H1,1. 
 



 

Figure 13: The trajectories of the SMOD with additive noise of SNR = 50 db projected in (a) 2-D spatial space 
ignoring time dimension and (b) spatiotemporal 3-D space. The trajectories of the SMOD with additive noise of SNR 
= 30 db projected in (c) 2-D spatial space and (d) spatiotemporal 3-D space. (e) The four outliers of the SMOD with 
additive noise of SNR = 50 db projected in 2-D spatial space ignoring time dimension. (f) The four outliers of our 
synthetic MOD with additive noise of SNR = 30 db projected in 2-D spatial space. 
 Given the above, and in order to demonstrate the benefits of S2T-Clustering we compare with TRACLUS 
(Lee et al. 2007), the state-of-the-art sub-trajectory clustering technique. Again we assume that the chunk size is 
the whole lifespan of the dataset, hence the ground truth restricts to the eight different paths that are valid for 
sub-chunk H1,1. In Fig. 14(a) and (b), we present the results of the S2T-Clustering and TRACLUS, respectively. 
Specifically, in Fig. 14(a) we depict the selected sub-trajectories by S2T-Clustering to serve as the pivots (i.e. 
representatives) for grouping other sub-trajectories around them, while in Fig. 14(b) we depict the synthesized 
representatives extracted (with RTG algorithm (Lee et al. 2007)) after the TRACLUS’s grouping phase. Based 
on this experiment, it turns out that S2T-Clustering effectively discovers all eight clusters (as well as the noisy 
sub-trajectories), thus S2T-Clustering is not affected by the trajectories’ shape, yielding an effective and robust 
approach for the discovery of linear and non-linear patterns. On the contrary, TRACLUS fails to identify the 
hidden ground truth in this SMOD (i.e. it discovers only four out of the eight clusters) due to the fact that it 
ignores the time dimension. Interestingly, note that TRACLUS discovers more or less linear patterns, ignoring 
the temporal information of the trajectories, as mentioned in (Lee et al. 2007). 

  
(a) (b) 

Figure 14: The representative trajectories (i.e. clusters) discovered by (a) S2T-Clustering (b) TRACLUS 
 In order to evaluate the accuracy of our proposal in a quantified way, we further employed F-Measure in 
SMOD. In detail, we built 8 datasets, with the first consisting of the sub-trajectories of the first cluster of sub-
chunk H1,1 only, the second consisting of the sub-trajectories of the first and the second cluster only, and so on, 
until the eighth dataset, which consisted of the sub-trajectories of all eight clusters. All eight datasets appeared 
in two variations: including or not the set of outliers. For each dataset, we applied S2T-Clustering and calculated 
F-Measure; Fig. 15 illustrates this quality criterion by increasing the number of clusters. It is evident that S2T-
Clustering turns out to be very robust, achieving always precision and recall values over 92.3%, while the 
outliers are always detected correctly. 



 
Figure 15. Quality of S2T-Clustering w.r.t. number of clusters 

5.5  Sensitivity analysis with respect to various parameters 
In this section we first study the effect on the quality of the clustering result when varying the values of the 
parameters of the QuT-Clustering algorithm. Recall that QuT-Clustering does not change the clusters of the 
trajectories organized in ReTraTree. It returns modified representatives which are valid inside the given time 
window W, by merging or appending the initial representatives. Thus, the goal of the experiment is to measure 
the difference between the representatives resulted by the QuT-Clustering and the initial representatives. 
Intuitively, having this difference for different values of various parameters gives us a good hint about the 
sensitivity of QuT-Clustering w.r.t. the various parameters. To measure the difference, we employ the SSE 
metric between the initial representatives and their counterparts returned by QuT-Clustering. Obviously, if a 
representative is returned as-is, it contributes 0 to SSE. Apart from this set of experiments (one for each 
parameter), we further measure the execution time of QuT-Clustering, so as to study the effect of the parameters 
in the efficiency of the algorithm, in contradiction with its quality. 
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(e) (f) 

  
(g) (h) 

  
(i) (j) 

Fig. 16 (a)-(c)-(e)-(g)-(i) Sum of Square Errors, (b)-(d)-(f)-(h)-(j) Execution time, when varying the parameters of 
QuT-Clustering 
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 The results of these experiments on IMIS dataset are depicted in Fig. 16. More specifically, as depicted in 
Fig. 16(a) as τ increases the quality drops due to the fact that we have more merges, hence the resulted 
representatives are more different than the original. The increasing number of merges results in gradual increase 
of the execution time (Fig. 16(b)). Fig. 16(c) shows that as δ increases the quality increases as fewer merges 
take place. Someone would expect that this would decrease execution time, however this is not the case as the 
costly operation in the merge phase is the calculation of the similarity between the two representatives, which is 
something that has already taken place. What we actually observe is a slight increase in the execution time, 
which occurs because QuT-Clustering ends up processing more representatives. Fig. 16(e), (g), (i) depict that 
quality is not affected by the different values of t, d and γ, respectively. The same conclusion stands also for the 
execution time illustrated in Fig. 16(f), (h), (j), respectively. This is because an append (raised when satisfying 
thresholds on these parameters) does not change the representatives themselves, i.e. an append simply returns 
two representatives as one. 
 Given the above stable behavior of QuT-Clustering w.r.t. its parameters, in the rest of the experimental study 
the values of δ, d, γ, t and τ were set to the following intermediate values 0.7, 1km, 0.7, 30min and 30min, 
respectively. 
5.6  Quality of clustering analysis in real datasets 
In Section 5.4 we used a dataset including ground truth. In this section we use real datasets and general-purpose 
clustering validation metrics. Specifically, we evaluate the quality of the clustering through the 𝑉!!!!

!  measure 
introduced in Eq. (7). Note that this measure stands as an alternative to the Sum of Square Errors (SSE) and 
QMeasure used in the evaluation of TRACLUS (Lee et al. 2007), as it accumulates the (normalized) distances 
from the cluster centroids. More specifically, we use the IMIS and GeoLife real datasets and we compute 𝑉!!!!

!  
for S2T-Clustering and QuT-Clustering in different subsets of the two datasets. These subsets have been 
produced by selecting gradually coarser slices in the time domain. The time window W is set to lifespan of the 
subsets. The rationale of the experiment is that the 𝑉!!!!

!  of QuT-Clustering should be as close as possible to 
S2T-Clustering, as the latter is a good solution of the problem for the degenerated case where the time window is 
equal to the lifespan of the dataset. Fig. 17 confirms that QuT-Clustering is able to identify clusters as well as 
S2T-Clustering does. Put differently, QuT-Clustering results in representatives (after all the merge and append 
operations) which are very similar to those resulting from S2T-Clustering, however as we will show in the 
subsequent sections, QuT-Clustering achieves this result with orders of magnitude better performance than S2T-
Clustering. 

  

(a) (b) 

Fig. 17 𝑽𝑫𝑾!𝑹
𝑹  of QuT-Clustering and S2T-Clustering against batches of varying lifespan (setting W to their whole 

lifespan): (a) IMIS, (b) GeoLife 
5.7 ReTraTree maintenance 
In this section, we evaluate three different aspects of the ReTraTree structure, namely the efficiency of (i) 
loading and (ii) appending data, as well as (iii) the size of the structure.  More specifically, the Load operation, 
measures the required time to load increasing volumes of data from scratch, which correspond to partitions of 
the MOD that are produced by selecting randomly a percentage of the total number of trajectories. Fig. 18 
depicts the construction (loading) time to build, on the one hand, the ReTraTree and, on the other hand, the 3D-
Rtree indices, i.e. the two alternatives to solve the problem at hand. Moreover, in order to correlate the required 
construction time of the indices with query time, we also add the execution time of the QuT-Clustering and the 
S2T-Clustering algorithms, setting as time window W equal to the whole lifespan of each dataset. Note the log-
scale on y-axis. 
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(a) (b) 

Fig. 18 Construction time of ReTraTree vs. 3DR-Tree (and execution time of QuT-Clustering and S2T-Clustering) 
against datasets with increasing size: (a) IMIS, (b) GeoLife 

 From these results, we can make the following observations. First, the increase in loading time for ReTraTree 
is sublinear w.r.t. the dataset size, which is a positive testimony about its scalability. Second, when the total cost 
is considered (indexing and querying), it is clear that for large datasets our approach outperforms the competitor 
by two orders of magnitude. This is due to the fact that querying the ReTraTree is much more efficient than the 
3D-Rtree, as the latter quickly becomes expensive, even for moderate dataset sizes. Put differently, ReTraTree 
harvests the increased construction cost in terms of fast query processing, thus boosting the performance of 
spatio-temporal clustering. 
 On the other hand, the Append operation measures the required time to append an existing ReTraTree with 
new batches of data, which correspond to new temporal periods – to perform this experiment we have split the 
datasets in 7 batches of equal duration (however, skewed size). Note that the first append operation loads data to 
an empty ReTraTree. Fig. 19 illustrates the time for each batch of data to be appended in the two index 
structures. Moreover, in the same figure we present the size of each batch. We observe that there is a very high 
correlation between batch size and batch execution time, perhaps with the exception of the first batch. This 
demonstrates that there exist no additional overheads as more batches are appended, thus the cost of Append 
mainly depends on the size of the appended batch. The fact that the first batch’s execution time is 
disproportionate to its size has to do with the initialization cost of the ReTraTree. 

  
(a) (b) 

Fig. 19 Append of ReTraTree: (a) IMIS, (b) GeoLife 
 Next, we measure the size occupied by the structure. Fig. 20 depicts the size of the ReTraTree structure, both 
on disk and in memory, and compares it with the size occupied by the indices required for the S2T-Clustering 
algorithm. As we have an in-DBMS implementation, the size of the indices is augmented with the required B-
trees on the primary keys of the database tables.  
 For clarity, we also present the size of original tables, namely a single table for the S2T-Clustering case and 
multiple tables for ReTraTree. As expected, we observe that the first three levels of ReTraTree have a small in-
memory footprint, while, notably, our approach has a smaller size on disk in contrast to 3D-Rtree. This is due to 
that the ReTraTree’s partitioning scheme leads to more compact 3D-Rtrees (i.e. less dead space). 

  
(a) (b) 

Fig. 20 Space requirements: (a) IMIS, (b) GeoLife  
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5.8 I/O performance 
Now, we evaluate the I/O performance of both QuT-Clustering and S2T-Clustering w.r.t. the number of index 
blocks read from disk (idx_blk_read) and the ratio of the index page hits (i.e. blocks read from cache) w.r.t. to 
all blocks (idx_hit_ratio).  
 Fig. 21(a) depicts the number of index blocks read from disk while increasing the duration of the time 
window W whereas Fig. 16(b) illustrates the hit ratio that clearly shows the advantageous use of the index in our 
case. The results are for IMIS dataset; we observed similar behaviour in GeoLife. Clearly, QuT-Clustering 
needs to access orders of magnitude fewer blocks to perform the clustering task, when compared to S2T-
Clustering. Moreover, this behaviour is consistent also for increased time windows. 

  
(a) (b) 

Fig. 21 QuT-Clustering vs. S2T-Clustering (IMIS only): (a) blocks read from disk, (b) hit ratio 
5.9 Efficiency of QuT-Clustering vs. S2T-Clustering 
As a final experiment, we measure the efficiency of performing the clustering task. The goal is to evaluate the 
retrieval of all the valid maximal clusters for varying time windows W, which is critical for progressive 
clustering analysis. We compare QuT-Clustering, with an approach that first extracts the relevant records using 
a temporal range query, then creates a 3D-Rtree index on the extracted values, and then applies S2T-clustering. 
Fig. 22 depicts the execution time of both approaches (using a log scale on the y-axis) by varying the duration of 
the time windows W. Again, it is clear that for large datasets our approach outperforms the competitor by two 
orders of magnitude. 

 
Fig. 22 Execution time of QuT-Clustering vs. S2T-clustering by varying the datasets’ lifespan (IMIS)  

 Moreover, we created a bundle of queries with random lifespan (i.e. time window W) and we executed them 
with random sequence. Fig. 23 depicts the accumulated execution time, i.e. time depicted for query i+1 also 
includes time required for query i. This experiment clearly shows a major benefit of ReTraTree. More 
specifically, S2T-Clustering presents an excessive cost in performing multiple clustering tasks (with different 
time windows W), while in the case of ReTraTree this cost simply disappears. In ReTraTree, the overhead of 
performing a new clustering is negligible, as depicted by the almost straight line in the chart. Both results are for 
IMIS dataset; we observed similar behaviour in GeoLife (results omitted as they present no added value). 

 
Fig. 23 Accumulated execution time of QuT-Clustering vs. S2T-clustering w.r.t. a bundle of queries of random lifespan 
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6. Related Work 
In recent years, the field of trajectory pattern mining has many success stories to narrate. These can be 
categorized according to the underlying mining methods used to discover the various behavioral patterns. 
Recent up-to-date surveys (Pelekis and Theodoridis 2014; Zheng 2015; Yuan et al. 2016) converge to a 
categorization of the various approaches that includes moving clusters, trajectory clustering, sequential 
patterns and periodic patterns. In this section, we review the state-of-the-art of the first two categories of 
patterns that directly relate to our work, while we also review the state-of-the-art indexing approaches. 
6.1 Moving clusters 
An interesting line of research includes works that aim to discover several types of collective behavior among 
moving objects, forming a group of objects that moves together for a certain time period. One of the first 
approaches in this direction introduced the concept of flocks. A flock (Laube et al. 2005; Benkert et al. 2006) 
in a time interval I, where I spans for at least k successive timepoints, consists of at least m objects, such that 
for every timepoint in I, there is a disk of radius r that contains all m entities. If the objects change during the 
given interval, a kind of varying-flock is formed. Based on this idea, the notion of a moving cluster was 
introduced (Kalnis et al. 2005), which is a sequence of clusters c1, …, ck, such that for each timestamp i, ci 
and ci+1 share a sufficient number of common objects. An extension of moving clusters pattern is the convoy 
pattern (Jeung et al. 2008) that is a group of objects that has at least m objects, which are density-connected 
with respect to a distance threshold e, during k consecutive timepoints. However, trajectories of real-world 
moving objects may meet together at some, nevertheless non-consecutive timepoints. To meet this real-world 
requirement, a swarm (Li et al. 2010a) is a collection of moving objects with cardinality at least m, that are 
part of the same cluster for at least k timepoints. It is important to note that the k timestamps are not required 
to be consecutive. The traveling companion (Tang et al. 2012) pattern is an approach for the online detection 
of convoy and swarm patterns from trajectories that arrive as a stream to the system. The gathering pattern 
(Zheng et al. 2013; Zheng et al. 2014) relaxes the constraints of the above-mentioned patterns by allowing the 
membership of a group to evolve gradually. Each cluster of a gathering should contain at least p participators, 
which are the objects appearing in at least c clusters of this gathering. The gathering pattern is used to detect 
events, thus, it requires that the region and its shape where the gathering takes place is more-or-less stable. 
Another approach that relaxes the globally consecutive timestamp constraint is the platoon pattern (Li et al. 
2015), which only requires that the timestamps are locally consecutive. In other words, platoon patterns allow 
gap(s) in timestamps, but the consecutive time segments must have a minimum length.  
 Although these approaches provide lucid definitions of the mined patterns, their main limitation is that 
they search for special collective behaviors, defined by respective parameters. None of the above approaches 
tackles the temporal-constrained sub-trajectory clustering problem. More concretely, it is out of their scope to 
organize the mined patterns in appropriate ways so as to report these patterns for arbitrary, user-defined time 
windows. 
6.2 Clustering trajectory data 
Most of the aforementioned approaches operate at the point level of the trajectories, meaning that they ignore 
the route between sampled points. Moreover, the sampled points are required to be at the same timestamps 
for all trajectories. Another line of research tries to discover groups of either entire or portions of trajectories 
considering the routes of the trajectories.  
 In the first of these categories, (Gaffney et al. 1999) proposed probabilistic algorithms for clustering entire 
trajectories using a regression mixture model. Subsequently, unsupervised learning is carried out by using EM 
algorithm to determine the cluster memberships in the model. Except from this probabilistic approach, 
researchers have followed two other directions. The first transforms the trajectories to a multi-dimensional 
space and then apply well-known clustering algorithms. This is because, the vast majority of the proposed 
clustering algorithms, such as k-means (MacQueen 1967), BIRCH (Zhang et al. 1996), CURE (Guha et al. 
1998), DBSCAN (Ester et al. 1996), and OPTICS (Ankerst 1999), are tailored to work with point data, thus 
applying them to trajectory data is not possible. Unfortunately, it has been shown (Nanni and Pedreschi 2006) 
that such an approach based on k-means and hierarchical clustering algorithms leads to results of very poor 
quality. The second is to define appropriate similarity functions and embed them to extensible clustering 
algorithms. Following this line, there are several approaches whose goal is to group whole trajectories, 
including: T-OPTICS (Nanni and Pedreschi 2006) that incorporates a distance function (Frentzos et al. 2007) 
into the OPTICS algorithm (Ankerst 1999); the vector field k-means trajectory clustering technique (Ferreira 
et al. 2013) whose central idea is to use vector fields to induce a notion of similarity between trajectories 
letting the vector fields themselves define and represent each cluster; CenTR-I-FCM (Pelekis et al. 2011) a 
variant of Fuzzy C-means; and the concept of uncertain group pattern introduced in (Wang et al. 2015). Both 
of the last two approaches propose specialized similarity functions having as goal to tackle the inherent 
uncertainty of trajectory data. Lately, another entire-trajectory clustering approach tackling uncertainty has 
been introduced in (Hung et al. 2015) where a pattern mining framework has been proposed for discovering 
trajectory routes that represent the frequent movement behaviors of a user. The approach exploits on a 



similarity measure for trajectories with silent durations (i.e., the time durations when no data points are 
available to describe the movements of users). This is used in a clue-aware clustering algorithm, where clues 
are some spatially and temporally close data points that capture certain common partial movement behaviors 
of the user. In (Xu et al. 2015) a multi-kernel-based estimation process leverages both multiple structural 
information within a trajectory and the local motion patterns across multiple trajectories in order to address 
challenges in case of large variations within a cluster and ambiguities across clusters.  
 In the second category of sub-trajectory clustering (Lee et al. 2007) proposed TRACLUS, a partition-and-
group framework for clustering 2D moving objects (i.e. TRACLUS ignores the time dimension) that enables the 
discovery of common sub-trajectories. TRACLUS clusters trajectories as line segments (sub-trajectories) by 
using an appropriate similarity function defined upon these directed line segments that is embedded in a variant 
of DBSCAN. The notion of the representative trajectory of a cluster is also defined. In this approach, the 
temporal information is not taken into consideration, while the partitioning is performed per trajectory having as 
criterion the line simplification of the trajectory. In (Panagiotakis et al. 2012) we have proposed a voting, a 
trajectory segmentation and a sampling algorithm that selects the top-k representative sub-trajectories of a 
trajectory database in order to support visual explorative analysis. In the current work, we make use of the 
sampling algorithm introduced in (Panagiotakis et al. 2012) as the first step of the S2T-Clustering sub-
trajectory clustering algorithm (see line 1, Fig. 4). The second step of S2T-Clustering (see line 2, Fig. 4) is 
simply a greedy clustering algorithm that forms groups of sub-trajectories by assigning each sub-trajectory to 
its most similar representative sub-trajectory. Even though this is a simple idea, it results in a sub-trajectory 
algorithm that fulfils some unique requirements that the state-of-the-art TRACLUS algorithm cannot meet. 
This is clearly shown in our empirical study via a comparison of S2T-Clustering with TRACLUS. However, 
this is not the core contribution of this work. We argue that the repetitive application of the S2T-Clustering, in 
appropriately chunked portions of trajectories (according to ReTraTree-Insert algorithm, Fig. 5), properly 
organized in ReTraTree, is what we take advantage (in QuT-Clustering algorithm, Fig. 8) in order to 
efficiently solve the temporal-constrained sub-trajectory clustering problem. 
 The “Trajectory Clustering using Micro- and Macro- clustering” (TCMM) framework (Li et al. 2010b) is an 
incremental method that consists of two parts: (i) online micro-cluster maintenance and (ii) offline macro-
cluster creation. The online part first simplifies trajectories by partitioning them into 2D line segments to find 
the spatial clusters of sub-trajectories; then, micro-clusters of the partitioned trajectories are computed and 
maintained incrementally. Micro-clusters hold and summarize similar trajectory partitions at very fine 
granularity levels. The offline part performs macro-clustering on the set of micro-clusters rather than on all 
trajectories when a user requests so. Our approach presents many crucial differences with respect to TCMM: (i) 
TCMM maintains and operates on summaries of trajectories (i.e. micro-clusters) only, while our approach 
maintains a lossless representation of the dataset in ReTraTree; (ii) TCMM applies spatial clustering on directed 
line segments (using (Lee et al. 2007)), while we operate on the native 3D space applying spatio-temporal 
clustering; (iii) the partitioning of the trajectories in TCMM is actually a simplification step taking place per 
trajectory, i.e. without global criteria, while in our proposal the partitioning is a cluster-aware task and it is an 
implicit outcome of the spatio-temporal clustering in the 3D space; (iv) most important, TCMM does not solve 
the temporal-constrained sub-trajectory cluster analysis problem as the offline macro-clustering part of TCMM 
targets at the entire lifespan of the database so as to identify global patterns without temporal constraints, while 
we are able to extract the clusters at any user given temporal period by simply querying the appropriately 
designed ReTraTree structure. 
6.3 Indexing trajectory data 
The ubiquity of R-trees in spatial databases has been expanded also in the domain of mobility data. To name but 
a few representative approaches, the 3D-Rtree for the purposes of spatiotemporal indexing was proposed in 
(Theodoridis et al 1996), while it was adapted to organize trajectories of moving objects in (Pfoser et al. 2000), 
where the TB-tree and STR-tree were introduced. The overhead introduced by representing trajectory segments 
as MBBs in a R-tree like structure was studied in (Hadjieleftheriou et al. 2006). MV3R-tree (Tao and Papadias 
2001) is another efficient proposal for indexing the past movement of mobility data, consisting of a multi-
version R-tree (extending the idea of multi-version B-tree) and a small auxiliary 3D-Rtree pointing to the leaf 
nodes of the former. A recent approach in trajectory indexing includes TrajStore (Cudre-Mauroux 2010), which 
is actually a storage scheme consisting of distinct spatial and temporal indexes. PA-tree (Ni and Ravishankar 
2007) is a parametric index that organizes the coefficients of continuous polynomials approximating movement 
functions. All the above state-of-the-art indexing techniques make use of clustering methods so as to take 
advantage of their properties in the organization of the data (e.g. improve the compactness of the MBBs in R-
tree-like structures). 
 From an abstract point of view, ReTraTree is a forest of 3D-Rtrees, however its design is generic, meaning 
that instead of using 3D-Rtrees in the leaves of ReTraTree, one could use any of the afore-mentioned 
specialized indices, most of which are variants of R-trees. We chose to use 3D-Rtrees as it is natively supported 
from most well-known spatial database systems. Most importantly, ReTraTree proposal is different, as we 



devise an indexing structure whose main goal is to efficiently support temporally-constrained sub-trajectory 
clustering analysis. To the best of our knowledge, this is novel in the domain of mobility data, as similar 
methods have only been introduced for legacy data types (Zhang et al. 1996). 
7. Conclusions and Future Work 
In this paper, we introduced the temporally-constrained sub-trajectory cluster analysis problem. To address it, 
we proposed ReTraTree, an indexing scheme which organizes trajectories by using an effective spatio-temporal 
partitioning technique. Partitions in ReTraTree correspond to groupings of sub-trajectories, which are 
incrementally maintained and represented via a hierarchical organization of a small (thus, light-weight in-
memory) set of ‘representative’ sub-trajectories. Given this, the problem in hand can be efficiently solved as a 
query operator on ReTraTree, coined QuT-Clustering. Our approach further contributes to the mobility data 
management and mining domain for the additional reason that it has been designed and implemented in a MOD 
engine. Such functionality enables the application users to perform progressive cluster analysis via simple SQL 
in real extensible DBMS. Our extensive experimental study showed that our approach outperforms the state-of-
the-art in-DBMS solution supported by PostgreSQL by several orders of magnitude. 
 Nowadays, mobility data is a clear representative of the ‘Big Data’ era. Although our proposal is orders of 
magnitude more efficient than state-of-the-art spatial DBMS, the execution time of a clustering analysis for a 
big dataset (even this is feasible) is not satisfactory. Thus, a limitation of our approach is that it is not directly 
applicable to big datasets, as it has not been designed having in mind an appropriate computational framework, 
e.g. the map-reduce paradigm. To this end, in the future, we plan to investigate real-time solutions, exploiting on 
modern in-memory big data architectures. Furthermore, our approach classifies sub-trajectories as outliers 
simply because they do not satisfy the conditions so as to be clustered around the discovered representatives. 
We leave as an interesting future direction of our work, to further study the semantics of the outliers, so as to be 
useful in specialized outlier detection applications. 
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