
688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 1 of 132
 © Copyright 2017, the Members of the symbIoTe

Symbiosis of smart objects across IoT

environments

688156 - symbIoTe - H2020-ICT-2015

Final Report on System Requirements and

Architecture

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2017, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 2 of 132
 © Copyright 2017, the Members of the symbIoTe

Document Control

Title: Final Report on System Requirements and Architecture

Type: Public

Editor(s): Pavle Skočir (UniZG-FER)

E-mail: pavle.skocir@fer.hr

Author(s): Ivana Podnar Žarko (UniZG-FER), Konstantinos Katsaros (ICOM), Pavle
Skočir (UniZG-FER), Matteo Pardi (NXW), Matteo Di Fraia (UNIDATA), Gabriel Kovacs
(AIT), João Garcia (UW), Szymon Mueller (PSNC), Joaquin Iranzo (ATOS), Mikołaj Dobski
(PSNC), Nemanja Ignjatov (UNIVIE), Pietro Tedeschi (CNIT), Daniele Caldarola (CNIT)

Doc ID: D1.4-v2.1.doc

Amendment History

Version Date Author Description/Comments

v0.1 03/04/2017 Pavle Skočir (UNIZG-FER) Initial Table Of Contents

v0.2 05/06/2017 Pavle Skočir (UNIZG-FER) Updated communication diagrams in Section 5.5

v0.3 12/06/2017 Mikołaj Dobski (PSNC), Nemanja
Ignjatov (UNIVIE), Matteo Pardi (NXW),
Pietro Tedeschi (CNIT), Gabriel Kovacs
(AIT), Konstantions Katsaros (ICOM),
João Garcia (UW)

Updates in Sections 4, 5.2, 5.3, 5.4, 5.6, 6

v0.4 16/06/2017 Pavle Skocir (UNIZG-FER) Updates in Sections 5.4, 5.6

v0.5 19/06/2017 Szymon Mueller (PSNC), Joaquin
Iranzo (ATOS), Pavle Skocir (UNIZG-

FER)

Updates in Sections 2.3, 5.1, 5.5, 6.1.2

v0.6 26/06/2017 Pavle Skočir (UniZG-FER), João Garcia
(UW), Pietro Tedeschi (CNIT), Matteo
Di Fraia (UNIDATA)

Added Sections 5.7, 5.8, 6.1.9; updates in Section 6.1.2

v1.0 28/06/2017 Ivana Podnar Žarko (UniZG-FER),
Pavle Skocir (UniZG-FER), Mikołaj
Dobski (PSNC), Pietro Tedeschi (CNIT)

Updates in Sections 1, 2, 3, 4, 5, 7

v1.1 30/06/2017 Ivana Podnar Žarko (UNIZG-FER), Jose
Antonio Sanchez (ATOS), Christoph
Ruggenthaler (AIT)

Updates in Sections 5.2, 5.6

v1.2 06/07/2017 João Garcia (UW), Marcin Plociennik
(PSNC), Pavle Skočir (UniZG-FER)

Added content in Sections 5.5, 5.6, 5.7, 5.8

Updates in Section 5.3, 6.2.5

Updates throughout the document after internal review

v2.0 10/07/2017 Ivana Podnar Žarko (UniZG-FER),
Pavle Skočir (UniZG-FER)

Updates in Sections 5.1, 5.2, 5.4, 6

v2.1 14/07/2017 Ivana Podnar Žarko (UniZG-FER),

Matteo Di Fraia (UNIDATA), Pavle
Skočir (UniZG-FER) Daniele Caldarola
(CNIT), Nemanja Ignjatov (UNIVIE)

Major updates in Section 5.7, minor updates throughout the document

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 3 of 132
 © Copyright 2017, the Members of the symbIoTe

Table of Contents

1 Executive Summary 8

2 Introduction 10
2.1 Purpose of this document 11
2.2 Terminology and definitions 11
Stakeholders: 12
2.3 Relation to other deliverables 14
2.4 Document structure 15

3 The symbIoTe Vision 16
3.1 symbIoTe's goals and challenges 16
3.2 Architecture overview 17
3.3 Compliance Levels (CLs) 19

4 System Requirements 23
4.1 Framework 23
4.2 Methodology 25
4.3 Specified requirements 26

5 symbIoTe Architecture 44
5.1 Application Domain 44

5.1.1 General concepts 44

5.1.2 Component description 46
5.2 Cloud Domain 54

5.2.1 General concepts 54

5.2.2 Component description 55
5.3 Smart Space Domain and Smart Device Domain 62

5.3.1 General concepts 62

5.3.2 Components description 65
5.4 symbIoTe approach to security 67

5.4.1 Certificate Trust Chaining 70

5.4.2 Authorization Token 72

5.4.3 Token Validation 73

5.4.4 Challenge-response procedure 73

5.4.5 Attribute mapping 76

5.4.6 Access Policy Checking 76

5.4.7 Revocation 76

5.4.8 Other security requirements 77
5.5 Achieving Compliance Level-1 (CL1) 77

5.5.1 Component diagram 78

5.5.2 Communication diagrams 79
5.6 Achieving Compliance Level-2 (CL2) 86

5.6.1 Component diagram 86

5.6.2 Communication diagrams 87
5.7 Achieving Compliance Level-3 (CL3) and Level-4 (CL4) 94

5.7.1 Component Diagram 94

5.7.2 Communications diagrams 95

6 State of the Art Overview and Reference to symbIoTe 102
6.1 Reference architectures 102

6.1.1 AIOTI 102

6.1.2 oneM2M 104

6.1.3 IoT-A 110

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 4 of 132
 © Copyright 2017, the Members of the symbIoTe

6.1.4 Web of Things 112

6.1.5 OGC Sensor Web Enablement 113

6.1.6 Industrial Internet Reference Architecture 114

6.1.7 Reference Architecture Model Industrie 4.0 115

6.1.8 ISO/IEC Internet of Things Reference Architecture 116

6.1.9 OpenFog 117
6.2 Related projects and platforms 119

6.2.1 FIWARE 119

6.2.2 COMPOSE 120

6.2.3 CRYSTAL 121

6.2.4 iCore 122

6.2.5 Positioning of symbIoTe with regard to other IoT-EPI Projects 123
6.3 IoT Platforms contributed by symbIoTe partners 123

6.3.1 OpenIoT 123

6.3.2 Symphony 124

6.3.3 Mobility BaaS 125

6.3.4 nAssist 126

6.3.5 Navigo Digitale 127
6.4 Summary of symbIoTe position in the IoT ecosystem context 128

7 Conclusion 129

8 References 130

9 Abbreviations 132

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 5 of 132
 © Copyright 2017, the Members of the symbIoTe

Table of Figures

Figure 1 Sketch of the symbIoTe architecture, as proposed in Description of the Action

(DoA) .. 10

Figure 2 The symbIoTe high-level architecture ... 18

Figure 3 symbIoTe Compliance Levels (CLs) ... 20

Figure 4 Illustrating symbIoTe CLs ... 21

Figure 5 symbIoTe APP components ... 46

Figure 6 symbIoTe CLD components ... 55

Figure 7 symbIoTe SSP and SDEV components ... 64

Figure 8 An example of access policy enforced by three attributes 68

Figure 9 Certificate Chain ... 71

Figure 10 Certificate Chain Workflow ... 72

Figure 11 Challenge-response mechanism .. 75

Figure 12 Component diagram for CL1 .. 79

Figure 13 Legend – messages used in the following diagrams 80

Figure 14 Platform registration ... 80

Figure 15 Resource registration, unregistration and modification 81

Figure 16 Resource search .. 83

Figure 17 Access to resources ... 84

Figure 18 Monitoring resource availability .. 85

Figure 19 Component diagram for CL2 .. 87

Figure 20 Federation management .. 88

Figure 21 Monitoring and SLA violation .. 90

Figure 22 Add, update and remove resources in a federation 91

Figure 23 Access to federated resources ... 92

Figure 24 Calculation of Trust ... 93

Figure 25 Component diagram for CL3 and CL4 .. 95

Figure 26 Application joins SSP ... 96

Figure 27 SDEV joins SSP ... 97

Figure 28 Local platform joins SSP .. 98

Figure 29 Access to SSP resources from within the SSP 99

Figure 30 Access to SSP resources from outside the SSP 100

Figure 31 Mapping between the AIOTI HLA and symbIoTe architecture 103

Figure 32 Mapping between the AIOTI HLA interfaces and symbIoTe architecture
 ... 104

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 6 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 33 Mapping of symbIoTe domains to oneM2M functional architecture . 105

Figure 34 Mapping symbIoTe CL1 to oneM2M... 106

Figure 35 Mapping of symbIoTe Core Services to oneM2M CSEs 106

Figure 36 Mapping symbIoTe CL2 to oneM2M... 107

Figure 37 Mapping of symbIoTe CLD components to oneM2M CSEs 107

Figure 38 Mutual registration and resource announcements [28] 108

Figure 39 Mapping CL3 and CL4 to oneM2M ... 109

Figure 40 The IoT-A tree [8] ... 110

Figure 41 IOT-A reference architecture [8] ... 111

Figure 42 Mapping of symbIoTe to IoT-A reference architecture functional groups
 ... 112

Figure 43 Comparison between symbIoTe and IIRA achitecture 115

Figure 44 Fog Computing ... 117

Figure 45 Fog Computing overview .. 118

Figure 46 COMPOSE high level architecture [15] .. 121

Figure 47 iCore architecture [16] .. 122

Figure 48 Symphony platform concept ... 124

Figure 49 MoBaaS overall architecture... 126

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 7 of 132
 © Copyright 2017, the Members of the symbIoTe

Table of Tables

Table 1: System requirements .. 27

Table 2 Security system requirements ... 38

Table 3 Template for component description ... 44

Table 4 Administration .. 46

Table 5 Registry .. 47

Table 6 Search Engine ... 48

Table 7 Semantic Manager... 49

Table 8 Core Resource Monitor .. 49

Table 9 Core Resource Access Monitor ... 50

Table 10 Core Anomaly Detection .. 50

Table 11 Core Authentication and Authorization Manager 51

Table 12 Core Bartering and Trading ... 52

Table 13 SLA Engine .. 53

Table 14 Registration Handler .. 55

Table 15 Resource Access Proxy ... 56

Table 16 Monitoring .. 57

Table 17 Authentication and Authorization Manager .. 58

Table 18 Federation Manager .. 59

Table 19 Bartering and Trading Manager ... 59

Table 20 Platform Registry ... 60

Table 21 Subscription Manager .. 61

Table 22 Trust Manager ... 61

Table 23 Optimization Manager .. 62

Table 24 Innkeeper ... 65

Table 25 SSP Resource Access Proxy .. 65

Table 26 Resource Access Proxy Gateway .. 66

Table 27 Local AAM ... 66

Table 28 symbIoTe Agent .. 67

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 8 of 132
 © Copyright 2017, the Members of the symbIoTe

1 Executive Summary

The aim of Deliverable 1.4, entitled “Final Report on System Requirements and
Architecture”, is to document the final collection of the symbIoTe system requirements and
report the final version of the system’s functional architecture, with the respective
components, entities and interfaces. It reports the technical work performed in two tasks,
T1.3 (System Requirements, M4-M12) and T1.4 (System Architecture, M4-M18).
symbIoTe system requirements have been derived based on symbIoTe use cases
reported in deliverable D1.3, while the architecture is built in accordance with the initial
architectural sketch proposed in the Description of the Action (DoA).

symbIoTe addresses a challenging objective to create an interoperable Internet of Things
(IoT) ecosystem that will allow for the collaboration of vertical IoT platforms towards the
creation of cross-domain applications. Thus, it designs an interoperable mediation
framework to enable the discovery and sharing of connected devices across existing and
future IoT platforms for rapid development of cross-platform IoT applications. symbIoTe
allows for flexible interoperability mechanisms which can be achieved by introducing an
incremental deployment of symbIoTe functionality across the platform’s space, which will
in effect influence the level of platform collaboration and cooperation with other platforms
within a symbIoTe-enabled IoT ecosystem. Syntactic and semantic interoperability
represent the essential interoperability mechanisms in the future symbIoTe-enabled
ecosystem, while organizational/enterprise interoperability has different flavors within
symbIoTe (platform federations, dynamic Smart Spaces and roaming IoT devices) to
enable platform providers to choose an adequate interoperability model for their business
needs.

The document lists the final collection of the symbIoTe system requirements covering the
following domains: Application Domain, Cloud Domain, Smart Space and Smart Device.
The first two domains (Application and Cloud) interconnect applications with platform-
managed devices by a set of services enabling application developers to identify and use
devices from different platforms in a uniform way. Devices are exposed to third-parties as
services, where the management of devices and associated services, both sensors and
actuators, as well as access control stays on the platform side. Furthermore, symbIoTe
needs to enable organizational interoperability in the Cloud Domain so that platforms can
interoperate directly and securely to share/trade devices and associated services at the
level of virtualized cloud-based IoT services. Smart Space is a local environment hosting
either one or multiple collocated platforms. symbIoTe’s goal is to seamlessly connect,
dynamically configure and automatically register devices in a Smart Space while
facilitating local interactions between collocated platforms. Furthermore, symbIoTe also
relates to the device level with a concept of a Smart Device, which can interact with
surrounding visited environments enabling the concept of a roaming IoT device.

symbIoTe offers flexible interoperability mechanisms enabled by an incremental
deployment of symbIoTe functionality across the previously mentioned architectural
domains. This approach enables platform providers to choose an appropriate level of
integration of symbIoTe-specific services within their platforms, which will in effect
influence the level of platform collaboration and cooperation with other platforms within a
symbIoTe-enabled ecosystem.

This document reports an extensive set of requirements that have been derived from five
symbIoTe use cases and have served as input for identifying the symbIoTe software
components and associated features. The main task of these components is to facilitate
syntactic and semantic interoperability of IoT platforms so that platforms offer an open API

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 9 of 132
 © Copyright 2017, the Members of the symbIoTe

with a mapping of platform information models to the symbIoTe information model1. In this
document, we include communication diagrams depicting component interaction for
syntactic and semantic interoperability. Since security-related requirements play a vital
role in symbIoTe, security-related components implementing Attribute Based Access
Control (ABAC) have also been defined. These components are providing authenticated
and authorized access to platform devices. In addition, the Cloud Domain specifies
components for platform-to-platform interaction for bartering and trading of devices. The
document also reports an initial view on components and envisioned functionality needed
for the Smart Space and Smart Device domain. The aim in those two domains is to offer
dynamic reconfiguration of devices in environments hosting a number of platforms, and to
support roaming devices that can blend with visited environments not operated by their
home platforms.

Finally, the document analyzes relevant work in the area of IoT interoperability, with focus
on reference architectures by standardization bodies and their mapping onto the
symbIoTe architecture, projects with similar goals as symbIoTe, and platforms by
symbIoTe partners aiming to become part of the future symbIoTe-enabled IoT ecosystem.
We can conclude that the proposed functional architecture and its layered stack with four
domains (Application, Cloud, Smart Space and Smart Device domain) is in accordance
with the AIOTA reference architecture. It is motivated by the oneM2M architecture, but
symbIoTe extends the scope by identifying features which go beyond the oneM2M
functional architecture: These are related to platform federations, bartering and trading as
well as device roaming.

1 The symbIoTe information model will be specified in deliverables D2.1 “Semantics for IoT and Cloud Resources” and

D2.4 “Revised Semantics for IoT and Cloud Resources”.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 10 of 132
 © Copyright 2017, the Members of the symbIoTe

2 Introduction

In a world of smart networked devices, wearables, sensors and actuators, transparent and
secure access to and usage of the available resources across various Internet of Things
(IoT) domains is crucial to satisfy the needs of an increasingly connected society.
However, the current IoT ecosystem is fragmented: a series of vertical solutions exists
today which, on the one hand, integrates connected objects within local environments
using purpose-specific implementations and, on the other hand, connects smart spaces
with a back-end cloud hosting often dedicated proprietary software components. The
symbIoTe project steps into this landscape to facilitate the creation and management of

hierarchical, adaptive and dynamic IoT environments, and to devise an interoperability

framework across existing and future IoT platforms for seamless networking and rapid
cross-platform application development.

Figure 1 Sketch of the symbIoTe architecture, as proposed in
Description of the Action (DoA)

Figure 1 sketches an environment of the future symbIoTe ecosystem which is built around
a hierarchical IoT stack and spans over different IoT platforms. We assume that various
IoT devices are connected to IoT gateways within Smart Spaces, representing physical
environments with deployed “things”, while being operated by one or more collocated IoT
platforms. Those platforms provide IoT services locally in Smart Spaces and share the
available local resources (connectivity, computing and storage). Smart Spaces and local
platform services are connected to platform services running in the cloud (e.g. resource
discovery and management, data analytics). Thus, in addition to their local representation,
deployed physical things are also mapped to their virtual representations within the cloud,
and exposed as IoT services to third parties, e.g., mobile or web applications. The

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 11 of 132
 © Copyright 2017, the Members of the symbIoTe

symbIoTe architecture spans over the following four layered domains, as depicted in
Figure 1:

• Application Domain: enables the creation and management of cross-platform
virtual environments to allow unified view on various platforms and their resources;

• Cloud Domain: enables platform interoperability and creation of platform
federations or associations between two platforms so that platforms can securely
interoperate, collaborate and share resources;

• Smart Space Domain: enables dynamic discovery and configuration of resources
within local smart environments, even those already connected to different
platforms;

• Smart Device Domain: relates to heterogeneous IoT devices representing things
in smart spaces; IoT devices can be discovered in visited Smart Spaces and use
their resources in a controlled way (device roaming).

2.1 Purpose of this document

The purpose of deliverable D1.4 “Final Report on System Requirements and Architecture”

is to document the final collection of system requirements and a final version of the

system’s functional architecture, based on the results of the completed tasks T1.3 and
T1.4. System requirements have been carefully derived from the use case descriptions
reported in deliverables D1.1 and D1.3 through an iterative and collective process.
Identified system requirements have served as input to create an initial, but also quite
comprehensive, list of components, their features, and interfaces for the Application
Domain, Cloud Domain, Smart Spaces Domain and Smart Devices Domain. Furthermore,
this document reports the symbIoTe security mechanisms which are incorporated into
component descriptions and corresponding communication diagrams.

The functional architecture reported in this document is used as input to design and
implementation tasks in WP2, WP3 and WP4. In particular, task T2.2 designs and
implements components for the Application Domain and Cloud Domain to enable
semantic and syntactic interoperability of IoT platforms. Tasks within WP3, focusing on
IoT Platform Federation, were running in parallel with T1.4 and used inputs reported in this
deliverable to specify in more detail trading and bartering mechanisms (T3.1), security and
access scopes (T3.2), and the design of components enabling IoT federations (T3.3).
Work within WP4 further elaborates on the Smart Space and Smart Device Domains
presented in this document to design and implement Smart Spaces Middleware.

Deliverable D1.4 is an upgrade of deliverable D1.2 “Initial Report on System
Requirements and Architecture” that focused on Application and Cloud Domains. In this
deliverable, component features and interaction descriptions between the aforementioned
domains are further refined, while the requirements and architecture for the Smart Space
and Smart Device Domain are elaborated.

2.2 Terminology and definitions

IoT-related terms and concepts used in this document are based on the AIOTI Domain
Model [3] which is derived from the IoT-A Domain Model [5]. However, we do not use the

term resource as it is defined in the IoT-A Domain Model, but rather base our definition
on the one proposed by oneM2M [6].

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 12 of 132
 © Copyright 2017, the Members of the symbIoTe

IoT-related terms:

• Thing: represents a physical entity in the physical world with which a generic user
interacts indirectly via an IoT Service. It usually has sensing/actuation and
communication capabilities, as well as data capture, storage and processing
capabilities.

• IoT Device: interacts with a thing and exposes the capabilities of the actual
physical entity. Typical devices are sensors, actuators, tags or gateways (referred
to as intermediary devices in IoT-A).

• Virtual Entity: represents a thing (physical entity) in the digital world.

• IoT Service: is associated with a virtual entity and can interact with the
corresponding thing via its IoT device.

• Composite IoT Service: is associated to one or a group of virtual entities managed
by a single or multiple IoT platforms, but appears to the outside as a single IoT
service.

• Resource: is a uniquely addressable entity in symbIoTe architecture and, as a
generic term, may refer to IoT devices, virtual entities, network equipment,
computational resources and associated server-side functions (e.g., data stream
processing). This definition is on purpose highly generic and abstract to allow its
unified, recursive use across all layers of the envisioned symbIoTe stack.

• System: the set of APIs, interfaces, services and, in general, all components of the
software realization of the symbIoTe architecture.

Stakeholders:

• IoT Platform Provider: offers IoT services managed by an IoT platform (reside
within symbIoTe Cloud Domain).

• Application Developer: build IoT applications based on the IoT services exposed
by various IoT platforms (reside at the symbIoTe Application Domain).

• End User: an individual user of a symbIoTe-supported IoT application.

• Infrastructure Provider: physically deploys the necessary hardware and software
infrastructure within smart spaces.

• Prosumer: is a stakeholder (e.g. platform or end user) which at the same time
produces/provides resources/goods but also consumes resources/goods provided
by other producers or prosumers.

• Consumer: Does not provide any resources/goods. Can participate only in trading
transactions which allow him/her to gain access to resources registered within the
symbIoTe Core Services.

• Producer: Provides resources/goods within the symbIoTe ecosystem. He/she can
engage in trading and bartering transactions.

Security-related definitions:

• Public IoT service: IoT service without access restrictions.

• Restricted IoT service: IoT service to which only specific users have access,
platforms grant access rights to their IoT services.

• IoT device metadata: resource description maintained within symbIoTe core to
perform the search functionality; access to resource metadata may also be
restricted to a selected group of users.

• IoT service access policy: rules for accessing an IoT service defined by a
platform per each IoT service or a set of services, can be used to filter out search
results to which an app/enabler does not have access rights.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 13 of 132
 © Copyright 2017, the Members of the symbIoTe

• Token: represents a digital object used as a container for security-related
information. It can be used for authentication and/or authorization purposes. In
general, it appears as a list of elements. Each element contains an assertion that
further specifies properties assigned to the owner of the token or to the token itself
(i.e., issuer of the token, issuing time, expiration date, subject and so on).
Moreover, a token contains one or more attributes, assigned to the owner of the
token itself. Finally, it also contains an element (generally stored at the end) that
certifies its authenticity and integrity, namely a sign.

• Attribute: it is a specific property assigned to an entity, i.e. role, permission or
feature, which can be assigned after a successful authentication procedure. An
entity in the system is characterized by a set of attributes, potentially assigned by
different platforms at different time instants. Tokens are composed of one or more
attributes and are used when accessing resources in the system.

• Multi-Factor Authentication: Users/devices/applications are authenticated by
presenting two or more different type of evidence factors. Types can be: knowledge
(something you know), possession (something you have) and inherence
(something you are) or location.

symbIoTe-specific definitions:

• symbIoTe Compliance Level (CL): four interoperability aspects covered within the
symbIoTe project.

• Level-1 Compliant IoT Platform (L1 Platform): offers an open symbIoTe-defined
platform interface within the Cloud Domain; platform resources and IoT-related
services are searchable within the symbIoTe Core Services.

• Level-2 Compliant IoT Platform (L2 Platform): implements functionality needed
for platform federations and direct platform to platform interworking for
bartering/trading of resources.

• Level-3 Compliant IoT Platform (L3 Platform): supports dynamic smart spaces.

• Level-4 Compliant IoT Platform (L4 Platform): supports device roaming in visited
domains; a Smart Device can use services in a visited Smart Space.

• IoT Platform Federation: an association of two or more platforms enabling secure
interoperation, collaboration and sharing of resources.

• Smart Space: physical environment (e.g. residence, campus, vessel, etc.) with
deployed things where one or more IoT platforms provide IoT services.

• Smart Device: a device that can directly interact with a Smart Space.

• symbIoTe Core Services: services implemented by symbIoTe components at the
Application Domain which enable the interaction between third-party applications
and L1 platforms.

• Interworking Interface: symbIoTe-defined interface which offers platform
resources as IoT Services in the Cloud Domain.

• Core Information Model (CIM): central information model of symbIoTe. It defines
all the terms (classes and their relations) that symbIoTe components can
understand. Additionally, it serves as a shared vocabulary between all symbIoTe-
Compliant IoT Platforms.

• Platform specific Information Model (PIM): custom extension of CIM defined by
symbIoTe Compliant IoT Platforms. It contains additional classes and predicates
that are necessary for describing the data provided by that specific platform.

• Best practice Information Model (BIM): a special kind of PIM designed to cover
the domains of the use cases within symbIoTe project.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 14 of 132
 © Copyright 2017, the Members of the symbIoTe

Performance indicators:

• Registration response time: the time required for the completion of the IoT
service registration process.

• Search response time: the time required for the system to return the results of IoT
service search.

• IoT service access latency: the time required for the first use of an IoT service,
including initial authentication/authorization processes; it does not include access to
data (or instruction to an actuator).

• Domain Enablers: domain-specific back-end services which provide added value
features on top of IoT platforms and their resources. They are placed within the
symbIoTe Application Domain with a goal to ease the process of cross-platform
and domain-specific application development, and even cross-domain application
development (specifically for mobile and web applications).

Bartering and Trading related definitions:

• Bartering: refers to economic mechanisms whereby prosumers get access to
desired external resources and grant access to own resources requested by other
prosumers without monetary compensation.

• Trading: refers to economic mechanisms (e.g. auctions, direct negotiations)
whereby producers come to an agreement with consumers about providing
goods/resources for which they are paid.

• B2B: platform to platform, prosumers (have IoT services to share).

• B2C: platform to consumer/application that don't have IoT services to share (only
buy access).

• Forward Auction: The producer initiates the auction by creating an offer. Other
producers or consumers can start bidding. In this auction the price keeps
increasing. The winner will be the entity which bids the highest price.

• Reverse Auction: The consumer (or producer) initiates the auction by defining a
need. Producers who wish to fulfil the need can start bidding. In this auction the
price keeps going down. The winner will be the producer which bids the lowest
price.

• Vouchers: digital objects comprised of:
1. The Service Level Agreement (SLA) which contains the available

commodity/resources/goods (e.g., air quality sensors in Vienna, access for
one week, beginning with a date, etc.).

2. The authorization token with access rights mapped in accordance to the
SLA.

3. The issuers desired SLA (e.g.: willing to exchange own voucher for a
voucher containing humidity sensors and other attributes).

4. A validity date (expiration date).
5. A unique Identifier.

2.3 Relation to other deliverables

System requirements and architecture reported in this document have evolved from
deliverable D1.2 “Initial Report on System Requirements and Architecture.” The process
of defining system requirements and architecture followed a two-step approach: Initial
requirements and architecture were created in the first step with focus on Application
Domain and Cloud Domain (reported in the deliverable D1.2). The second step reported in

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 15 of 132
 © Copyright 2017, the Members of the symbIoTe

this deliverable D1.4 “Final Report on System Requirements and Architecture” focuses on
Smart Space and Smart Device requirements and architecture. Additionally, D1.4
documents updates of the Application Domain, which has been in the implementation
phase at the time when the report is published, and a more detailed specification of the
Cloud Domain.

This deliverable presents the functional architecture of symbIoTe. The symbIoTe
Information model, which has been developed in T2.1 in parallel with tasks T1.3 and T1.4,
is presented in D2.4 (M18) “Revised Semantics for IoT and Cloud Resources.” Domain-
specific enablers mentioned in this deliverable have been elaborated and specified within
T2.3, and reported in D2.3 (M12) “Report on symbIoTe Domain-Specific Enablers and
Tools.” Bartering and trading mechanisms, as well as security aspects specified in this
document were documented in more detail within D3.1 (M11) “Resource Trading
Mechanisms and Access Scopes”. Smart Spaces and Smart Devices presented within this
deliverable have been investigated through activities in WP4 (Dynamic Smart Spaces)
and reported in D4.1 (M12) “symbIoTe Middleware Tools, Protocols and Core
Mechanisms.” This deliverable documents an updated version of Smart Spaces and
Smart Devices architecture from D4.1.

Implementation details of the symbIoTe system based on the system requirements and
architecture are presented in separate deliverables. D2.5 (M18) “Final symbIoTe Virtual
IoT Environment Implementation” describes symbIoTe Core Services and the components
for enabling IoT platforms to become Level-1 Compliant. D2.6 (M21) “symbIoTe Domain-
Specific Enablers and Tools” will document implementation details of generic Enabler
components, and specific Enabler components for selected use cases. D3.2 (M22)
“Resource Trading, Security and Federation Mechanisms” will present the design and
implementation of symbIoTe security mechanisms as well as other mechanisms enabling
IoT platforms to become Level-2 Compliant. D4.2 (M23) “symbIoTe Middleware
Implementation” will document details of the Smart Space Middleware design and
implementation enabling IoT platforms to become Level-3 and Level-4 Compliant.

2.4 Document structure

Section 2 presents the purpose of this document and its relation to other deliverables
within the project. Section 0 elaborates on symbIoTe goals and challenges, and provides
details about symbIoTe domains and their relation to the four symbIoTe-specific
interoperability aspects referred to as Compliance Levels (CLs). System requirements are
presented in Section 4, while system architecture with all respective components, entities
and interfaces is introduced in Section 5. Section 6 presents a state of the art overview,
with focus on reference architectures by standardization bodies, projects with goals similar
to symbIoTe, and platforms by symbIoTe partners aiming to become a part of the future
symbIoTe-enabled IoT ecosystem.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 16 of 132
 © Copyright 2017, the Members of the symbIoTe

3 The symbIoTe Vision

The symbIoTe vision is to participate in the IoT ecosystem of the future by providing an
interoperable mediation framework integrating heterogonous IoT platforms that will allow
for the rise of next-generation cross-platform IoT applications as well as local interactions
between smart devices managed by different platforms. Considering the fact that there
are many different IoT platforms already on the market, focusing on different domains
while tackling various requirements and business goals, symbIoTe proposes a flexible
interoperability concept (translated into four interoperability-related CLs) so that platform
providers can choose an appropriate one to match their business needs.

3.1 symbIoTe's goals and challenges

In a highly fragmented IoT ecosystem which is faced with an increasing number of new
IoT platforms on the market2, there is a need for a viable interoperability framework
enabling platform collaboration and cooperation. This would allow for a new generation of
cross-domain IoT services and applications to be built on top of various platforms
managing huge numbers of heterogeneous devices. symbIoTe aims to devise an
interoperability framework which will provide an abstraction layer for a "unified view" on
various platforms and their resources so that platform resources are transparent to
application designers and developers. The IoT resources will be organized in a
hierarchical manner with Smart Spaces interacting with an IoT platform back-end running
in the cloud environment. Dynamic discovery, reconfiguration and migration of IoT devices
will be supported by Smart Spaces to provide dynamicity and adaptability. In addition,
symbIoTe also chooses the challenging task of implementing IoT platform federations so
that IoT platforms can securely interoperate, collaborate and share resources for mutual
benefit. Moreover, symbIoTe envisions the implementation of use case-specific high-level
APIs (enablers), which will further foster a simplified IoT application and service
development process over interworking IoT platforms.

Finally, satisfying security requirements also occupies an important place in symbIoTe's
design principles. symbIoTe designs and develops mechanisms assuring secure IoT
platform interworking, to offer resource access schemes based on security scopes and to
devise an identity management solution for IoT resources which integrates security
features and avoids potential attacks. To this end, specialized security components are
identified in various architectural domains.

Main technological challenges:

• Unified and secure access to physical and virtualized IoT devices: such
access is required for the next-generation of cross-platform and cross-domain
applications.

• Device discovery across various IoT platforms: symbIoTe needs to offer search
mechanisms to efficiently identify devices across platforms that are adequate and
accessible to third parties.

• Security: access scopes and identity management represent the key requirements
for authenticated and authorized access to various resources across platforms.

2 Beecham Research estimates around 300 IoT platforms to be on the market by the end of 2016 [25].

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 17 of 132
 © Copyright 2017, the Members of the symbIoTe

• Platform federation for collaborative sensing/actuation tasks: platforms should
be enabled to securely interoperate for the trading/sharing of resources as well as
to control the terms under which roaming devices are allowed to use resources in
visited domains.

• Hierarchical, adaptive and dynamic IoT environments: it should be possible to
dynamically reconfigure devices in Smart Spaces so that they connect to different
gateways, or even to different platforms collocated in the same environments.

• Seamless roaming of Smart Devices across Smart Spaces: roaming devices
should be enabled to use resources from a local surrounding environment and in
accordance with Service Level Agreements (SLAs) between a platform managing
the visited domain and the platform that operates the roaming device.

3.2 Architecture overview

The symbIoTe approach is built around a layered IoT stack connecting various devices
(sensors, actuators and IoT gateways) within Smart Spaces with the Cloud. Smart Spaces
share the available local resources (connectivity, computing and storage), while platform
services running in the Cloud enable IoT Platform Federations and open up the
Interworking Interface shown in Figure 2 to third parties. The architecture comprises four
layered domains, 1) Application Domain, 2) Cloud Domain, 3) Smart Space Domain and
4) Device Domain, as depicted in Figure 2. Hereafter we list the main functional objectives
for each of these domains:

1. Application Domain (APP): enables platforms to register IoT resources which they
want to advertise and make accessible via symbIoTe to third parties, while
symbIoTe Core Services can search for adequate resources across platforms. It
also hosts domain-specific back-end services (Domain Enablers) which are
designed to ease the process of cross-platform and domain-specific application
development (specifically for mobile and web applications).

2. Cloud Domain (CLD): provides a uniform and authenticated access to virtualized
IoT devices exposed by platforms to third parties through an open API
(Interworking Interface). In addition, it builds services for IoT Platform Federations,
enabling close platform collaboration in accordance with platform-specific business
rules.

3. Smart Space Domain (SSP): provides services for the discovery and registration
of new IoT devices in dynamic local smart spaces, dynamic configuration of
devices in accordance with predefined policies in those environments, and uniform
interfaces for devices available in smart spaces.

4. Smart Device Domain (SDEV): relates to smart devices and their roaming
capabilities. We assume that devices have the capabilities to blend with a
surrounding smart space while they are on the move. In other words, smart devices
can interact with devices in a visited smart space managed by a visited platform, in
accordance with predefined access policies.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 18 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 2 The symbIoTe high-level architecture

APP is designed to offer a unified view on different platforms to create an environment

enabling a new generation of cross-platform and cross-domain IoT applications. This
is achieved by the symbIoTe Interworking Interface providing a uniform view on platform
backend services and Core Services enabling applications to search for IoT devices
across platforms. It relies on a common semantic representation of IoT resources
(services or devices) which uses an expressive yet minimalistic information model3
(symbIoTe Core Information Model, CIM). Note that the Core Services store and manage
only IoT resource descriptions (i.e. resource metadata), while the access to those
resources (e.g., sensor data and actuation primitives) is provided by the underlying
platforms through the Interworking Interface. Thus, the symbIoTe Core Services are in
close interaction and collaboration with the services provided within the Cloud Domain
which offer the actual access to virtualized IoT resources.

In addition to Core Services, we also envision domain-specific enablers to be placed in
APP. Enablers offer value-added services on top of IoT services which are managed and
offered by “native” IoT platforms. For example, an enabler can gather and process all air
quality related data for a certain country and provide data analytics on top of the data set
acquired from various sources and administrative domains. In principle, an enabler can be
regarded as a virtual IoT platform since it does not possess the actual hardware, but
rather offers value-added services on top of the IoT services and devices being accessed
through symbIoTe Core Services. For symbIoTe Core Services an enabler thus plays a
dual role: 1) it is an application using symbIoTe Core Services to find adequate IoT
services, and 2) it acts as another IoT platforms offering domain-specific IoT services to
applications.

3 The symbIoTe information models are specified in deliverable D2.4 “Revised Semantics for IoT and Cloud Resources”.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 19 of 132
 © Copyright 2017, the Members of the symbIoTe

CLD hosts components that enable a unified and secure access to underlying platform
resources as well as closer collaboration between platforms, i.e., platform federations.
The symbIoTe Interworking Interface is defined and implemented to expose platform
resources to third parties, which have previously been registered with the symbIoTe Core
Services. CLD services also implement specific functionality for the exchange of resource
metadata between two collaborating IoT platforms, e.g., for bartering and trading purposes
in accordance with predefined SLAs.

SSP comprises various IoT devices, IoT gateways as well as local computing and storage
resources available within, e.g., a home environment or campus building. We assume that
IoT platform-specific gateways are setup in a SSP. To enable dynamic sensor discovery
and configuration in SSP as well as dynamic sharing of the wireless medium, symbIoTe
adds a new software component, symbIoTe middleware, to SSP, at the gateway level.
The symbIoTe middleware exposes a standardized API for resource discovery and
configuration of devices within a SSP, and implements a sensor-discovery protocol for a
simplified integration of sensors with platforms hosted in particular Smart Space Domains.
After the initial interaction with the symbIoTe middleware, an IoT device is connected to
and configured with the platform gateway serving the domain. Note that the device may be
located either in a home or visited space. This protocol will also enable that an IoT device
entering a visited space becomes part of a new SSP, enabling thus device roaming. An
SLA needs to be in place between the platforms serving home and visited spaces, which
also specifies services exposed to the roaming device in a visited space.

SDEV spans over heterogeneous devices which may use proprietary link layer protocols,
or ZigBee and 6LoWPAN, while it can be expected that future IoT devices will also
support application-layer protocols such as HTTP, CoAP and MQTT. Devices should be
capable to dynamically blend with a surrounding space and get discovered by the
symbIoTe middleware which performs the initial "introduction'' of devices within a Smart
Space. Smart Devices can self-organize and can be configured on the fly to be integrated
with different IoT platforms hosted within the Smart Space, preventing thus the lock-in of
customers to a specific IoT platform and IoT provider. We envision that device-specific
symbIoTe clients will be running on, e.g., smartphones, to realize these features.

3.3 Compliance Levels (CLs)

symbIoTe allows for flexible interoperability mechanisms which can be achieved by
introducing an incremental deployment of symbIoTe functionality across the listed
architectural domains. This approach will enable platform providers to choose an
appropriate level of integration of symbIoTe-specific services within their platforms, which
will in effect influence the level of platform collaboration and cooperation with other
platforms within a symbIoTe-enabled ecosystem. For example, a platform may only
choose to expose its Interworking Interface and selected IoT services to third parties in
order to advertise them by using the symbIoTe Core Services, or it may opt for a closer
collaboration with another platform by forming a platform federation. Platform federations
require additional symbIoTe components to be included and integrated within a platform
space in CLD.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 20 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 3 symbIoTe Compliance Levels (CLs)

We define four different CLs for IoT platforms, as depicted in Figure 3. They reflect
different interoperability modes a platform can chose to support, affecting thus the
functionality and corresponding symbIoTe components which have to be integrated on the
platform side within different domains:

• Level-1 symbIoTe Compliant Platform (L1 Platform): This is a "lightweight"
symbIoTe CL since a platform opens up only its Interworking Interface to third
parties in order to advertise and offer its virtualized resources through the
symbIoTe Core Services. It enables the syntactic and semantic interoperability of
IoT platforms in a symbIoTe ecosystem, and affects only APP and CLD.

• Level-2 symbIoTe Compliant Platform (L2 Platform): This level assumes that
platforms federate, which requires additional functionality to be included in CLD, for
example for sharing/bartering of devices. The functionality provided at this level
enables the so-called enterprise interoperability.

• Level-3 symbIoTe Compliant Platform (L3 Platform): This CL assumes that
platforms integrate symbIoTe components within their smart spaces to simplify the
integration and dynamic reconfiguration of IoT devices within local spaces.

• Level-4 symbIoTe Compliant Platform (L4 Platform): This level offers support for
device roaming and can enable the interaction of smart objects with visited smart
spaces. A prerequisite for this level is that a platform is already Level-1, 2 & 3
Compliant, so that smart spaces can discover new visiting devices and integrate
them (e.g., grant access to certain local resources) in accordance with SLAs
between platforms. Those platforms should thus be in a federation (Level 2), while
smart spaces need the functionality for dynamic reconfiguration (Level 3).

L1 Compliance (CL1) can be directly mapped to semantic and syntactic interoperability, as
identified in the ETSI Whitepaper [1], and subsequently adopted by IERC [2]. L2, L3 and
L4 Platforms can clearly be categorized as systems supporting organizational
interoperability. symbIoTe proposes here an original approach with finer granularity of
organizational interoperability by placing specific interoperability concepts in the CLD for
CL2, in the SSP for CL3 as well as in both SSP and SDEV for CL4. In particular, L2
Platforms form platform federations, L3 Platforms support dynamic and reconfigurable
Smart Spaces, while L4 Platforms support roaming of Smart Devices which can use
services in visited smart spaces. To achieve CL2, a platform should first adhere to CL1,

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 21 of 132
 © Copyright 2017, the Members of the symbIoTe

while an L4 Platform requires a full symbIoTe framework (i.e., an L4 Platform is also L1,
L2 and L3 Compliant).

CL1 relates to services placed in two domains, APP and CLD. An IoT platform becoming
part of the symbIoTe ecosystem needs to integrate the symbIoTe Interworking Interface
with its existing components, e.g., with services exposing sensor-generated data or
actuation primitives. This facilitates open and uniform access to virtualized resources
across platforms. Note that a platform chooses which resources it wants to register and
make discoverable via the symbIoTe Core Services. In addition, the platform issues
access tokens to third parties and keeps control over access to its resources. symbIoTe
plays here a mediation role and uses distributed and decoupled mechanisms for
authentication and authorization, namely the Attribute Based Access Control (ABAC) with
token-based authorization (more information is provided in Section 5.4).

Figure 4 shows the benefits of CL1 by an example depicting two platforms A and B using
the symbIoTe Core Services. When an application searches for resources and identifies
adequate ones, it accesses RESTful services offered by the two platforms through the
Interworking Interface. In other words, cross-platform applications i) use the symbIoTe
Core Services to find adequate resources across platforms and ii) access, integrate and
use those resources through a uniform and open interface. Note that symbIoTe stores
only resource metadata within the Core Services to provide adequate search
mechanisms, while cross-platform applications access and use resources directly at the
platform side.

Figure 4 Illustrating symbIoTe CLs

CL2 involves components placed both in APP and CLD, but requires a significant
extension of an existing platform deployment to enable a closer collaboration between
platforms by adhering to specified SLAs. Figure 4 also illustrates an example federation
where it is possible to expose certain IoT resources from platform A within the space of
platform B. This creates an opportunity that an existing application (native application)

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 22 of 132
 © Copyright 2017, the Members of the symbIoTe

expands the set of resources available within platform B, since they appear as native
services to an existing application built exclusively for platform B.

CL3 and CL4 mainly affect platform software which is deployed within a SSP, and may
also require specific software at the IoT devices level. Features similar to the ones
appearing in APP and CLD are needed within SSP, but with quite a different and reduced
scope relating to local space resources. Since a number of platforms can occupy the
same SSP, CL3 refers to dynamic reconfiguration of devices within a SSP, so that a
device is reconfigured on the fly to become part another platform, thus preventing vendor
lock-in. CL4 relates to interoperability at the SDEV level. An example is when a device
registered in platform A visits an environment operated by platform B. The device can use
the surrounding infrastructure operated by platform B in accordance with an SLA between
the two platforms.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 23 of 132
 © Copyright 2017, the Members of the symbIoTe

4 System Requirements

4.1 Framework

The specification of system requirements in symbIoTe aims at driving the design of the
symbIoTe architecture, based on a thorough assessment of the considered use cases in
the context of the identified project goals (see Section 3). In this effort, special attention
has been paid in capturing the requirements posed by the various stakeholders in the
symbIoTe landscape i.e., IoT Platform Providers, Application Developers, End Users,
Infrastructure Providers, Prosumer. Towards these ends, the specification of the
requirements has been structured according to the identified CLs thus resulting in the
Application Domain, Cloud Domain and Smart Space and Smart Device Domain
requirements. Paying particular attention to security, the project has separately focused on
the specification of the corresponding requirements, by forming a team of security experts
within the consortium.

The initial report on system requirements in D1.2 focused on the specification of the
requirements at CL1 and CL2, with a preliminary investigation of the requirements for CL3
and CL4. Following the submission of D1.2, the consortium further focused on the
finalization of requirements specification for CL3 and CL4 as well, resulting in additional
requirements. At the same time, the concept of Enablers was further investigated, leading
to the specification of additional CL1 requirements. Moreover, particular attention was paid
to the feedback we received on D1.2, trying to improve the specification of the
requirements. In this context, we reviewed existing and new requirements in order to
elaborate on the selection of the importance level, wherever this was not assessed as
obvious. Additionally, we attempted to identify potential risks emerging from the specified
requirements, related to the uptake of the envisioned business models. Finally, we further
hereby highlight the system requirements strongly related to business model-related
aspects, as primarily introduced by the Bartering & Trading concepts in symbIoTe.

Requirements presented in this report document the final set of system requirements
devised within symbIoTe project. In order to structure the specification of the system
requirements, we have identified the following set of requirement attributes.

Compliance Level (CL): Following the structure of the symbIoTe stack, each requirement
relates to one or more CLs, namely: CL1 (Application), CL2 (Cloud), CL3 (Smart Space),
CL4 (Smart Device). In several cases, requirements may apply to more than one CLs.
These are reported within the set of the highest CLs they apply to.

Type: Two types of requirements are initially defined:

• Functional: requirements describing the behavior of the symbIoTe system i.e., what
the symbIoTe architecture should do.

• Non-Functional: requirements describing properties of the symbIoTe architecture
and system operation.

Category: A set of thematic categories is defined with the purpose of assisting grouping
requirements of similar nature and later guide the architectural design of the symbIoTe
system. Each requirement may fall into more than one categories. Namely:

• Interface: refers to the methods employed to enable the interaction between
different entities in the symbIoTe architecture, within and across domains, as well
as between the symbIoTe system and end users and/or clients.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 24 of 132
 © Copyright 2017, the Members of the symbIoTe

• Monitoring: refers to the collection of information describing the current and past
status of resources in symbIoTe.

• Management: refers to all types of functional and non-functional requirements
related to the handling/control of resources in symbIoTe. This does not include
management aspects within each existing symbIoTe-enabled IoT platform.

• Performance: refers to non-functional requirements including Key Performance
Indicators (KPIs) that will assist in establishing an evaluation framework for
symbIoTe but also take into account potential performance bottleneck during
implementation. This shall also include scalability aspects i.e., linking KPIs with
(work)loads expected.

• Security: encompasses all security aspects of the symbIoTe architecture including
authentication, authorization, privacy, etc.

Importance: Each requirement is characterized by its importance level with respect to its
fulfilment by the symbIoTe architecture and system. The level of each requirement is
expressed within the corresponding description text (see next) using the appropriate
terminology. Following Best Current Practice to Indicate Requirement Levels [26] we
consider the following levels:

• MUST (SHALL): this is an absolute requirement i.e., it is mandatory for the
symbIoTe architecture and system to conform to this requirement.

• SHOULD (RECOMMENDED): there may exist valid reasons within particular
circumstances to ignore this requirement.

• MAY (OPTIONAL): a requirement for a feature or a property of the symbIoTe
architecture that presents low priority within the project and may or may not be
fulfilled, subject to time constraints. Usually such features are selected by different
vendors subject to their market positioning.

Note of Importance: Following the reviewers’ feedback on the initial requirements
reporting (D1.2) we elaborate on the grounds a certain Importance Level was selected on,
wherever this is considered not straightforward.

Potential barrier for Uptake: Similarly, trying to capture potential implications of system
requirement on the uptake of the business models, we augment the requirement
specification with a related note, where applicable.

Use case: We report the use cases each system requirement applies to. These are
indicated via the following indexes:

1. Smart Residence,

2. Edu Campus,

3. Smart Stadium,

4. Smart Mobility & Ecological Routing, and

5. Smart Yachting.

In some cases a requirement may appear to apply to none of the selected use cases;
such requirements are specified for the broader, targeted environment of symbIoTe where
additional use cases are envisioned to be supported.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 25 of 132
 © Copyright 2017, the Members of the symbIoTe

4.2 Methodology

Based on the above framework, the specification of the system requirements followed an
iterative process whose purpose was to derive the key requirements across the various
CLs. In this process, special attention was paid to finding the common ground across the
involved use cases, instead of merely identifying the key needs of a particular example
case, so as to pave the way for the support of additional use cases by the symbIoTe
system, not currently considered within the project.

Starting from CL1, the iterative process included the following steps:

Step 1: Revisit the previous level's requirements within the current CL (if applicable)

The purpose of this step is to identify requirements that pertain across CLs. Such
requirements bear the potential of leading to more efficient architectural design that
identifies key functional components across the considered domains, further promising a
modular design. It is important to note that this step does not only aim at an optimized
modular design, but actually further realizes a continuous requirement assessment
process as the project progresses through the various CLs. The selection of the Domain
attribute for each requirement therefore constitutes the result of careful consideration of
the specificities of each CL. This step is carried out asynchronously with the help of the
Confluence collaboration tool.

Step 2: Introduce domain specific requirements

The introduction of domain specific requirements starts with the preliminary input from the
leader of the corresponding project task, with the purpose of identifying key areas that
should be explored. This is followed by a more elaborate input from the partners leading
the considered use cases. Upon the completion of this stage, all use case owners, along
with all other partners, inspect the derived requirements providing additional input in the
form of:

• Additional requirements;

• Assessment on whether a requirement derived by one use case also pertains to
some other, this also includes comments on the generality of the introduced
requirements;

• Any other comment, including comments regarding the precise specification of the
intended meaning;

• This step is carried out asynchronously with the help of the Confluence
collaboration tool; at this stage the Task Leader of T1.3 consolidated all comments
and identified grey areas to be discussed.

Step 3: Finalize requirements

This last iteration step aims at finalizing all requirement attributes, ensuring the description
is precise, the associated set of use cases has been correctly identified and the
importance level within the overall project efforts has been correctly and realistically
specified. This step is carried out with a conference call, in which each individual
requirement is assessed and potential disputes are resolved. Due to the different nature of
the various types of requirements, the above iterative process is followed in three parallel
instances, namely for:

• Functional requirements,

• Non-functional requirements, and

• Security requirements.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 26 of 132
 © Copyright 2017, the Members of the symbIoTe

4.3 Specified requirements

Table 1 below lists the final set of specified requirements for the symbIoTe system, each
appropriately annotated with its attributes values. Table 2 subsequently presents the
security system requirements as specified by the symbIoTe security team.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 27 of 132
 © Copyright 2017, the Members of the symbIoTe

Table 1: System requirements

Index CL Type Category Importance Note on importance Potential

barrier for

uptake

Description Use

Cases

1 1, 2

Func
tional

Interface MUST
The registered information
is absolutely necessary for
underlying resources to be
discovered and made
available. IoT platforms
must have control of what
they expose to symbIoTe
which is what they offer to
applications and other
platforms.

Application
developers
might be
reluctant to
use symbIoTe
supported IoT
platforms if
unregister
events result in
application
disruption.

IoT platform providers MUST be enabled to
register the available (composite) IoT
services to the symbIoTe system. The
system MUST allow IoT platform operators to
update and revoke (unregister) their
registrations.

1, 2, 3,
4, 5

2 1 Func
tional

Interface MUST
Obvious. Expressing a
major symbIoTe concept.

IoT
services/platfor
ms might
refrain from
registering if
search results,
and especially
the
corresponding
ranking, are
not based on
objective
metrics.

The system MUST expose the available
(composite) IoT services to application
developers and other IoT platforms. Directory
listings and text search are examples of
potential interfaces to application developers
and platform providers.

1, 2, 3,
4, 5

3 1, 2 (Non
-
)Fun
ction
al

Interface MUST
Fundamental in achieving
interoperability.

The system MUST support a common
information model for the description of
available IoT services across IoT platforms.

1, 2, 3,
4, 5

4 1 Non-
Func
tional

Interface MUST
Important for
interoperability.

IoT services MUSTappear to application
developers in a homogeneous manner i.e.,
the interface for application developers

1, 2, 3,
4, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 28 of 132
 © Copyright 2017, the Members of the symbIoTe

should not differentiate across IoT
platforms. Data source/identity shall be
exposed to application developers.

5 1, 2 Func
tional

Monitoring MUST Necessary so as to assure
availability of
advertised/exposed
resources.

 The system MUST monitor the availability of
the IoT services registered by IoT platform
operators.

1, 2, 3,
4, 5

6 1, 2 Func
tional

Monitoring SHOULD Useful in assessing the
expected availability and/or
quality of the exposed
service. Some services
may not support this
though.

IoT platforms
may not be
willing to
expose
information on
the utilization
of their overall
resources.
This is critical
information
that reveals
operational
details of the
platforms.

The system SHOULD monitor the load on the
registered IoT services. Related information
can be directly retrieved by IoT platforms (if
supported). Additionally, the system can keep
track of the IoT services assigned to
applications/enablers during the mediation
process e.g., when an application developer
has identified, requested and has been
granted access to IoT services for the
intended application. The retrieved
information can be used to estimate service
load, service popularity (useful for ranking).

2, 3, 4

7 1, 2 Func
tional

Monitoring MAY The system MAY perform functional
performance tests on registered IoT services.

2, 3, 4

8 1, 2 Func
tional

Manageme
nt

MUST
Service availability is at risk
of not satisfied.

How can this
be
guaranteed? Is
such capability
(of underlying
platforms) a
common
feature? Could
it possibly
raise a barrier
in registering
with
symbIoTe?

The system MUST not grant access to IoT
resources and services to applications or
other IoT platforms if they appear not to be
available (at the time of allocation). This
requirement also applies to IoT service types
with exclusive access rights (e.g., actuators).

2, 3

9 1, 2 Func
tional

Manageme
nt

MUST
Different from SHOULD as
exclusiveness can be a vital
requirement in these cases

The system MUST support the exclusive use
of IoT services for underlying IoT platforms
that support such feature.

2, 3, 4

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 29 of 132
 © Copyright 2017, the Members of the symbIoTe

that is supported by the
platforms e.g., for
actuators.

10 1, 2 Non-
Func
tional

Interface MUST
Important for
interoperability.

The information from IoT services and IoT
devices MUST have the units in which the
data is described associated to standard unit
of the common information model (meters,
kg, etc.). The encoding of units should
adhere to a standard (e.g. UCUM).

1, 2, 3,
4, 5

11 1, 2 Func
tional

Interface MUST

The common information model MUST
support geo-reference information.

1, 2, 3,
4, 5

12 1, 2 Func
tional

Manageme
nt

MUST Some services may not
support this.

 The system MUST enable the control of
access to the advertised IoT services
according to fine-grained authorization
policies and for reasons related to local
legislation, security issues, etc., if the
underlying IoT platforms support it.

1, 2, 3,
4, 5

13 1, 2 Non-
Func
tional

Interface SHOULD Important for
interoperability.

 The information model of the system
SHOULD comply to standardized ontologies
where possible and SHOULD try to be
compatible to the data model of the other IoT-
EPI projects. An example ontology here is the
Semantic Sensor Network Ontology (SSNO).

1, 2, 3,
4, 5

14 1, 2 Func
tional

Interface MUST Important for
interoperability.

 The information model of an IoT platform
registering its IoT services to symbIoTe
MUST be aligned to the symbIoTe
information model.

1, 2, 3,
4, 5

15 1, 2 Func
tional

Interface SHOULD Useful for interoperability. The system SHOULD provide best practices
for the alignment of an IoT platform's
information model with the symbIoTe
information model, e.g., detailed examples
documenting alignment procedures.

1, 2, 3,
4, 5

16 1, 2 Func
tional

Interface MUST Important for the correct
operation of the system.

 The system MUST provide unique identifiers
of the (registered) IoT services within the
system. Uniqueness MUST be enforced
within and across IoT platform boundaries,
including the case of mobile IoT devices.

1, 2, 3,
4, 5

17 1, 2 Func Interface MUST Important for characterizing symbIoTe MUST distinguish IoT devices 1, 3, 4,

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 30 of 132
 © Copyright 2017, the Members of the symbIoTe

tional the corresponding service.
Applications/IoT platforms
must be aware of mobility to
assess the suitability of the
corresponding resource to
their purposes.

which are fixed (geo-location does not
change over time) and mobile (their location
changes).

5

18 1 Func
tional

Manageme
nt

MUST Obvious. Expressing a
major symbIoTe concept.

 The system MUST offer domain-specific
enablers that hide from application
developers the existence of multiple IoT
platforms and resources targeted to a
specific domain. (see Requirements 2, 5-12)

1, 2, 3,
4, 5

19 1 Func
tional

Manageme
nt

SHOULD The project will develop
support for the creation of
enablers. An enabler will be
created as a proof of
concept.

 The system SHOULD allow application
developers to create their own enablers
(focusing on a single domain or be cross-
domain), defining their own logic, etc. These
"user-owned enablers" should be available at
least to their creators.

1, 2, 3,
4, 5

20 1 Func
tional

Manageme
nt

MAY The main objective of
symbIoTe is to support the
development of enablers.
The subsequent use of
enablers is interesting but
of low priority.

 The system MAY allow application
developers to share their custom enablers
with other application developers. Trading
mechanisms may be in place to govern the
use of custom enablers.

1, 2, 3,
4

21 1, 2 Func
tional

Interface MUST
This is a core symbIoTe
functionality/concept.

 The system MUST recommend IoT services
based on the search criteria defined by an
application developer or IoT platform
provider.

1, 4, 5

22 2 Func
tional

Manageme
nt

MUST
This is a core symbIoTe
functionality/concept. The
envisioned mechanism
must not be application-
specific so as to promote
the generality of the
symbIoTe approach.

The system MUST provide application-
agnostic support for trading, bartering and
cooperation of different IoT platforms. This
MUST include an Auction System for
businesses, customers and prosumers.

2, 3, 4

23 1, 2 Non-
Func
tional

Performanc
e

SHOULD A desired feature, but it
may not be fulfilled in
particular cases of extreme
system load.

 Registration response time: SHOULD be in
the order of minutes, depending on the
volume of registered IoT services.

1, 2, 3,
4, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 31 of 132
 © Copyright 2017, the Members of the symbIoTe

24 1, 2 Non-
Func
tional

Performanc
e

SHOULD A desired feature, but it
may not be fulfilled in
particular cases of extreme
system load.

 Search response time: SHOULD scale with
the volume of results data the volume of
available data (with an upper limit). In the
order of a few seconds.

1, 2, 3,
4, 5

25 1, 2 Non-
Func
tional

Performanc
e

SHOULD A desired feature, but it
may not be fulfilled in
particular cases of extreme
system load.

 IoT service access latency: SHOULD have an
upper limit of maximum 1-2 seconds.

1, 2, 3,
4, 5

26 1, 2 Non-
Func
tional

Performanc
e

SHOULD A general desired feature.
Satisfying this requirement
is also subject to the
available compute/storage
resources.

 Volume of IoT services supported: the
system SHOULD target large volumes of
meta-data (big data) provided by IoT
platforms.

1, 3, 4

27 1, 2 Non-
Func
tional

Performanc
e

SHOULD A general desired feature.
Satisfying this requirement
is also subject to the
available compute/storage
resources.

 Number of IoT platform instances/enablers:
the system SHOULD scale in the order of
thousands of instances.

2, 3, 4

28 1, 2 Non-
Func
tional

Performanc
e

SHOULD A general desired feature.
Satisfying this requirement
is also subject to the
available compute/storage
resources.

 Number of applications/enablers: it SHOULD
scale in the order of thousands of instances.

2, 3, 4

29 1, 2 Non-
Func
tional

Performanc
e

SHOULD A general desired feature.
Satisfying this requirement
is also subject to the
available compute/storage
resources.

 Volume of search queries: expressed as a
search query rate. The system SHOULD
support several hundreds of queries per
second under the search response time
requirement.

1, 2, 3,
4

30 1, 2 Non-
Func
tional

Performanc
e

SHOULD A general desired feature.
Satisfying this requirement
is also subject to the
available compute/storage
resources.

 Volume of monitoring information: refers to
aggregated data collected and provided by
the underlying IoT platforms. The
system SHOULD target large volumes of
data (big data) provided by IoT platforms.

4

31 1, 2 Func
tional

Manageme
nt

MUST An essential feature to
promote healthy IoT
services.

 The system MUST support the ranking of the
IoT service search results according to
multiple criteria e.g., availability, performance,
etc.

1, 3, 4,
5

32 1, 2 Func
tional

Manageme
nt

SHOULD The main target is to enable
the filtering of the results
subject to access rights.

 The system SHOULD enable IoT platforms to
control whether their IoT services appear in
search results, subject to the access rights of

1, 2, 3,
4, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 32 of 132
 © Copyright 2017, the Members of the symbIoTe

Handling control of this
feature to IoT platforms is
of lower priority.

the query issued to these services i.e.,
whether the application developer or enabler
is registered with the respective IoT platform.

33 1, 2 Func
tional

Manageme
nt, Interface

MAY Useful but lower priority
requirement.

 The system MAY enable IoT platforms to
define access rules to their IoT services .
Such access rules refer to the intended
availability of the IoT services to
applications/enablers e.g., maximum 10
times per day, only from 7p.m. to 7a.m..

1, 2, 3,
4, 5

34 1, 2 Func
tional

Manageme
nt

MAY Useful but lower priority
requirement. Basically
targeting the more efficient
utilization of available
compute/storage resources
of the symbIoTe system.
Does not affect stakeholder
facing functionality.

If not
performed
carefully this
may result in
reluctance of
IoT services to
register at first
place. This
points to some
mechanism for
contacting the
operators/own
ers of the
inactive
services/platfor
ms.

The system MAY periodically check the long
term availability of registered IoT services
with the purpose of purging or invalidating the
corresponding registrations. The
invalidation/purging should be preceded by
communication with the owner/operator.

1, 3, 4

35 1, 2 Func
tional

Manageme
nt

MAY Not a core symbIoTe
feature.

 The system MAY support the registration of
applications/enablers to underlying IoT
platforms. This requirement pertains to cases
where the search results contain IoT services
that the query issuer does not currently have
access rights for. An example mechanism for
the intended symbIoTe support, is the
redirection to the IoT platform registration
interface.

1, 4

36 1, 2 Func
tional

Manageme
nt

MUST Important to be compatible
with such underlying
mechanisms. Push
mechanism can
substantially improve
resource efficiency and

 The system MUST allow applications to
subscribe to IoT services to continuously
receive the generated data/information, in
addition to active requests for information
from a used IoT service (when supported by
the underlying IoT platform). In this mode of

1, 2, 3,
4, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 33 of 132
 © Copyright 2017, the Members of the symbIoTe

performance. operation the application receives the data
whenever this is pushed (published) by the
corresponding IoT device.

37 1, 2 Func
tional

Manageme
nt

SHOULD A useful feature that may
not be necessary for
platforms with hardly any
updates/upgrades.

 The system SHOULD support registration
updates i.e., IoT platform operators/enablers
should be able to update their registered IoT
services with symbIoTe. For example,
updating provided information upon
sensor/actuator upgrades.

1, 2, 3,
4, 5

38 1, 2 Func
tional

Interface MUST Important for the correct
operation of the system.
(similarly to Req#18, but
with a focus on the
hierarchical structure).

The system MUST support hierarchically
structured unique identifiers for the purpose
of identification, trading, security and
accounting.

(E.g. the hierarchical information inherent in
the domain names
(cosy.computersciences.univie.ac.at) could
be used)

1, 2, 3,
4, 5

39 1, 2 Func
tional

Manageme
nt

MAY Useful but not core
symbIoTe feature.

 The system MAY support notifications for
updated results on past queries i.e.,
applications/enablers which have issued
queries in the past, may be notified about the
availability of new IoT services matching their
registered past continuous queries.

2, 3, 4

40 1, 3 Func
tional

Manageme
nt/Security

MUST
The system MUST support "multi-domain
access rights composition", which means that
an application registered in different IoT
domains may be granted access to IoT
services available in other domains.
Specifically, the application is authenticated in
each IoT domain where it has been
registered, thus collecting a set of 'attributes'.
Then, the application can combine attributes
obtained in different contexts and be granted
access to another IoT service exposed in a
new IoT domain.

2, 3, 4

41 1, 2, 3 Func
tional

Manageme
nt

MUST
The system MUST support an 'attribute
mapping functionality' through which it is

1, 2, 3,
4

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 34 of 132
 © Copyright 2017, the Members of the symbIoTe

possible to map attributes
generated/released in one IoT domain to the
same/similar attributes valid in different IoT
domains.

42 1, 2

Func
tional

Interface MUST
Core functional requirement
to enable keeping
structured state about
registered platforms.

The system MUST allow the registration of
IoT platforms with the purpose of
subsequently enabling them to register their
IoT services (Req.1). The system MUST
allow to unregister an IoT Platform.

1, 2, 3,
4, 5

43 1, 2 Func
tional

Interface SHOULD Enablers SHOULD be regarded as high-level
IoT platforms that can register their domain-
specific services to the system, similar to
native IoT platforms.

1, 2, 3,
4, 5

44 1, 2

Func
tional

Interface SHOULD
This is address the potential
service disruption due to
unregister capabilities. It is
a useful but not core
symbIoTe feature.

IoT
services/platfor
m owners
would desire
complete
autonomy and
therefore be
reluctant to
allow some
"grace period"
for applications
to adapt.

symbIoTe SHOULD allow IoT services to
gracefully unregister from the system. For
instance, the process could foresee warning
messages to affected applications/IoT
platforms/enablers and/or some time period
for them to adapt before completing the
process.

1, 2, 3,
4, 5

45 1 Func
tional

Interface MUST
IoT service/platforms would
not participate if their
presence is not equally
treated.

The system MUST NOT favor any IoT service
in the search results. The ranking of search
results MUST solely based on objective
criteria (see Req. 33).

1, 2, 3,
4, 5

Bartering and Trading (B&T) Requirements

46 1, 2 Func
tional

Manageme
nt

MUST
B&T MUST be available for B2B and B2C
transactions.

2, 3,
4

47 2 Func
tional

Manageme
nt

SHOULD Businesses and consumers SHOULD be able
to issue Vouchers (including predefined
Service Level Agreements (SLA)), which they
offer or require.

2, 3,
4

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 35 of 132
 © Copyright 2017, the Members of the symbIoTe

48 2 Func
tional

Manageme
nt

MUST
Forward auctions MUST be available.

3, 4

49 2 Func
tional

Manageme
nt

SHOULD Reverse auctions SHOULD be available. 3, 4

50 1, 2 Func
tional

Manageme
nt/Monitorin
g

MAY
symbIoTe MAY support the fine-grained
monitoring of the availability of the IoT services
engaged in established bartering/trading
agreements (associated with SLAs), and the
subsequent audit-proof archiving of the
monitoring information.

3, 4

51 2 Func
tional

Manageme
nt/Monitorin
g

SHOULD
Any Voucher consumer SHOULD be able to
retrieve, from symbIoTe, the monitoring data
associated with the acquired Voucher.

3, 4

52 2 Func
tional

Interface? SHOULD
The search results in symbIoTe SHOULD
indicate the possibility of accessing the chosen
resources by means of B&T.

2, 3,
4

53 2 Func
tional

Manageme
nt/Security?

SHOULD
The B&T transactions (B2C) SHOULD assure
the anonymity of end users.

3,4

Smart Space & Smart Device

54
3 Func

tional
Interface MUST

The system MUST enable the discovery and
registration of a new device that is willing to be
registered with symbIoTe compatible platform
middleware.

1, 2,
3, 5

55
3, 4 Func

tional
Interface MUST

Any piece of equipment which needs to be
integrated with symbIoTe is required to have a
documented digital interface, providing either a
standard or a properly described protocol.

1, 2,
3, 5

56
3 Func

tional
Manageme
nt

SHOULD

The system SHOULD be able to prioritize the
information sent to the platform (IMPORTANT
information 1st)

1, 3

57 3 Non-
Func
tional

Interface SHOULD The system SHOULD support the dynamic
configuration of a subset of commercial
sensors.

1, 3

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 36 of 132
 © Copyright 2017, the Members of the symbIoTe

58 3 Func
tional

Interface MAY Inside Smart Space multiple gateways MAY be
used as an alternative fallback router for a
given device.

1, 2,
3

59 3 Func
tional

Manageme
nt

SHOULD
 SymbIoTe smart spaces SHOULD be able to
operate without a permanent Internet
connection.

 (see Security Requirement 24)

1, 2,
3, 5

60 3 Func
tional

Manageme
nt /
Interface

SHOULD Useful in case of limited
connectivity

 Different local IoT Platforms SHOULD be able
to interact locally (i.e. without mediation from
cloud-based L2 symbIoTe components).

1, 2,
3, 5

61 3 Func
tional

Manageme
nt /
Interface

SHOULD Different collocated IoT platforms SHOULD (or
even MUST) be able to interact locally with
mediation from symbIoTe CLD components.

1, 2,
3, 5

62 3 Func
tional

Manageme
nt

SHOULD Useful in case of limited
connectivity

 A device running a symbIoTe app or a Smart
Device SHOULD be able to access a Smart
Space even if Internet connectivity is not
available

1, 2,
3

63 3 Func
tional

Manageme
nt

MUST Important in case of limited
connectivity (similar to #62,
but the device is already
associated)

 A device running a symbIoTe app, when
already associated to a Smart Space, MUST
be able to access a Smart Device in that same
Space even if Internet connectivity is not
available.

1, 2,
3

64 3 Func
tional

Manageme
nt

MUST Important for identification
of roaming devices

 An L4 Compliant Smart Device MUST have a
globally unique identifier.

1, 3

65 3 Func
tional

Manageme
nt /
Interface

SHOULD Useful for roaming devices An app/enabler SHOULD be able to receive a
notification whenever an L4 Compliant
resource it is using changes Smart Space
association.

1, 2,
3

66 3 Func
tional

Manageme
nt /
Interface

SHOULD Useful in case of limited
connectivity

 There SHOULD be a way for a local symbIoTe
app to directly interface with the hosting Smart
Space, that is by accessing it through the LAN
rather than the Internet.

1, 2,
3, 5

67 3, 4 Func
tional

Manageme
nt/Interface

MUST SymbIoTe MUST accept visiting devices to be
merged in the visited Smart Space.

1, 2,
3, 5

68
3 Func

tional
Manageme
nt

MAY

The system MAY support IoT service /platform
operators to alter the registration of their
resources during runtime of applications.

1, 2,
3, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 37 of 132
 © Copyright 2017, the Members of the symbIoTe

69
3 Func

tional
Interface SHOULD

The symbIoTe on board gateway shall support
the following digital interfaces: dry contacts,
serial bus connections, Ethernet connections,
other standard buses to be evaluated

5

70 3 Func
tional

Interface MUST The symbIoTe middleware components MUST
be able to manage authentication and
authorization functions.

1, 2,
3, 5

71 3 Func
tional

Interface SHOULD There SHOULD be a management interface to
manage authN/authZ mapping between the
local IoT Platform and symbIoTe core.

1, 2,
3

72 3 Func
tional

Manageme
nt

SHOULD The symbIoTe middleware SHOULD be able to
interface with the local IoT Platform's functions
to manage resource monitoring and
accounting.

2, 3

73 3 Func
tional

Manageme
nt

SHOULD The symbIoTe middleware SHOULD be able to
provide a mapping between potentially different
metrics used across the Platform's border.

2, 3

74 3, 4 Func
tional

Interface MUST The symbIoTe middleware MUST be able to
exchange information with the local IoT
Platform regarding currently associated
devices, as well as regarding devices leaving
or requesting to join the local space.

1, 2,
3, 5

 Non-Functional / KPIs

75 2 Non-
Func
tional

Performanc
e

SHOULD The establishment of an SLA SHOULD
complete within 1 sec, when an offering is
already available.

3, 4,
5

76 1, 2 (Non
-
)Fun
ction
al

Interface MUST

The system MUST support arbitrary extensions
of the common information model for the
description of available IoT services across
different IoT platforms.

1, 2,
3, 4,
5

77 1, 2 (Non
-
)Fun
ction
al

Interface SHOULD

The system SHOULD support mappings
between two different extensions of the
common information model.

1, 2,
3, 4,
5

 78 All Non- Interface MAY The terminology used to describe the system

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 38 of 132
 © Copyright 2017, the Members of the symbIoTe

Func
tional

status must not be overly technical so that
users can understand without having a
technical background. symbIote MAY create
best practices with unified terminology for
developers of applications and enablers.

Enabler specific requirements

81 1 Func
tional

Monitoring MUST The system MUST monitor the quality of the
offered services so as to make sure that the
advertised quality of service is met e.g.,
number of aggregated sensors, accuracy of
reported values, etc.

1, 2,
3, 4,
5

 82 1 Func
tional

Manageme
nt

MUST The system MUST manage all the underlying
resources so as to ensure the required quality,
performance. For instance, an enabler that
aggregates sensor readings throughout a
country can search for new/alternative sensors
in a certain area, if it experiences failures with
already aggregated sensors there.

1, 2,
3, 4,
5

 83 1 Func
tional

Manageme
nt

MUST The system MUST present a minimum
application domain logic. In the simplest case
this corresponds to the mere aggregation of
IoT resources from multiple IoT services. More
advances processing can be applied for the
support of added value services.

1, 2,
3, 4,
5

Table 2 Security system requirements

Inde

x

CL Type Category Importance Note on importance Potential

barrier for

uptake

Description Use

Cases

1 1,2,3
,4

Functional Security MUST
Important for interoperability
and to control the access to
the resources exposed by an
IoT platform. It is needed for
the authorization functionality.

The system MUST offer mechanisms for

the authentication of symbIoTe
entities/actors i.e., users/application
developers, IoT platforms, developed
applications and clients.

1, 2, 3,
4, 5

2 1,2,3 Functional Security MUST Important for interoperability The system MUST offer mechanisms for 1, 2, 3,

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 39 of 132
 © Copyright 2017, the Members of the symbIoTe

,4 and to control the access to
the resources exposed by an
IoT platform. Platforms want
to control the access over the
resources.

the authorization of symbIoTe
entities/actors i.e., users/application
developers, IoT platforms, developed
applications and clients.

4, 5

3 1 Functional Security MUST
Important for interoperability.

The SymbIoTe ecosystem must offer
mechanisms to establish trust relationships
- and thus implicitly trust levels - prior to
applying security mechanisms for the first
time.

(E.g. online or offline means for verifying the
true identity of the respective
user/platform/software/...? shall be defined
and put in place, agreement digitally signed
by the joining platform)

2

4 Smar
t
Spac
e

Functional Security SHOULD Useful to ensure the
authentication and
authorization requirements
for use cases that won't be
online all the time.

 The authentication and authorization to a
smart space SHOULD work even if the
smart space is disconnected from the
Internet.

1, 2, 3, 5

5 1, 2 Functional Security MUST Important to avoid undesired
access to resources or
correct possible mistakes of
unwanted granted access.

 The system MUST support the revocation
of access rights to users/application
developers, IoT platforms, enablers.
(Comment: Although in the Yachting use
case it might only be revoked when the
system comes online again.)

1, 2, 3, 4

6 1, 2 Functional Security MUST Important to avoid to leave
granted access for certain
users to some services. No
revocation has to be done
when the right is expired.

 The system MUST explicitly support access
rights expiration.

1, 2, 3, 4

7
2 Functional Security MUST

Simplify the access the
resources in federated
environment

The authentication mechanisms of the
system MUST support identity federation
(e.g. single sign-on).

1, 2, 3, 4

8
1, 2 Functional Security MUST

Important for privacy issues.
The system MUST preserve end-user
privacy. (E.g. locations of end users / sent
sensor data and their identity, e.g. via data

1, 2, 3,
4, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 40 of 132
 © Copyright 2017, the Members of the symbIoTe

anonymization)

9
1, 2,
3

Functional Security MUST
Important to securely protect
data and that anyone else to
have access to it

The system MUST support encrypted data
communication between all involved entities
on level 1 and 2 (e.g. the SymbIoTe core,
platforms, etc.).

1, 2, 3,
4, 5

10
3 Non-

Functional
Security MUST

Important for privacy issues.
The system MUST ensure privacy
protection on each layer, do not publicly
expose e.g., devices information or services
used by applications.

1, 2, 3

11 1, 2 Functional Security MUST
Important for interoperability.

Having access policies that
are easier to write.

The system MUST support fine-grained and
standardised access rights to registered IoT
resources, including also aggregated
resources e.g., resources provided by
enablers.

E.g. it must be possible to identify individual
sensors (which also allows tracking their
wearers) for the layer which interpolates the
air quality from individual sensors. This
functionality is done on a domain specific
layer. The output of this will not give data
from sensors away but for other entities
(like street segments).

E.g. In the smart stadium use case, the
"normal" user should not be allowed to see
locations of individuals. Certain personal
security might need access to this
information.

1, 2, 3, 4

12 1, 2 Non-
Functional

Security MAY Enhance the security at the
application level and to
simplify the usage of security
services.

 The system MAY provide best practices
guide for applications to set-up end-user
security in order to function in a secure and
privacy-preserving way.

2, 3

13 1, 2 Functional Security MUST
Important for privacy issues
and protecting against
illegitimate access to third

 The system MUST provide the possibility to
let users / entities choose where
(enablers/IoT platforms) their data is being

1, 2, 3, 4

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 41 of 132
 © Copyright 2017, the Members of the symbIoTe

parties.

Also for legal issues to be
compliant with local laws.

used and processed. The users/entities
MUST be able to modify the privacy
parameters regarding their data.

14 1, 2 Functional Security MUST
Important for users to
understand the behavior of
an application and why it is
not working.

symbIoTe MUST detect and propagate any
security error notifications through the
SymbIoTe system to
application/enablers/end user.

The error message MUST be propagated
but it doesn't mean that the final user will
have the full details of the error. Some
details might be just available for
administrators.

1, 2, 3,
4, 5

16 1,2,3
,4

Functional Security MUST To simplify the way the
access rules are defined.

Access rules MUST be defined as an
access policy.

17 1,2,3
,4

Functional Security MUST Important for interoperability. The system MUST allow entities to delegate
access to specific resources to other
entities (e.g. by the usage of bearer access
tokens)

1, 2, 3, 4

18 1, 2 Functional Security MUST
Basic functionality. To know
who is somebody/something
does not automatically give
them rights to access the
resources.

The system MUST support the
authentication of the user without implied
authorization for a specific resource.

(E.g. it must be possible for platform B to
have a user of platform A authenticated (by
platform A) in a secure way while roaming
in platform B)

2, 4

19 1 Functional Security
and
Usability

MAY It is optional due to the fact
that the underlying
applications and platforms
must provide such a
functionality.

 Symbiote MAY support Multi-Factor
Authentication towards if the underlying
platform supports it. (e.g. Authentication
using password and PIN)

20 1, 4 Functional Security MUST
To avoid to man-in-the-
middle attacks and identity
spoofing.

Mutual authentication must be supported by
all security mechanisms.

(I.e. NOT only the

4

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 42 of 132
 © Copyright 2017, the Members of the symbIoTe

user/application/software/... must be
authenticated against the platform but also
vice versa in order to facilitate malicious
platform detection)

Mutual authentication must be provided also
in the communication between smart
devices

21 1, 3 Functional Security MUST
Important for interoperability.
Using ABAC it is possible to
cover more options. ABAC
allows higher level of
flexibility.

The access to resource MUST be handled
through 'Attribute-Based Access Control
(ABAC)' schemes. An 'attribute' refers to a
generic property/role/permission that the
application grants during the authentication
phases.

1

22 4 Functional Security MUST Interoperability and security
between smart devices.

Constraints on
the device

The link-level communication between two
smart devices MUST be authenticated,
encrypted, and integrity-protected. To this
end, security mechanisms MUST be
properly designed by considering specific
security needs, the set of requirements
expressed in terms of latencies, bandwidth
and energy consumption, as well as the
used communication technologies.

1, (5)

23 1,2,3
,4

Functional Security MUST To detect security attacks
and discover not security
related malfunctions.

The system MUST detect anomalies that
appear in the usage of the system for
instance abnormal consumption of
resources like temperature sensors that
indicates an attempt of a DoS/DDoS attack.
Supposing that a temperature sensor in
Smart Home is polled 8 times an hour on
average. Suddenly we observe that in a
given time interval this sensor has been
polled 100 times in 10 minutes. Anomaly
detection modul should detect it and send a
log to the Platform where the user that has
polled the sensor was registered.

1, 2, 3,
4, 5

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 43 of 132
 © Copyright 2017, the Members of the symbIoTe

24 1,2,3
,4

Functional Security MAY To confirm or not the trust in
the platform federation.

The system MAY detect anomalies that
appear in the metadata provided by
platforms and devices.

(e.g. The system MAY provide secure
mechanisms to provide trusted
location/proximity information.)

3

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 44 of 132
 © Copyright 2017, the Members of the symbIoTe

5 symbIoTe Architecture

This section presents details of the symbIoTe architecture, with focus on its domains:
Application Domain (APP), Cloud Domain (CLD), Smart Space Domain (SSP) and Smart
Device Domain (SDEV), as well as the functionality required for CL1, CL2, CL3, and CL4.
We introduce an extensive list of components and define features which have been
identified for APP (Section 5.1), CLD (Section 5.2), SSP and SDEV (Section 5.3) based
on the requirements presented in Section 4. The template for component descriptions is
given in Table 3, in compliance with the template recommended in IEEE STANDARD
1016: Software Design Specification [27]. In this document we focus on component
descriptions, list of features and related requirements, while detailed component design
will be provided in respective design and implementation tasks. Note that we define the
components based on the domain in which they are placed, rather than which set of
features or Compliance Level (CL) they provide. Nevertheless, the APP contains mostly
components for CL1 and some components required for CL2, while the CLD hosts mainly
components required for CL2 and some for CL1. Moreover, the SSP hosts most of the
components required for CL3, while SDEV is required for CL4.

Since security requirements play a vital role for symbIoTe, Section 5.4 describes and
analyses the symbIoTe approach to security4. Sections 5.5, 5.6, and 5.7 go a step further
towards component design for the APP, CLD, SSP and SDEV and put the functionality of
the components as well as security-related technical decisions into the context of CL1,
CL2, CL3 and CL4. We introduce interfaces and communication diagrams depicting
component interactions to achieve semantic, syntactic, and organizational interoperability
within symbIoTe.

Table 3 Template for component description

Component Name of the component

Compliance Level (CL) 1, 2, 3 or 4

symbIoTe Domain Application (APP), Cloud (CLD), SmartSpace (SSP) or SmartDevice (SDEV)

Description Short description of the component

Provided functionalities List of functionalities provided by this component

Relation to other components How will this component interact with other components?

Related use cases Use cases in which the component is applied.

Related requirements List of requirements from T1.3 that are addressed by the component

5.1 Application Domain

5.1.1 General concepts

The Application Domain (APP) components enable symbIoTe to become a mediator
between applications and IoT platforms so that applications can use platform devices
exposed as IoT services by various platforms in a uniform manner. The basic functionality
needed for this domain is that of a registry service which maintains a repository of
platforms which are symbIoTe-enabled, their services and properties. In addition to native
IoT platforms, we envision that the registry will also maintain enabler-related information

4 Note that security-related components are identified and described in previous subsections (Section 5.1, Section 5.2,

Section 5.3).

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 45 of 132
 © Copyright 2017, the Members of the symbIoTe

describing enabler value-added services. This will enable application developers to
choose IoT services and devices adequate for their applications. In addition, APP
components need to enable efficient search techniques. If we make an analogy to a web
search engine, symbIoTe should act as an IoT search engine which finds and
recommends adequate resources5 to applications/enablers. There are already some
relevant search techniques proposed in the Web of Things space [19], and commercial
attempts: Thingful6 and Shodan7.

The general concept of symbIoTe is to maintain only resource metadata, i.e., descriptions,
within the APP, while applications and enablers will be directed to native platforms and
enablers when accessing the corresponding resources. IoT platforms and enablers have
the power to select resources which they want to expose to third parties, and they control
the access to those resources. To do so, platforms need to extend their existing system
with an open API and to comply with certain symbIoTe requirements in order to create an
environment with uniform open APIs across various platforms. The open API and
components required on the platform side are further discussed in Section 5.2 while we
further explain the details of APP and CLD interaction for CL1 in Section 5.5.

Since the quality of search results is vital for APP, as well as for the adoption of symbIoTe
in practice, symbIoTe needs to ensure that resources which it recommends and lists in
search results are indeed online and available, while its ranking function should take into
account parameters such as QoS, resource popularity, etc. Thus, the APP components
and their features are defined to enable continuous monitoring of registered resources.

Another important aspect is covered by APP components: semantic interoperability.
symbIoTe chooses to follow an approach which requires that all registered resources are
defined using a minimalistic Core Information Model which all platforms need to adhere to,
while further resource details are can be described using platform-specific information
models. This provides a lot of flexibility for platform owners, since they can accommodate
their existing information models and vocabularies, while symbIoTe also understands the
key concepts defining sensors, actuators, devices and services. Further details regarding
the symbIoTe information model and approach to semantics is provided in deliverable
D2.4.

The components deployed in APP shown in Figure 5 are the following:

• Administration: facilitates the control of symbIoTe Core Services via a web-based
GUI;

• Registry: stores data about registered resources offered to applications or
enablers by using the symbIoTe core information model;

• Search Engine: enables applications/enablers to find relevant resources registered
within the Registry;

• Semantic Manager: stores information models used within symbIoTe and verifies
if the resources conform to the information model they claim to be using;

• Core Resource Monitor (Core RM): tracks availability of registered resources in
order to ensure their availability;

5 We use the term resource hereafter to reffer to various addressable services offered by both IoT platforms and

enablers, as defined in Section 0
6 https://thingful.net/
7 https://www.shodan.io/

https://thingful.net/

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 46 of 132
 © Copyright 2017, the Members of the symbIoTe

• Core Resource Access Monitor (Core RAM): tracks information about resource
popularity, i.e., which registered resources are being used by applications/enablers;

• Core Anomaly Detection: identifies malicious attacks and other security violations
on symbIoTe ecosystem;

• Core Authentication and Authorization Manager (Core AAM): ensures that
trusted platforms register resources with symbIoTe, while mapping resource access
rights to proper credentials;

• Core Bartering and Trading Component (Core B&T): comprises all bartering and
trading functionalities for CL2 that need to be centralized, and are thus deployed
within APP;

• SLA Engine: manages the lifecycle of service level agreements (SLAs) for the
platform federation (CL2).

Figure 5 symbIoTe APP components

5.1.2 Component description

Hereafter we specify in detail the core components for the Application Domain (symbIoTe
Core Services).

Table 4 Administration

Component Administration

Compliance
Level (CL)

1, 2

symbIoTe
Domain

APP

Description This component facilitates the control and administration of the symbIoTe Core Services
by providing a web-based GUI. symbIoTe administrators will have access to a control
panel that allows them to perform management actions and update parameters related to
symbIoTe Core Services, such as removing specific platforms from the registry or
changing the values of search engine variables to improve ranking. Furthermore,
administrators will have access through the web-based interface to internal information,

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 47 of 132
 © Copyright 2017, the Members of the symbIoTe

e.g. logs, IoT service popularity data, platform usage/status data or unauthorized user
access attempts.
This component will also provide features to non-administrator users. It will enable IoT
platforms and applications to register with symbIoTe and to receive credentials which are
required for the subsequent usage of symbIoTe services. We envision guest/trial, regular
and premium registrations. We envision that enablers will also register with symbIoTe with
two possible roles: 1) as platforms offering domain-specific IoT-related services and 2) as
applications which use symbIoTe to find and access IoT services provided by symbIoTe-
enabled platforms. The system should enable IoT platforms and enablers to control
whether their resources appear in search results, subject to the access rights of the query
issued to these services i.e., whether the application developer or enabler is registered
with the respective IoT platform.
The component is used in CL2 as a GUI for the management of federations. It provides
federation-related information, and can be used to create a federation, join the existing
one, or change federation affiliations.

Provided
functionalities

• Provides a web GUI for administrators to manage platforms, resources, and other
internal or database properties.

• Presents logs and internal information to administrators.

• Provides an interface for manual registration of IoT platforms, enablers and
applications with symbIoTe.

• Enables IoT platforms and enablers to control whether their resources appear in
search results.

• Supplies adequate credentials to IoT platforms, enablers and applications by the
Core AAM.

• Provides an interface for creating, joining, and updating federation affiliations for
L2 Platforms

Relation to other
components

Registry: manages platform/enabler/application-related data, handles requests for
registry-related changes/actions.
Core Resource Monitor: provides additional performance-related information for display.
Core Resource Access Monitor: provides additional usage-related information and internal
data for display.
Core Authentication and Authorization Manager: Handles authentication of users and
administrators.

Related use
cases

All

Related
requirements

34, 44, 45, S1, S5

Table 5 Registry

Component Registry

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component must enable the registration and storage of resources which are offered
by IoT platforms to be discoverable through symbIoTe. In addition, the component should
enable the registration and storage of enabler domain-specific services which are offered
through symbIoTe. Only IoT platforms and enablers which are symbIoTe Compliant and
registered using the Administration component can register their resources. Additionally,
only entities providing adequate credentials should be enabled to register resources.
The component should support resource registration updates generated by entities
providing adequate credentials, i.e., IoT platforms and enablers should be able to update
their registered resources with symbIoTe. Examples are adding/removing resources,
updating resource metadata upon sensor/actuator upgrades, etc.
Registration response times i.e., the time required for the completion of the IoT service
registration process should be in the order of minutes.
The component must provide unique symbIoTe identifiers to all resources registered

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 48 of 132
 © Copyright 2017, the Members of the symbIoTe

within the symbIoTe Core Services. Uniqueness must be enforced both within and across
IoT platform boundaries, which is critical, e.g., in the case of roaming IoT devices.

Provided
functionalities

• Handles requests for platform and enabler registration, unregistration and
registration updates.

• Handles requests for resource registration, unregistration and resource updates.

• Assigns symbIoTe-specific unique identifiers to resources.

• Stores resource metadata.

• Receives resource availability information from the Core RM and updates
resource status (e.g. online/offline).

Relation to
other
components

Search Engine: stores semantic representation of the data in Registry
Semantic Manager: validates information models used to describe data, and validates if
instances of data (resource descriptions) conform to the information model they claim to
be using
Core Resource Monitor: monitors availability of registered resources and pushes this
information to the Registry
Core Resource Access Monitor: monitors which application access which resources

Related use
cases

All

Related
requirements

1, 3, 11, 12, 15, 16, 18, 19, 25, 39, 45, S1, S2

Table 6 Search Engine

Component Search Engine

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component enables application and enabler developers to search for resources
available through symbIoTe Core Services. Search requests can be submitted in
parameterised format, specifying metadata and relevance criteria for a search request, as
well as application/enabler credentials. In addition, Search Engine also allows sending
SPARQL search requests to query for meta information stored in the Core.
When an application searches for resources in parameterised format, the component
translates it into SPARQL query internally. After finding the resource descriptions in triple
store, the component translates them from RDF to JSON, a format used to forward the
response to the application. In case of a direct SPARQL query search provides output in
format specified by the client.
The component uses metadata associated to registered resources maintained by the
Core RM and Core RAM to calculate resource scores with regard to a query. Resource
metadata and annotations regarding their origin (i.e. particular platform or enabler) must
be exposed in search results. Access policies associated to resources must be used to
filter the results taking into account credentials provided together with the query. In search
results, sensors which are fixed and mobile should be distinguished.
The component uses a ranking function which takes into account resource metadata and
relevance criteria defined in a search request, and should take into account various
parameters (e.g. resource cost, availability, performance, offered service level).

Provided
functionalities

• Searches for resources which match a specific query.

• Stores meta information of entities (resources, platforms etc.) in the RDF store.

• Finds the available resources and provides resource IDs which are subsequently
used to access the selected resources.

• Ranks resources relevant to a query in accordance with a symbIoTe-specific
ranking model.

• Filters resources for which a user does not have access rights.

• Creates SPARQL query from a list of JSON query parameters

Relation to other
components

Semantic Manager: provides query rewriting functionality.
Core Resource Access Monitor: serves as a proxy to obtain URLs for resource IDs

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 49 of 132
 © Copyright 2017, the Members of the symbIoTe

appearing in search results; provides information about resource usage used for ranking
Core Resource Monitor: provides information about resource availability used for ranking

Related use
case sections

All

Related
requirements

2, 4, 19, 23, 26, 31, 33, S1, S2

Table 7 Semantic Manager

Component Semantic Manager (SM)

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component stores the symbIoTe Information Model (Core Information Model, CIM,
and Meta Information Model, MIM). Furthermore, it stores platform specific information
models (Platform Information Model, PIM) and best practice information model (BIM).
These models are stored to enable PIM validation, i.e. to ensure that PIM uploaded to the
symbIoTe Core is aligned with the CIM.
When registering resources to symbIoTe Core by using JSON description, the component
translates resource description to RDF. It also validates the resources described using
RDF to ensure they conform to the information model they claims to be using
(PIM/BIM/CIM).

Provided
functionalities

• stores MIM, CIM, BIM, PIMs

• validates PIMs

• validates if the instances of data (resource descriptions) conform to PIM/BIM/CIM
they claim to be using

• translates resource descriptions from JSON to RDF format

• translates resource descriptions from RDF to JSON format

• provides SPARQL rewriting functionality.

• stores mappings between models

Relation to other
components

Registry: sends the resource description obtained during registration process for
validation. Sends new PIM models being registered by the platforms.
Search Engine: Provides mappings and SPARQL rewriting functionality needed by
Search.

Related use
cases

All

Related
requirements

5, 6, 7, 8, 32, S1, S2

Table 8 Core Resource Monitor

Component Core Resource Monitor (Core RM)

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component must monitor the availability of registered resources to regularly update
resource status (online/offline/unavailable). This will ensure that symbIoTe search results
do not contain resources if their availability cannot be guaranteed, e.g., IoT service types
with exclusive access rights (e.g., actuators) are marked unavailable if being used and will
thus not appear in search results. The component needs to provide appropriate
credentials when checking resource status.
Primarily the component should receive information from Monitoring component in the
CLD. If this data is not available, it can use scheduled tasks to check resource status.
Either resource registrations or application-generated monitoring requests can trigger the

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 50 of 132
 © Copyright 2017, the Members of the symbIoTe

scheduling of a monitoring task per resource (or a group of resources). In addition, the
component should monitor the load on the registered resources, either in a push or pull
style, if IoT platforms and enablers support such functionality. The component may
perform functional performance tests on registered resources.
The component should be designed to target large volumes of monitoring information.

Provided
functionalities

• Receives monitoring information from IoT platforms and stores the results

• Checks the availability of newly registered resources.

• Monitors the availability of all resources registered within symbIoTe according to a
specified schedule

• Monitors the load of registered resources

Relation to other
components

Search Engine: uses performance-related data obtained by the Core RM for creating and
annotating search results.
Monitoring (CLD): reports resource availability data from underlying IoT platforms

Related use
cases

All

Related
requirements

5, 6, 7, 8, 32, 52, S1, S2

Table 9 Core Resource Access Monitor

Component Core Resource Access Monitor (Core RAM)

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component must monitor which resources are accessed from provided search
results and maintain resource popularity information within the Core Services. It also acts
as a proxy that redirects applications and enablers to the actual resources offered by
symbIoTe-enabled platforms. Furthermore, it should collect resource access statistics
from Resource Access Proxy in order to maintain resource popularity information within
the Core Services. Such information is used as input to the ranking algorithm used in
symbIoTe Core.

Provided
functionalities

• Keeps track of which application/enabler uses which resources in a best-effort
fashion.

• Redirects applications/enablers to the actual resource offered by an IoT platform.

• Estimates resource popularity

Relation to other
components

Search Engine: uses resource popularity information for ranking.
Resource Access Proxy (CLD): Core RAM redirects resource access requests to a
specific platform/enabler RAP.

Related use
cases

All

Related
requirements

6, 10, 13, 14, 27

Table 10 Core Anomaly Detection

Component Core Anomaly Detection (CAD)

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component is responsible for detecting 0-day attacks and other types of security
violations by using signatureless approach. It will help detect malicious users attempting
to avoid making a payment and get illegitimate access to resources owned by other
parties. Furthermore, it will help identify denial of service (DoS) attacks on symbIoTe

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 51 of 132
 © Copyright 2017, the Members of the symbIoTe

components, and attempts for unauthorized data deletion, insertion or update.
The component will analyze data from Core RAM, Platforms' RAPs and other logs within
the system.

Provided
functionalities

• analyzing logs and events from symbIoTe Core components

• analyzing traffic between Core and the platforms

• analyzing topology of the connection

• anomaly identification

• notifying about the detected anomalies

Relation to other
components

Core Resource Access Monitor: provides resource access data to be analyzed
Resource Access Proxy (CLD): CAD analyzes access to RAPs of different IoT platforms

Related use
case sections

All

Related
requirements

14, 34, 35, 37, 40, 42, 43, 52, 59, S1, S2, S3, S5, S7, S19, S20

Table 11 Core Authentication and Authorization Manager

Component Core Authentication and Authorization Manager (Core AAM)

Compliance
Level (CL)

1

symbIoTe
Domain

APP

Description This component must offer mechanisms for the authentication and authorization of
symbIoTe entities/actors, i.e. users/application developers, IoT platforms, developed
applications and clients.
The component must provide functionalities for configurable trust relationships between
symbIoTe system and symbIoTe applications, through the use of X.509 certificates.
It must authenticate components belonging to a given IoT platform integrated with
symbIoTe, that would like to use services offered by the core layer (i.e., resource
registration, resource unregistration, resource update, monitoring of the resource
availability, search, resource access).
It must authenticate applications registered in both core layer or in an IoT platform
integrated with symbIoTe, that would like to search and access resources.
It must issue home tokens for components and applications that successfully complete
the authentication procedure in the Core layer. Home tokens contain attributes (i.e., roles,
properties, permissions) that are used to access to resources and/or services managed
by the symbiote Core, according to the Attribute Based Access Control (ABAC) paradigm.
It must also revoke home tokens when the “expiration date” indicated in the token expires
or, asynchronously, when an abnormal or frequent unauthorized use is detected.
When the authentication in the core layer is initiated by a component belonging to a given
IoT platform federated with symbIoTe or by an application registered within a given IoT
platform federated with symbIoTe, it MUST:

• validate the “home token” previously generated in the aforementioned IoT
platform,

• perform the check revocation procedure

• (optional) for explicitly agreed and defined mapping between that platform and the
core - convert home tokens to foreign by translating the set of attributes assigned
to an entity in a given platform to another set of attributes that characterize the
entity in the core layer (this operation is called Attribute Mapping Function)

The component manages a public keys revocation collection and a Token Revocation List
(TRL), which contain platform and core users public keys and tokens that were revoked by
the users, platform owners or symbIoTe Administrator.

Provided
functionalities

• Authenticates platforms and applications (users) registered in symbIoTe core
within symbIoTe.

• Releases tokens storing trusted attributes, if the authentication process was
successful.

• Manages certificates issued for each registered user

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 52 of 132
 © Copyright 2017, the Members of the symbIoTe

• Validates access tokens that it has released, by verifying that the token is
authentic (by checking the integrity of its sign) and that the expiration date
indicated herein has not expired. This procedure is called "token validation".

• Verifies that a valid token (i.e., a token that successfully passed the token
validation procedure) has not been revoked asynchronously, before the expiration
date indicated herein, through the use of a TRL or by communicating directly with
the AAM that generated this token. This is called "check revocation procedure".

• Verifies that the entity using a given token is really the entity for which that token
has been issued (application's authentication), by a “challenge-response
procedure”.

• Translates the set of attributes included in a platform's HOME token into a new
set of attributes in accordance to the explicit rules between participating IoT
platforms with the core and issuing the ROAMED token for entities that is not
registered within the core layer but are in possession of a valid HOME token. This
procedure is called “Attributes Mapping Function”.

• Issues guest credentials for users that don't have an account in any symbIoTe
AAM and want to try out symbIoTe services which have public access.

Relation to other
components

All symbIoTe components and resources requiring authentication and authorization within
the Core Services.

Related use
case sections

All

Related
requirements

14, 34, 35, 37, 40, 42, 43, 52, 59, S1, S2, S3, S5, S7, S19, S20

Table 12 Core Bartering and Trading

Component Core Bartering & Trading (Core B&T)

Compliance
Level (CL)

2

symbIoTe
Domain

APP

Description This component comprises all bartering and trading functionalities which need to be
centralized and coordinated by the symbIoTe Core Services, including the following:

• Auctioning: this subcomponent performs forward and reverse second price
auctions according to the offers and requests of producers and consumers

• Trading: Registration of producer offers which are subject to direct (non-auction)
trading afterwards

• Bartering: Registration and matching of prosumer vouchers + sending resulting
authentication tokens to both prosumers after a bartering transaction has been
concluded

Provided
functionalities

Auctioning:

• Publishes new auctions based on SLAs (Service Level Agreements) received
from producers (forward auction) or consumers (reverse auction)

• Accepts offer bids (forward auction) from consumers or request bids (reverse
auction) from producers for a specific auction

• Determines the winner of a second-price auction and the corresponding price
(second-price)

• Sends resulting authentication token to the winner after the payment process has
been concluded

Trading:

• Producer offers (SLA) are registered and made searchable
Bartering:

• Registers prosumer vouchers (including offered SLA, desired SLA, authorization
token, validity date, ID)

• Matches vouchers (offered SLA1 = desired SLA2)

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 53 of 132
 © Copyright 2017, the Members of the symbIoTe

• Sends out corresponding authorization tokens after completing a matching
procedure

Relation to
other
components

Bartering and Trading Manager (CLD), Registration Handler (CLD), Federation Manager
(CLD), Resource Access Proxy (CLD)

Related use
cases

ALL

Related
requirements

46-53

Table 13 SLA Engine

Component Service Level Agreement Engine (SLA)

Compliance
Level (CL)

2

symbIoTe
Domain

APP

Description
This component manages the whole lifecycle of service level agreements for the
federation. Therefore, it is responsible for defining the service level agreements between
the federation members through the federated templates, and managing the one-shot
negotiation in order to create the agreements between the federated platforms. These
agreements cover the quality of the resources and services of the platforms inside this
federation, and they don’t follow up agreements between end-users and platforms. Hence,
the SLA is responsible for guaranteeing the conditions and the qualities of the shared
resources and services between the federated platforms, at the L2.

The component has to interact with the monitoring component to obtain the
measurements needed to enable assessments of the defined services level objective
(SLO), which has been defined into the agreements. The interaction is managed by a
publish/subscribe mechanism or a pull model to obtain only the measurements for those
metrics that directly map the SLOs to be assessed. The defined SLOs are always mapped
to the actual metrics to be collected and supplied by the monitoring components.

If any violation arises, the SLA component notifies/broadcasts to all registered
components that are interested to be informed about the violation of the agreements, like
the administration component which manage the federation layer. Moreover, such
violations would be communicated to other components, such as the accountability and
billing components, which would manage the necessary actions including the enforcement
of penalties, discounts and charges.

The component is compliant with WS-Agreement, whose specification describes an XML
schema for specifying service level agreements (both applicable to SLA Templates,
Agreement Offers and Agreements). SLA Templates, Agreement Offers and Agreements
are defined and described using the WS-Agreement schema.

Provided
functionalities

• Management of the SLA federated templates.

• Creation agreements based on the templates.

• Obtain the metrics directly related to SLOs of SLAs, either through the
subscriptions or pull requests.

• Generate and store violation events following the boundaries associated to the
guarantee terms/SLOs

• Manage the agreements and violations

• Access to the agreement and violation details.

• Notify/broadcast to all registered components any violation of the agreements on
which they have subscribed.

Relation to
other
components

Administration, Federation Manager (CLD), Monitoring (CLD)

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 54 of 132
 © Copyright 2017, the Members of the symbIoTe

Related use
cases

 All L2+ compliant

Related
requirements

49, 52, 77

5.2 Cloud Domain

5.2.1 General concepts

The Cloud Domain (CLD) components enable IoT Platform Providers to register desired
resources to symbIoTe Core Services. In addition, they provide the means for
applications/enablers to access those resources, found through the symbIoTe Core
Services, in a uniform and secure way. These functionalities are a prerequisite for
achieving CL1. Furthermore, the CLD components implement specific functionality for the
management of platform federations required for CL2, i.e. the exchange of information
between collaborating IoT platforms as well as bartering and trading mechanisms.

The components within CLD are shown in Figure 6. Each IoT Platform Provider will need
to setup and maintain these components on the platform side as well as integrate them
with their platform to achieve either CL1 or CL2. The CLD components are the following:

• Registration Handler (RH): enables IoT Platform Provider to register resources to
symbIoTe Core Services;

• Resource Access Proxy (RAP): receives requests for resource access from
application/enabler who found resource metadata by using symbIoTe Core
Services;

• Monitoring: monitors status of IoT Devices and records when
applications/enablers access IoT Devices/Composite IoT services;

• Authentication and Authorization Manager (AAM): enables a common
authentication and authorization mechanism for all L2 Platforms and applications;

• Federation Manager: manages all federation affiliations and signed SLAs per
platform, handles SLA violation notifications and triggers optimization requests and
trust calculation updates;

• Bartering and Trading Manager (BTM): manages bartering and trading actions in
advance to establishing federations;

• Platform Registry: stores resource metadata for L2 resources shared within a
platform federation;

• Subscription Manager: component used for publish/subscribe interactions
between platforms within a federation, used to update records stored within
Platform Registry;

• Trust Manager: computes trust levels for other platforms within a federation;

• Optimization Manager: suggests optimizations, such as usage of resources from
another federated platform if resources are collocated in the same smart space with
the objective of reducing overall energy consumption or costs.

The aforementioned components represent an umbrella to the underlying platform specific
components. They provide a uniform access to symbIoTe Compliant Platforms and hide

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 55 of 132
 © Copyright 2017, the Members of the symbIoTe

their heterogeneity from third parties. The platforms might have their own monitoring
system. Somehow, all these platform tools must be unified for symbIoTe. On the other
hand, we do not want to force a platform to include all their devices within symbIoTe.
These tools allow the platform provider to select a subset of devices to be used within
symbIoTe and to set specific SLAs, bartering & trading and security rules just for
symbIoTe.

Figure 6 symbIoTe CLD components

Some of the tools, due to close relation with the platform, must be installed within the
platform. We have, for example, the Resource Access Proxy which interacts intensively
with an underlying platform and its devices. In this case, it makes sense to deploy such a
tool within the platform near the devices. Other components placed in the CLD will mainly
use data from the underlying platform and are very platform oriented, like the Bartering
and Trading Manager or the Authentication and Authorization Manager.

5.2.2 Component description

Hereafter we specify in detail the components of symbIoTe Cloud Domain.

Table 14 Registration Handler

Component Registration Handler (RH)

Compliance
Level (CL)

1, 2, 3, 4

symbIoTe
Domain

CLD

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 56 of 132
 © Copyright 2017, the Members of the symbIoTe

Description
This component will drive an IoT Platform Provider through the step of registering selected
resources either to the symbIoTe Core (for CL1) or to an existing Platform Federation (for
CL2). These resources can be either an IoT Device or a Composite IoT Service and must
be described in accordance with the symbIoTe CIM. Some domain-specific properties of a
resource can be reported during the registration process by using the PIM, but PIM needs to
be an extension of the CIM. Registration Handler needs to provide the following information
from the symbIoTe BIM: IoT Device or Composite IoT Service description, Location and its
properties and Observed Property description and name.

The Registration Handler will act as a proxy and broker between the Platform Owner that
wants to share some resources and the Core or the Federation depending on the CL of the
platform. An IoT Platform Provider must be able to define which of its resources are
available to third parties (either to applications and enablers for CL1, or in federations for
CL2), and under which conditions. A platform chooses a subset ot its resources to be
exposes to symbIoTe. The IoT Platform Provider might also set the access policies for
resources (e.g., a maximum of 10 times per day, only from 7p.m. to 7a.m., only to
administrators of other platforms etc.). All this information will be received by the
Registration Handler at registration or update time for a particular resource. After a
successful registration in the Core (CL1) or the Platform Registry (CL2) it will notify
interested parties with the resource data, so they can act accordingly. For example, the
Resource Access Proxy might want to save the access policies for that particular resource
(among other data) or the Bartering and Trading might want to save prices and access rules
associated to it.

Provided
functionalities

• Registers resources to the symbIoTe Core for L1 and Platform Registry for CL2,
both virtual and physical, in accordance with the symbIoTe CIM

• Updates resource status and unregisters resources

• Notifies interested components about changes in the resources shared by the
Platform Owner

Relation to
other
components

Registry (within symbIoTe Core Services): stores data about resource, assigns unique
symbIoTe ID and keeps information about current resource status
Bartering and Trading Manager: stores data regarding pricing of a resource
Authentication and Authorization Manager: stores security information of a resource
Federation Manager: stores data regarding the federation structure
Monitoring and Core Resource Monitor (within symbIoTe Core Services): performs
availability check/update

Related use
cases

ALL

Related
requirements

1, 3, 5, 14, 16, 17, 18, 19, 24, 25, 28, 34, 35, 36, 39, 42, 43, 54

Table 15 Resource Access Proxy

Component Resource Access Proxy (RAP)

Compliance
Level (CL)

1, 2

symbIoTe
Domain

CLD

Description
This component enables symbIoTe Compliant access to resources within an IoT platform or
enabler acting as a platform. It also provides access to resources shared through platform
federation (L2 resources). Additionally for L2 resources, it accepts vouchers and sends
them to BTM to check whether access to a resource can be granted.

It must receive incoming access requests from applications/enablers using a symbIoTe-
compliant communication protocol and data format. A request must contain a unique
identifier assigned to a resource. It must check that a token included in the request is valid
and that access to a particular resource can be granted (in accordance with specified
access policies). The component must grant exclusive use of IoT resources, for underlying

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 57 of 132
 © Copyright 2017, the Members of the symbIoTe

IoT platforms that support such feature. This applies in particular to resource types with
exclusive access rights (e.g., actuators). It must enable the access control of resources
according to fine-grained authorization policies and for reasons related to local legislation,
security issues, etc., if the underlying IoT platforms support it. It may enable the prioritization
access to IoT services if the underlying IoT platforms support prioritization, e.g., users with
premium rights have priority over basic users when attempting concurrent access to some
IoT services.

Furthermore, the component will check with the Bartering and Trading Manager if the user
has quota or will be able to pay for the access to L2 resources. Access to the resource is
when all previous conditions are satisfied. The component may check the type of resource
which is being accessed (e.g., whether it is a “simple” IoT Service or Composite IoT
Service). In case of a Composite IoT Service RAP will retrieve the unique identifies for a set
of IoT Services that are grouped under the umbrella of the composite service. The
invocation to these underlying IoT Services will be done by this component.

The data generated by IoT Services must be returned in a format which complies with the
symbIoTe CIM and can include platform-specific definitions (PIM).

The component must support subscriptions to resources so that applications or enablers
can continuously receive the generated data/information. In this mode of operation the
application/enabler receives the data whenever it is pushed (published) by the
corresponding resource.

When several access requests arrive at the same time, prioritization of requests may be
supported.

Provided
functionalities

• Enables authorized access to L1 or L2 Platform resources or to enabler resources
and should enable request prioritization

• Supports one-time requests for data delivery and subscription-based continuous
data delivery

• Ensures formatting of data generated by resources in accordance with the
symbIoTe information model

• Grants exclusive access to a particular resource (if the platform/enabler supports
such feature)

• Enables control of access to the advertised resources according to local legislation,
security issues, etc.

• Enables resource reservation (if the platform/enabler supports such feature)

• Enables prioritized access to a resource (if the platform/enabler supports such
feature)

• Submits a received voucher to BTM to check whether access to resource from L2
Platform can be granted

Relation to
other
components

Bartering and Trading Manager
Authentication and Authorization Manager (AAM)
Federation Manager

Related use
cases

ALL

Related
requirements

8, 9, 12, 13, 14, 38, 56

Table 16 Monitoring

Component Monitoring

Compliance
Level (CL)

1, 2

symbIoTe
Domain

CLD

Description
This component is responsible for monitoring the status and the load of the resources.

The component will monitor periodically the status of the resources that are being exposed
to symbIoTe. It will receive from Registration Handler the id of the resources that must be

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 58 of 132
 © Copyright 2017, the Members of the symbIoTe

monitored. These ids can belong to IoT Devices or (Composite) IoT services. Prior to
monitoring the Composite IoT Service, the component will need to get the ids belonging to
the virtual entities that comprise this Composite IoT Service. When symbIoTe offers a group
of IoT Devices in a single Composite IoT Service, the status of this Composite IoT Service
must be determined. The information from the monitoring will be forwarded to the Core
Resource Monitor.

Additionally, the component monitors the load of the registered resources, if the IoT
platform allows such monitoring. Related information can be directly retrieved by IoT
platforms (if supported).

Provided
functionalities

• Resource monitoring

• Monitoring the load of resources

Relation to
other
components

Registration Handler
Core Resource Monitor

Related use
cases

ALL

Related
requirements

5, 6, 32, 52

Table 17 Authentication and Authorization Manager

Component Authentication and Authorization Manager (AAM)

Compliance
Level (CL)

1, 2

symbIoTe
Domain

CLD

Description
This component enables a common authentication and authorization mechanism for
symbIoTe L1 and L2 Compliant IoT Platforms and applications.

The AAM abstracts the native user and rights management functionality of each IoT
platform and provides a uniform representation and structure of each user token.

Each user token covers relevant user information, access rights per platform and common
symbIoTe attributes with additional cryptographic entries to guarantee integrity and
authenticity of the data itself. This approach enables an efficient and reliable access and
policy validation workflow across all participating IoT platforms within the symbIoTe
ecosystem.

Another responsibility of the AAM is the management of the user token which include sign
in, validation and verification, revocation and sign out features.

If the current user token does not reflect the actual access permissions of the platform, the
AAM will add the missing/changed attributes to it and return the modified token back to the
application user.

Provided
functionalities

• Map native user and rights management to common symbIoTe structure and format
(user token)

• Authenticate (sign in) users from symbIoTe Compliant Applications and issue
respective user token

• Validate/Verify symbIoTe Compliant user tokens plus integrity & authenticity
• Enable sign out functionality for users from symbIoTe Compliant Applications
• Check user token for any revocation/update in home and/or foreign platform
• Enrich/modify valid user token with access rights for home platform
• Issue tokens to users of foreign platforms and perform attribute mapping function

based on presented attributes in home token
• Provide management for required attributed set for the particular platform
• Perform Challenge-Response to verify the user that is using a token is the entity for

which the token has been issued for
• Check certificate chain of emitted certificates to verify user and platform reliability

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 59 of 132
 © Copyright 2017, the Members of the symbIoTe

Relation to
other
components

Registration Handler
Core Authentication & Authorization Manager
Core Resource Access Monitor
Resource Access Proxy
Federation Manager
Monitoring

Related use
cases

All

Related
requirements

14, 35, 37, 40, 42, 43, 52, 80, 81, S1, S2, S3, S5, S6, S7, S9, S11, S16, S17, S18, S19,
S20, S22

Table 18 Federation Manager

Component Federation Manager

Compliance
Level (CL)

2, 3

symbIoTe
Domain

CLD

Description
This component is responsible for managing all required federation information needed on
platform level.

It will receive federation and SLA updates from the core administration component and
handles the execution of needed actions.

These actions include updating the access policies on the platform level, providing up-to-
date information to trust manager and monitoring components.
It may also include triggering of optimization requests based on defined criteria.

In addition, SLA violations will be received by this component and respective actions will be
triggered in combination with the trust manager.

Provided
functionalities

• Manage current federation affiliation and federation entities (joined federations,
members)

• Store all signed SLAs per joined federation for the individual platform

• Received SLA violation notifications from SLA Engine relevant for the platform

• Trigger and manage optimization requests

• Mediate direct platform interactions within a Smart Space for collocated platforms

Relation to
other
components

Administration
Authentication & Authorization Manager
Trust Manager
Monitoring
Optimization Manager

Related use
cases

ALL

Related
requirements

33, 35, 61

Table 19 Bartering and Trading Manager

Component Bartering and Trading Manager (BTM)

Compliance
Level (CL)

2

symbIoTe
Domain

CLD

Description
The component manages the bartering and trading between IoT platforms as far as this can
happen in a decentralized way. Each IoT platform is able to set up bartering and trading
rules for its resources (e.g. charges for resource usage or bartering options). It should be
able to set different rules for the same resources depending on which platform is trying to

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 60 of 132
 © Copyright 2017, the Members of the symbIoTe

access those resources, kind of access (prioritized or not), time that is accessed (daytime,
night-time), how long the resource is used (camera used during half an hour or 5 minutes).

The bartering and trading algorithm should only take into account the resources and
services that will be exposed to 3rd parties, the information of the exposed
resources/services can be retrieved from the Registration Handler.

The module should be notified by RAP about the access to L2 resources and associate a
price to this access. It needs the information about the access origin. Bartering algorithm is
applied when a user from another federated platform tries to access a resource.

For bartering it can exchange quota of access with 3rd party platforms. This component can
access to the Bartering and Trading Manager from 3rd part platforms in order to request
more quota in case there is no remaining one.

Provided
functionalities

• Cost calculation from the resources

• Access registration

• Check quota of access

Relation to
other
components

Resource Access Proxy
Registration Handler
3rd part Bartering and Trading Manager
Central Bartering and Trading component

Related use
cases

ALL L2+ Compliant

Related
requirements

41, 42, 46-53

Table 20 Platform Registry

Component Platform Registry

Compliance
Level (CL)

2, 4

symbIoTe
Domain

CLD

Description This component must enable the registration of IoT Devices and (Composite) IoT Services
which are offered by IoT platforms to be discoverable by other federated IoT platforms (L2
compliance). It should also support resource registration updates, like removing IoT
services or updating their metadata. Moreover, Platform Registry must provide unique
federation identifiers to all resources registered within the IoT federation. Uniqueness must
be enforced both within and across IoT platform boundaries. A federation information model
agreed by all IoT platforms participating in the federation must be supported by the Platform
Registry to enable the description of available resources inside the federation. Furthermore,
it should also provide search functionalities to discover resources either exposed by the
home platform to the federation or by other federated IoT platforms which the home IoT
platform has been subscribed to.
It also maintains records about platform roaming resources in Smart Spaces (comparable to
Home Location Register in mobile networks).

Provided
functionalities

• Supports a federation information model for describing resources exposed in the
federation.

• Stores metadata of the home resources exposed to the federation

• Stores metadata of federated resources which the home platform has been
subscribed to.

• Provides search functionalities

• Maintains metadata about platform roaming resources in Smart Spaces

Relation to
other
components

Registration Handler

Subscription Manager

Related use
cases

All L2+ Compliant

Related 1, 2, 3, 11, 12, 15, 18, 19, 23, 25, 26, 31, 39, 40, S1, S2, 64, 65

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 61 of 132
 © Copyright 2017, the Members of the symbIoTe

requirements

Table 21 Subscription Manager

Component Subscription Manager

Compliance
Level (CL)

2

symbIoTe
Domain

CLD

Description
This component is responsible for sharing resource metadata between IoT platforms in a
federation using the publish/subscribe communication mechanism. A platform that wants to
access resources managed by federated platforms creates subscriptions for certain type of
resources in which it is interested, and receives updates containing metadata (may include
current resource availability or status) describing such resources from other Subscription
Manager components in a federation. One Subscription Manager component is interacting
directly with all Subscription Managers of federated platforms. One Subscription Manager
component is used per platform.

Using this component, an IoT platform publishes information to subscribed federated
platforms about its new or deleted resources, and sends updates containing resource
metadata. The component may also announce information about new resource types to
federated IoT platforms. Platforms are able to define interest to receive resource metadata
about certain resource types (e.g. mobile air quality sensors) in the form of subscriptions
and can also define interest to receive updates about specific resources to store up-to-date
metadata in Platform Registry.

Provided
functionalities

• subscribing to resource metadata generated by other IoT platforms within a
federation

• publishing information about new or deleted resources to subscribed federated IoT
platforms

• notifying subscribed federated IoT platforms with updates about resource metadata

• announcing information about new resources available in a federation to subscribed
federated IoT platforms

Relation to
other
components

Platform Registry

Related use
cases

All L2+ Compliant

Related
requirements

1, 2, 3, 11, 12, 15, 18, 19, 23, 25, 26, 39, 40, 41

Table 22 Trust Manager

Component

Trust Manager

Compliance
Level (CL)

2

symbIoTe
Domain

CLD

Description
This component supports the platform in taking informed decisions by calculating the trust
level based platform as well as resource properties (multi-layer approach).

The platform trust level reflects the reputation of a platform within the symbIoTe ecosystem.
The computation of the level is based on data collected during previous interactions with a
given platform as well as available information provided by the Core and/or other platforms
within the federation such as SLA violations or relevant Bartering & Trading history. A
dwindling reputation should raise a red flag, signaling that the platform has not been fulfilling
its contractual obligations at all or rather poorly. Consequently, a platform could be excluded

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 62 of 132
 © Copyright 2017, the Members of the symbIoTe

from a federation or not even be allowed to join an existing one in the first place.

Trust in resources is understood as the reliability of a resource in regards to its availability,
accessibility and provided accuracy (efficiency) of the data (service). The main information
source for calculating the reliability is the data supplied by the monitoring and anomaly
detection components (as well as the reliability reports provided by the other federation
members). Reliability has a major impact on the reputation of the members within a
federation.

Provided
functionalities

• Calculation of own resource trust values.

• Calculation of foreign platform trust.

• Calculation of "real" trust ratings for foreign resources.

Relation to
other
components

Search engine
Core Anomaly Detection
Monitoring
Bartering and Trading Manager
Federation Manager
Monitoring

Related use
cases

All L2+ Compliant

Related
requirements

33

Table 23 Optimization Manager

Component

Optimization Manager

Compliance
Level (CL)

2

symbIoTe
Domain

CLD

Description
This component supports the suggestion of equivalent resources (from other platforms) if
these resources are collocated in the same federation to optimize power/energy
consumption, apply load balancing of equivalent resources, and enable global cost
reduction within the federation

Provided
functionalities

• Discover equivalent resources within the same Smart Space

• Optimize resource allocation and power consumption

• Increase resource availability by load balancing equivalent resources

Relation to
other
components

Federation Manager
Monitoring
Registration Handler

Related use
cases

All L2 Compliant

Related
requirements

8, 23

5.3 Smart Space Domain and Smart Device Domain

5.3.1 General concepts

Smart Spaces are environments (residence, campus, vessel, etc.) where one or more IoT
platforms provide services. In order for such environments to be integrated into symbIoTe,
we need to deploy proper software adapters (that we generically refer to as symbIoTe

Smart Space Middleware, or S3 Middleware).

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 63 of 132
 © Copyright 2017, the Members of the symbIoTe

Some IoT platforms have both local and cloud architecture, whereas others have only
local or only cloud components. Depending on each IoT platform’s architecture, the S3
Middleware will need to be deployed either as a cloud component or as one of the Smart
Space’s appliances (or part thereof). Since the idea is to follow an approach as general as
possible, though, the aim would be to design a software architecture that can be deployed
in either way with no significant modifications. The functionality is duplicated in various
domains, in CLD and SSP (e.g., device management in the CLD and SSP); what differs is
the scope and the available hardware.

The Smart Space as a whole will expose (i.e. register, provide access to) the resources it
contains, regardless of which "local" IoT platform they belong to; therefore, Smart Devices
associated to the SSP will also be exposed directly, that is without being "mediated" by
any of the local platforms. SymbIoTe Compliant local IoT platforms within SSP will be able
to access all the resources associated to that SSP, provided that the required AA policies
are in place. This includes both resources provided by any collocated IoT platforms, and
those provided by the locally associated Smart Devices. In this way, the interoperability
role played by symbIoTe will be fully functional also at the SSP level. When more than one
IoT platform is active in a SSP, the S3 Middleware shall thus be acting as a local resource
interchange.

Smart Spaces must be able to accommodate both incoming apps (a user with a
smartphone or tablet running a symbIoTe app) and incoming devices (symbIoTe Smart
Devices). In both cases, the incoming entity should be identified, authorized and given a
way to access the Smart Space’s facilities. This must be possible even in case of
temporary failure or degradation of Internet connectivity.

In the context of symbIoTe, a Smart Device (SDEV) is a device that can directly interact
with a Smart Space; according to this definition, any mobile device (smartphone, tablet)
running a proper symbIoTe app can be considered an SDEV.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 64 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 7 symbIoTe SSP and SDEV components

The components within SSP / SDEV are shown in Figure 7. Each environment considered
as a Smart Space needs to be prepared with a deployment of the symbIoTe Smart Space
Middleware. The SSP / SDEV components are the following:

• Innkeeper: it is used to connect app or Smart Device to the Smart Space, notifies a
new app that it has entered a symbIoTe Compliant Smart Space, registers a new
device to a local SSP keeps a register of locally registered apps and Smart
Devices, and maps global URIs to local URIs;

• SSP RAP: allows direct access to the Smart Space’s resources without going
through the cloud components, so it is the local access point for symbIoTe
applications running in the Smart Space;

• RAP Gateway: provides a resource access point for SDEVs to be addressable
from outside the Smart Space;

• Local AAM: authenticates and authorizes symbIoTe applications and Smart
Devices to allow access to the Smart Space even when no Internet connectivity is
available;

• symbIoTe Agent: allows a symbIoTe-aware IoT platform to access Smart Devices
registered in the same Smart Space, this component would allow a platform not
only to expose its own devices to the symbIoTe ecosystem, but also to become a
“client” (like an app or an enabler) and access foreign resources within the same
Smart Space.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 65 of 132
 © Copyright 2017, the Members of the symbIoTe

5.3.2 Components description

Hereafter we specify in detail the components for Smart Space and Smart Device
Domains.

Table 24 Innkeeper

Component Innkeeper

Compliance
Level (CL)

1, 3, 4

symbIoTe
Domain

SSP

Description This component is the main entry point for a SSP. It is in charge of notifying symbIoTe-
compliant apps and resources that they have entered a symbIoTe-complaint SSP and for
handling their initial local requests. In particular, it is addressing the registration requests
from CL3/CL4 devices entering the space and CL1 apps/enablers which require direct
interaction to resources within the SSP (without the need to contact a resource through
CLD service). It acts as a local registry of resources currently residing within its Smart
Space (comparable to Visitor Location Register in mobile networks).
Once a new L3 device/gateway is being registered, the Innkeeper checks whether the
device shall be registered as a new device (CL3 behavior) or as a roaming device (CL4
behavior). In case it is an L3 device, it is registered in the Innkeeper’s Registry and
subsequently it may be registered in the Core Registry if the device will be exposed to
third-party applications directly from Smart Spaces (bypassing CLD).
In case of an L4 device registration, the Innkeeper needs to associate its global URI to its
local URI, and notify the platform which manages the L4 device (its Platform Registry
component) about this association.
It also includes a web GUI for administrators to manage platforms, resources and other
SSP information, including logs.

Provided
functionalities

• Notifies symbIoTe-compliant apps and resources that they have entered a
symbIoTe-complaint SSP and handles their initial local requests.

• Provides a web GUI for administrators to manage collocated platforms in a SSP,
resources, and other internal or database properties.

• Manages local Registry storing metadata about resources registered in a SSP

• Maps global URIs to local URIs for L4 devices

• Presents logs and internal information to administrators.

• Provides an interface for manual registration of IoT platforms collocated in a SSP.

• Supplies adequate credentials to IoT resources, enablers and applications from
the Local AAM.

Relation to other
components

Registry: manages Innkeeper registration requests towards symbIoTe Core, only for
resources that want to be exposed to third-party applications directly from Smart Spaces.
Platform Registry: receives notifications about its L4 devices to associate device’s global
URI to local URI
Local AAM: manages authentication and authorization requests

Related use
cases

Smart Residence, Smart Yachting

Related
requirements

54, 55, 57, 59, 64, 67, 68, 74

Table 25 SSP Resource Access Proxy

Component SSP Resource Access Proxy (SSP RAP)
Compliance
Level (CL)

1, 3, 4

symbIoTe
Domain

SSP

Description
This component enables symbIoTe Compliant access to resources within a SSP to

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 66 of 132
 © Copyright 2017, the Members of the symbIoTe

Applications and Enablers (either within or outside the SSP). It is the counterpart of the
Resource Access Proxy in the Cloud Domain, which acts within a Smart Space and
checks tokens and access policies with each request for access to resources in its SSP. It
allows a local access to resources and Smart Devices within a SSP, providing all the
features described for the Cloud component (defined in Section 5.2.2), without going
through the symbIoTe Cloud components. It allows authorized access to SPP resources
from L4 Smart Devices. It enables different collocated IoT platforms to interact locally
either without or with mediation from symbIoTe CLD components (with support from
Federation Manager under the assumption that platforms are in a federation with a valid
SLA).

Provided
functionalities

• Allows direct access to the Smart Space’s resources without going through the
Cloud components to apps and L4 Smart Devices within the SSP

• Supports direct interaction between collocated IoT platforms with and without
mediation of CLD components

Relation to other
components

Application and L4 Smart Device: sends requests for resources access
Local AAM: manages authentication and authorization requests

Related use
cases

Smart Residence, Smart Yachting

Related
requirements

59, 60, 61, 62, 63, 66

Table 26 Resource Access Proxy Gateway

Component Resource Access Proxy Gateway (RAP Gateway)

Compliance Level
(CL)

3, 4

symbIoTe Domain SSP

Description This component acts as a gateway, allowing access to local Smart Devices for clients
that are outside the SSP. It establishes a tunnel connection to the Smart Space local
network.

Provided
functionalities

• Provides a resource access point for SDEVs to be addressable from outside
the SSP

Relation to other
components

Application: accesses to SSP towards the RAP Gateway, when it is outside the SSP
SSP RAP: provides actual access to SSP registered resources

Related use cases Smart Residence, Smart Yachting

Related
requirements

58, 61

Table 27 Local AAM

Component Local Authentication and Authorization Manager (Local AAM)

Compliance
Level (CL)

3, 4

symbIoTe
Domain

SSP

Description
This component enables a local authentication and authorization mechanism within a
Smart Space. It is the counterpart of the AAM in the Cloud domain, so it provides all the
features in a local environment, even in case of limited connectivity (without a permanent
Internet connection).

Provided
functionalities

• Allows AAM mechanisms within a Smart Space and even without cloud
component connectivity

• Implements configurable fallback policies to allow each Smart Space to balance
security risks with available functions

Relation to other
components

Innkeeper: requests authentication and authorization permissions
SSP RAP: requests authentication and authorization permissions

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 67 of 132
 © Copyright 2017, the Members of the symbIoTe

Related use
cases

Smart Residence, Smart Yachting

Related
requirements

59, 60, 63, 70, 71

Table 28 symbIoTe Agent

Component symbIoTe Agent

Compliance
Level (CL)

3, 4

symbIoTe
Domain

SSP / SDEV

Description This component resides on IoT devices, gateways and mobile devices to provide features
which make them discoverable in SSPs, and enable their registration with SSP’s
Innkeeper to facilitate dynamic configuration of L3 and L4 devices. A device running a
symbIoTe Agent becomes a SDEV. A subset of commercial devices will be supported. It
facilitates local interactions in SSPs via SSP RAP. Platform (or gateway) to platform,
SDEV to SDEV, and platform to SDEV interactions and direct access to registered
devices within the same SSP will be enabled (without and with interaction to CLD
components for checking the access policies and SLAs). Such access should be enabled
even without Internet connectivity. It is also the way for a platform to expose its Smart
Devices directly to the symbIoTe ecosystem.
We distinguish agents built for L3 and L4 devices since L4 devices need to maintain their
globally unique identifies and need to register their temporary URI within their Platform
Registry.

Provided
functionalities

• Allows devices, gateways and applications entering a SSP to become
discoverable in the new space and perform initial registration with the Innkeeper

• Allows a symbIoTe-aware IoT platform to access SDEVs registered in the same
SSP

• Allows a platform to expose dynamically its own devices to the symbIoTe
ecosystem

• Allows a platform to become a “client” (like an app or an enabler) and access
foreign resources within the same visited Smart Space.

Relation to other
components

Innkeeper: manages device discovery and registration within a SSP, maps global URI to
local URI for visiting L4 devices
SSP RAP: manages access requests to resources
Local AAM: manages authentication and authorization requests to check whether a
device can be accepted into a SSP
Platform Registry: maintains up-to-date associations of L4 global URI with local URI for its
roaming devices

Related use
cases

Smart Residence, Smart Yachting

Related
requirements

54, 57, 60, 61, 63, 64, 65, 67, 69, 74

5.4 symbIoTe approach to security

Provision of data and system security in distributed, hierarchical systems like symbIoTe
requires sophisticated mechanisms of user authentication and authorization. Security
requirements described in Section 4 stem from the main use case when Smart Devices
are interconnected with applications, while devices are managed by different IoT
platforms. Attribute Based Access Control (ABAC) fulfils these requirements unlike Role
Based Access Control (RBAC). The latter method of authorization known from local
computer networks, which assigns each user a role like ‘administrator’ or ‘normal user’, is

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 68 of 132
 © Copyright 2017, the Members of the symbIoTe

impractical in distributed IoT environments [17]. Security in a symbIoTe network of IoT
platforms is achieved more effectively with ABAC, whose paradigm falls within a wide set
of logical access control schemes. Their goal is the protection of sensitive data or services
from unauthorized operations like discovering, reading, writing, creating files and so on.

ABAC is based on the assignment of attributes to each client application and resource in a
system. An attribute is defined as a particular property, role or permission associated to a
resource in the system, assigned after an authentication procedure by the system
administrator.

In ABAC, in contrast to other access control methods, the access to resources is
controlled by Access Control Policies. Resource owner assigns an access policy to a
resource defining a specific combination of attributes needed to grant access to the
resource. Therefore, a client application can access a resource only if it possesses a set
of attributes that match its predefined access policy. In symbIoTe this policy can contain at
the same time attributes assigned to users and objects as well as particular environment
conditions related to an access request.

The prevalence of ABAC over traditional access control schemes like Identity Based
Access Control or Group Based Access Control (GBAC) is due to the efficiency, simplicity
and flexibility of the access rules. In fact, complex policies can be created and managed
without directly referencing potentially numerous users, applications and objects.
Moreover, the structure of the policy can be independent from the number of users within
a system, with enhanced flexibility especially in distributed environments, where specific
domains can avoid any form of synchronization to create consistent access control
policies.

Figure 8 An example of access policy enforced by three attributes

For instance, with reference to the access policy depicted in Figure 8, an application may
access to a resource if and only if:

• the list of its attributes contains at least Attribute 1;

• the list of its attributes contains at least Attribute 2 and Attribute 3.

In order to enable the ABAC logic in symbIoTe in a scalable, effective, and secure
manner, proper security components, libraries and functionalities have been designed.

Security procedures are executed by introducing the following components: Core
Authentication and Authorization Manager (CAAM), platform's Authentication and
Authorization Manager (AAM, also refered to as PAAM), and Security Handler library (SH).

A user can be registered in Core layer or in any symbIoTe Compliant IoT platform. Indeed,
it may perform a login procedure by delivering its own credentials (username and
password). Without loss of generality, each user can be in possession of multiple
resources. While the user is in possession of only one set of credentials, each resource is
in possession of a unique public-private key pair and a valid X.509 Certificate. The X.509

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 69 of 132
 © Copyright 2017, the Members of the symbIoTe

Certificate is released by CAAM or PAAM, depending on where the user is registered to.
Therefore, for each resource, the user generates a key-pair (made up by Public Key and
Private Key) and sends a Certificate Signing Request to the reference AAM. Then, the
AAM generates and delivers a valid Certificate to the user. Finally, the certificate is stored
by the resource. In order to make the process for generating all the certificates scalable
and effective, symbIoTe makes use of a certificate trust chaining architecture. Further
details are reported in Section 5.4.1.

In line with the previously described ABAC logic, user properties are encoded by attributes
stored within a dedicated data structure referred to as token. In symbIoTe, a token can be
released by AAMs only. Moreover, it mainly contains the list of attributes assigned to (and
valid for) a user within symbIoTe Core or any other IoT platform. In summary, three kinds
of tokens are available in symbIoTe:

• home token released by the AAM where the Application/Enabler is registered;

• foreign token released by the AAM in exchange for home token when the AAMs
(platforms, enablers, core) come into an agreement; and

• guest token released by any symbIoTe AAM and used to access public resources
in symbIoTe.

When a user logins to CAAM or PAAM, a home token is provided, which stores all the
attributes assigned to the user, the public key of the user’s client and other important
security parameters. The main structure of the token used in symbIoTe is reported in
Section 5.4.2. With this token, the user may immediately start an access procedure to
resources available in the domain where the user is registered.

With home tokens, the user may try to access resources exposed by other IoT platforms
for which he/she does not have an adequate home token. In such a case, the user may
request a foreign token from the AAM responsible for this other platform. During this
procedure, the user must confirm the ownership of the token through a challenge-
response mechanism, described in detail in Section 5.4.4. In case when the challenge-
response procedure ends successfully, the AAM of the foreign platform validates
(optionally offline) the home token provided by the user. Then, it generates a new, foreign
token, usable according to the agreement details (e.g., in the foreign IoT platform only).
Note that the generation of a foreign token implies the execution of an attribute mapping
function that translates/maps/renews/updates the original list of attributes assigned to the
user to a new set of properties valid within the foreign IoT platform. Further details are
reported in Section 5.4.5.

Home and foreign tokens, issued for relevant clients are not8 shareable: a user needs to
acquire tokens for each of his/her clients from relevant AAMs.

The RAP is responsible to check access policies based on attributes provided in a token.
Further details are reported in Section 5.4.6.

The revocation process invalidates access to the core or platform and its associated
resources. It can be synchronous or asynchronous. It involves attributes (and therefore
tokens) associated with an application. Further details are reported in Section 5.4.7.

8 Technically they are shareable but sharing a token requires also sharing the matching private key store in a secure

manner in the client application and users are encouraged to have a client+privateKey pair per each of their

resources to provide fine-grained security

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 70 of 132
 © Copyright 2017, the Members of the symbIoTe

Note that symbIoTe also supports guest users: users can request public access
credentials, i.e., guest credentials, for that they contact any AAM in symbIoTe by using a
REST endpoint and get a token allowing them to use un-restricted resources.

5.4.1 Certificate Trust Chaining

A certificate chain is a list of certificates needed to certify an end subject. The certificate
chain contains an end certificate, certificates of intermediate Certificate Authorities (CAs)
and the certificate of a root CA.

An intermediate CA holds a certificate issued from root CA. The trusted root CA issues a
self-signed certificate (or it may be released from VeriSign or other trusted CAs).

The certificate chain typically consists of three certificate types:

• Root Certificate: The certificate that identifies the CA. The root CA signs an
intermediate certificate, forming a chain of trust.

• Intermediate Certificate: The certificate that identifies a Subordinate CA. This
certificate is digitally signed and issued by a Root CA. An intermediate certificate
authority is an entity that can sign certificates on behalf of the root CA.

• End Certificate: A certificate that links a public key value to a real-world entity such
as a user or an application.

Certificate chain verification is the process that checks the validity period, and the
signature of respective CA.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 71 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 9 Certificate Chain

In symbIoTe, the Root Certificate is the symbIoTe Core certificate, the Intermediate

Certificate is the symbIoTe IoT platform certificate and finally the End Certificate is the

Application Certificate (generic Data Consumer).

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 72 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 10 Certificate Chain Workflow

The main steps to create a certificate chain are the following:

• The Root CA generates a keystore for symbIoTe Core (Root CA) with certificate
and private key, and afterwards exports symbIoTe Core certificate (Root CA self-
signed certificate).

• An IoT platform (e.g. a generic Platform i.e. Platform P) generates a key pair for
itself, generates a Certificate Signing Request (CSR) and submits the request to
the Root CA (symbIoTe Core) that issues a certificate for Platform P.

• An Application (leaf, this isn’t a CA) generates a key pair for itself, generates a CSR
and submits the request to the Intermediate CA (Platform P in this example) that
issues a certificate for Application.

Finally, each user should obtain one certificate for each associated resource.

5.4.2 Authorization Token

Token is a digital object used as a container for security-related information. It serves for
authentication and/or authorization purposes and generally appears as a list of elements.
Each element contains an assertion that further specifies properties assigned to the owner
of the token.

Each token must contain an explicit expiration date, indicating the date until the token is
considered valid. Moreover, the token also contains at the end an element that certifies its

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 73 of 132
 © Copyright 2017, the Members of the symbIoTe

authenticity and integrity. Depending on the chosen solution, validating a token could
require different procedures. In symbIoTe, JSON Web Token (JWT) standard is used for
tokens generation. JWT fits perfectly within the symbIoTe reference architecture. From a
cryptographic perspective, the only preliminary requirement for its adoption is the
deployment of a public-key infrastructure, which issues a private/public key pair to each
entity in the system. In symbIoTe, we envision a trusted CA in the core layer that issues
certificates to platforms and applications. AAMs use their private keys to generate and
sign tokens. Any entity in the system that receives a token could easily verify its
authenticity by gathering the public key of the issuer of the token (specified in the token
itself). Important features such as the support for an expiration date are also integrated by
JWT.

In addition, each token can be easily associated to a given entity in the system, e.g., the
public key of the owner of the token can be embedded within the token. This can be used
in the challenge-response procedure to prove the possession of the respective private key
and verify that the application using the token is effectively the entity for which the token
has been generated. This procedure avoids replay attacks and it is described in Section
5.4.4.

Token includes its type, i.e., if it was generated for a registered user (HOME) or by
agreement exchange between AAMs (e.g. federation, foreign). Furthermore, we assume
that each token embeds multiple attributes. Therefore, applications and components
possess many tokens, each of them is associated with multiple attributes, received from
an IoT Platform. In this way, applications and components collect a wallet of tokens, that
they use carefully to access resources exposed by the symbIoTe Search Engine or RAP
within IoT platforms.

The signature field, computed over the whole set of parameters previously mentioned, is
included at the end of the token. It is generated through the ECDSA-256 algorithm,
computed over the whole set of fields included in the token.

5.4.3 Token Validation

Validation of tokens, keys stored in them and the signature is one of the most important
security tools in symbIoTe.

A unified API is exposed for the application developers to validate tokens, available in the
Security Helper library. To check the validation, symbIoTe security layer firstly verifies the
token string contents, to determine whether it is malformed during transmission, or
whether it has a correct signature and has not yet expired. Afterwards, the AAM authority
checks the token.

Core or Platform AAMs check if the token issuer exists in the symbIoTe ecosystem, if the
issuer’s or subject’s public key was revoked, or if the issuer’s or subject’s certificate has
expired.

5.4.4 Challenge-response procedure

The Challenge-Response procedure is designed to verify that a component/application
using a token is really the entity for which this token has been issued by an AAM. The
procedure leverages public key cryptography: the owner of the token is in possession of a
private key associated with a public key stored in the token; therefore, it executes some

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 74 of 132
 © Copyright 2017, the Members of the symbIoTe

cryptographic operations by using such a private key; then to verify the authenticity of the
application/component, an opposite operation is performed using the public key. In
symbIoTe, a special challenge-response mechanism is designed in accordance with the
REST paradigm.

Prerequisites

• Client wants to get access to a resource (Res 1), from Platform (Plat1);

• Each component in symbIoTe is in possession of its certificate and the
corresponding private key;

• The user has n devices. For each device, it retrieves a private key, a certificate and
valid tokens. From this moment on, the user-device pair is simply referred to as
“client”.

Notation

• PV is the private key of the client.

• PK is the public key of the client.

• Ti represents the homeToken issued by the i-th Platform AAM to the considered
user. The token stores in the SPK field the public key of the user. When a user is
registering to the platform, he/she obtains a certificate in order to demonstrate the
authenticity of its public key.

• H is a generic hash function.

• E() represents a cryptographic operation executed using a public key of the entity
that will receive the message.

• S() is a signature vector that contains the signatures made on the hash of
correspondent token and a timestamp.

• SPV,i is the signature made with the i-th private key associated with
the correspondent subject public key.

• T=[T1,T2,...,Tn] is the token list owned by the client.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 75 of 132
 © Copyright 2017, the Members of the symbIoTe

Scenario

Figure 11 Challenge-response mechanism

The challenge and response mechanism involves the following steps:

1. It is assumed that the client already retrieved the set of
tokens

o For each i-th token, the client computes Si=[SPV,A,i(H(Ti

|| timestamp1))]

2. The client sends a request to the remote entity, which

contains:

o The business request

o The list of tokens: T

o An implicit challenge calculated as: EPK(SPV,1(H(Token1 ||

timestamp1)) || SPV,2(H(Token2 || timestamp1)) ... || ...

SPV,n(H(Tokenn || timestamp1)) || timestamp1)

3. The remote entity performs the following operations:
o SPV,P[CH]; extract timestamp1

o for each i in [1…n]

o extract PKA,i from Ti

o h EPK,A,i(Si)

o hˈ H(Ti || timestamp1)

o if (h=hˈ & ((timestampNOW - timestamp1)< quantity))

accept

o end if

o end

4. The remote entity sends an answer as: BusinessResponse ||

EPK,A,1(SPV(timestamp2) || timestamp2)

5. The client calculates:

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 76 of 132
 © Copyright 2017, the Members of the symbIoTe

o Decrypt the RESP: SPV,A,1(RESP)

o It verifies the signature: EPK,P(DPV,P (timestamp2)) and

checks the freshness of the response.

When an application requests a foreign token, it will contain the subject public key as the
first public key extracted from the token list during the challenge–response procedure.
Note that timestamps are used to guarantee the freshness of requests and responses.

5.4.5 Attribute mapping

As previously mentioned, ABAC provides fine-granular access control, based on the list of
attributes presented by the user to the particular authorization body, as well as the
possibility to define complex access policies for any resource or service. However, since
symbIoTe incorporates federated access control mechanisms, AAMs in the Application
and Cloud domain must be able to provide mapping for attributes issued by symbIoTe
core or any symbIoTe Compliant IoT platform. Nonetheless, access control mechanisms
in a particular platform can differ from the ones used by other platforms or symbIoTe
Core, meaning that those differences have to be resolved in order to grant access to the
resources. In order to resolve those issues, required attributes set has been defined to
enable issuing access tokens with attributes, validate access policies using those
attributes, and exchange access tokens. To be able to exchange access tokens, attribute
mapping rules need to be defined.

5.4.6 Access Policy Checking

The concept of Attribute Based Access Control (ABAC) represents a logical authorization
model that provides a dynamic and context-aware access control mechanism. It serves to
protect resources (i.e., data, devices, services and other) from unauthorized operations
like reading, writing, editing, deleting, copying, modifying and executing. The owner of a
resource establishes a policy that describes which attributes, who, and what operations
can be performed on this resource. If a subject has the attributes that satisfy the access
control policy established by the resource owner, then the subject is authorized to perform
the desired operation on that object. The policies are defined by using eXtensible Access
Control Markup Language, a standard maintained by OASIS.

Attributes used by an application trying to get access to resources on a certain IoT
platform are checked when accessing AAM of that platform. In the case when the
attributes used by the application and this IoT platform are not in the same format,
attribute mapping needs to be performed. This functionality is executed on AAM, and
attributes in the format of the IoT platform are forwarded to the application. When
application then contacts IoT platform RAP, it uses the attributes in the same format used
by the platform.

5.4.7 Revocation

The revocation process handles the synchronous and asynchronous revocation of
authorization credentials. Synchronous means that token/certificate expire when the check
revocation procedure compares the actual timestamp with the expiration value written in
the token/certificate. Asynchronous means that the token/certificate is revoked before its
expiration. Furthermore, the AAM manages a Token Revocation List (TRL) storing the list

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 77 of 132
 © Copyright 2017, the Members of the symbIoTe

of JWT ID (“jti” claim) tokens that have been revoked before their expiration. Therefore, if
the JTI is present in this list, the access to resource or in general to the platform will not be
allowed. For this reason, it may be contacted by any component in the architecture during
the check revocation procedure. However, in addition to controlling the token ID, a check
of the validity of the keys associated with the user is made. In fact, if keys are revoked
(stored in the Public Key revocation list) this means that the pair (APP, device) hasn’t the
rights to access the resources of a particular platform.

symbIoTe will allow the following actors to revoke through dedicated APIs:

• symbIoTe administrator:

o Platforms’ certificates;

o Core AAM users’ client certificates;

o Tokens issued by Core AAM;

• AAM administrator:

o its users’ certificates and tokens;

• symbIoTe user in its home AAM(s):

o client certificates; and

o its tokens.

All actors will need to present their credentials (username and password) to authorize their
actions.

5.4.8 Other security requirements

At the basis of all aforementioned security mechanisms lies a requirement that all
communication in symbIoTe is secured using TLS – namely all interface exposed to the
internet and used to communicate symbIoTe clients with our services as well symbIoTe
services among themselves (e.g. platform – platform or core – platform) are available only
using the HTTPS protocol.

For maximum reachability and compatibility of symbIoTe with the firewall policies across
the Internet, we suggest that those services should be running on standard HTTPS port
443.

Internal communication between components within the platforms is not symbIoTe
responsibility however it is advised that symbIoTe integrators take utmost care to secure
their components deployment.

Platform AAMs should have internet access to other AAMs in order to provide full security
enforcement. If that is not possible, they should at least be able to retrieve security data
from the Core AAM and if that is not possible they will fall back to offline validation.

5.5 Achieving Compliance Level-1 (CL1)

As already stated in Section 3.3, CL1 means platform syntactic and semantic
interoperability. It is a prerequisite for any kind of IoT platform interoperability, and requires
an open but controlled access to IoT platform services. There are two major requirements
for platforms that want to become L1 Compliant:

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 78 of 132
 © Copyright 2017, the Members of the symbIoTe

1. the existing platform-specific information model needs to be mapped to the
symbIoTe Core Information Model (semantic interoperability); and

2. the platform must integrate the symbIoTe Interworking Interface to open up its
northbound interface and provide access to IoT services (syntactic interoperability).

Here we focus on the second requirement, since the first requirement is the topic of D2.4.
We identify the components that need to be integrated with existing platform components
in CLD, as well as the Core Service components in the APP required for an interoperable
IoT ecosystem offering IoT services across platforms. Since authenticated and authorized
access to offered services is vital for an IoT ecosystem, we include here also security-
related components.

The component diagram of a symbIoTe ecosystem which includes L1 Platforms is
presented in Section 5.5.1. It also identifies component interfaces. Communication
diagrams specifying L1 functionalities are included in 5.5.2.

5.5.1 Component diagram

Component diagram with specified interfaces is shown in Figure 12. For CL1, symbIoTe
system defines four interfaces:

• Application Interface used by symbIoTe core components to interact with
applications or enablers;

• Core Interface used by applications or enablers to interact with symbIoTe core
components;

• Cloud-Core Interface used by a symbIoTe Compliant Platform to interact with
symbIoTe core components; and

• Interworking Interface used by symbIoTe core components to interact with
symbIoTe Compliant Platform, and used by applications or enablers to interact with
a symbIoTe Compliant Platform (a subgroup of interworking interface is named
Application-Cloud Interface).

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 79 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 12 Component diagram for CL1

5.5.2 Communication diagrams

The functionalities defined for symbIoTe CL1 are the following:

• Platform registration/unregistration/update;

• Resource registration/unregistration/update;

• Search;

• Access to resources; and

• Monitoring.

Hereafter all functionalities are presented in the form of UML communication diagrams,
with detailed description of the exchanged messages. Figure 13 shows generic legend for
messages used in the diagrams.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 80 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 13 Legend – messages used in the following diagrams

5.5.2.1 Platform registration

IoT platform owner executes platform registration by using the administrative web
application.
An enabler has two roles in the registration process:

• Platform role - registers enabler the same way as another IoT platform for exposing
composite IoT services;

• Application role - registers enabler the same way as an Application for using IoT
services which are searchable and exposed by symbIoTe Core Services.

Figure 14 Platform registration

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 81 of 132
 © Copyright 2017, the Members of the symbIoTe

Detailed description:

• Message 1: IoT platform owner or Enabler owner sends a request for symbIoTe
usage through the Administration web application. The user needs to create an
account if it is not created previously. The request is either for a trial or for normal
registration. In the response, the owner receives a certificate.

• Message 2: Request for registration is forwarded to the Registry which generates
platform/Enabler ID.

• Message 3: Platform/Enabler information is sent to Core RAM.

• Message 4: Platform/Enabler information is stored in Semantic Manager. It can
optionaly define its own PIM.

After the registration process, the IoT platform owner or the Enabler owner has acquired a
certificate to access symbIoTe Core services, and a unique ID by which the platform or
Enabler can be identified. The owner can subsequently configure the platform to become
L1 Compliant.

5.5.2.2 Resource registration, unregistration and modification

IoT platform owner needs to register resources to symbIoTe Core Services in order to
become discoverable to third party application developers or to the Enablers. Platforms
also need to be able to unregister and modify the exposed resources. Enablers can also
register the resources in the same way as IoT platforms.

Figure 15 Resource registration, unregistration and modification

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 82 of 132
 © Copyright 2017, the Members of the symbIoTe

Detailed description:

• Message 1: Registration Handler notifies Resource Access Proxy and Monitoring in
the same IoT platform of the resource(s) that will be
registered/unregistered/modified through symbIoTe. It is used to register the
resource(s) on the Resource Access Proxy, along with the access policy to access
it, and to schedule availability checks through Monitoring.

• Message 2 (optional): Registration Handler performs a login to obtain home
token(s) from its AAM. If the Registration Handler already has a valid token, this
step is not needed.

• Message 3 (optional): Registration Handler performs a login to obtain token(s) from
Core AAM. If the Registration Handler already has valid token(s), this step is not
needed (as well as Messages 4 to 6).

• Message 4 (optional): challenge-response procedure between Core AAM and
Registration Handler.

• Message 5 (optional): check revocation procedure between Core AAM and
platform’s AAM.

• Message 6 (optional): Core AAM returns token(s).

• Message 7: Resource Handler sends register/unregister/modify request to Registry.

• Message 8: Registry sends resource data to Semantic Manager and to Search
Engine. Semantic Manager validates if the data conforms to CIM and optionally
PIM, while Search Engine translates the data into RDF and stores/deletes/modifies
resource description.

• Message 9: Registry informs CRM and CRAM of the new/deleted/modified
resource.

• Message 10: Acknowledgement.

5.5.2.3 Resource search

Application/Enabler uses the Search Engine from symbIoTe Core Services to find the
desired resources. Search Engine finds the resources, ranks and filters the results, and
forwards the response to the application/Enabler.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 83 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 16 Resource search

Detailed description:

• Message 1 (optional): Application/Enabler logs in to Core AAM, and obtains home
token(s). If the Application/Enabler has valid token(s), this step is not needed.

• Message 2: Application/Enabler sends the query with home token(s) to the Search
Engine.

• Message 3 (optional): challenge-response procedure between Search Engine and
Application/Enabler.

• Message 4 (optional): check revocation procedure between Search Engine and
Core AAM.

• Message 5 (optional): Search Engine forwards request to Semantic Manager if
query rewriting is needed.

• Message 6: Search Engine gets resource availability data from CRM and resource
usage data from CRAM which is used for ranking the results.

• Message 7: Search Engine ranks and filters the results (according to access
policies to private resources), and forwards the response to Application/Enabler.

5.5.2.4 Access to resources

After obtaining the list of desired resources, the application/Enabler chooses the ones it
wants to access. It receives their URLs from the Core RAM, and in the next steps contacts
the RAP at the resources’ platform to acquire needed data.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 84 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 17 Access to resources

Detailed description:

• Message 1 (optional): Application/Enabler logs in to Core AAM, and obtains home
token(s). If the Application/Enabler has a valid token, this step is not needed.

• Message 2 (optional): Application/Enabler requests foreign token(s) from the
platform. If the Application/Enabler already has valid foreign token(s), this step is
not needed (as well as Message 3 to Message 5).

• Message 3 (optional): challenge-response procedure between AAM and
Application/Enabler.

• Message 4 (optional): check revocation procedure between AAM and Core AAM.

• Message 5 (optional): AAM provides foreign token(s).

• Message 6: Application/Enablers requests access to selected resources from Core
RAM. Core RAM responds with a list of URLs from where resources can be
obtained.

• Message 7: Application/Enablers accesses the selected resources through
Resource Access Proxy with home/foreign/guest token(s).

• Message 8: challenge-response procedure between Resource Access Proxy and
Application/Enabler.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 85 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 9: check revocation procedure between Resource Access Proxy and
AAM.

• Message 10: Resource Access Proxy returns the data generated by the resource.
A user can request the latest measurement, historical measurements, or create
subscriptions or receive data in streams. In case of an actuation request, one of the
services offered by a resource is invoked.

5.5.2.5 Monitoring

Monitoring is a scheduled task for checking availability of the registered resources. Upon
registration of resources, or certain changes, RH informs Monitor component of the
resources needed to be monitored, as shown in . The result is forwarded to CRM so that
the status of all results is stored centrally. This information is then used by the Search
Engine to recommend resources to applications/Enablers.

Figure 18 Monitoring resource availability

Detailed description:

• Message 1 (optional): Monitoring performs a login to obtain home token(s) from its
AAM. If the component already has valid tokens, this step is not needed.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 86 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 2 (optional): Monitoring performs a login to obtain token(s) from Core
AAM. If the Monitoring already has valid token(s), this step is not needed (as well
as Message 3 to Message 5).

• Message 3 (optional): challenge-response procedure between Core AAM and
Monitoring.

• Message 4 (optional): check revocation procedure between Core AAM and
platform’s AAM.

• Message 5 (optional): Core AAM returns token(s).

• Message 6: Monitoring sends an aggregated report to CRM.

• Message 7: CRM stores changes in Registry.

• Message 8: Acknowledgement.

5.6 Achieving Compliance Level-2 (CL2)

CL2 assumes the creation of IoT platform federations, thus enabling
organizational/enterprise interoperability. By forming federations, platforms can securely
interoperate, collaborate and share resources according to accepted SLA. CL2 includes
the additional functionality compared to CL1, sharing/bartering or trading of resources
between platforms. The functionalities provided at this level enables the so-called
organizational interoperability.

In this section we identify the components that an IoT platform needs to integrate with
existing components in CLD in order to become L2 Compliant, as well as the Core Service
components in the APP mainly required for creating federations and reaching an
agreement for a platform to join a federation. Since authenticated and authorized access
to offered services is vital for an IoT ecosystem, we also include security-related
components.

The component diagram of a symbIoTe ecosystem which includes L2 Compliant Platforms
is presented in Section 5.6.1. It also identifies component interfaces. Respective
communication diagrams specifying CL2 functionalities are included in 5.6.2 and describe
a simplified communication flow between these components.

5.6.1 Component diagram

The component diagram with the specified interfaces is shown in Figure 19. For CL2, the
symbIoTe system defines the following interfaces:

• Cloud-Core Interface used by a symbIoTe Compliant Platform to interact with
symbIoTe Core components; and

• Interworking Interface used by symbIoTe Core components to interact with
symbIoTe Compliant Platform, and used by applications or components of a home
platform to interact with another platforms within a federation.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 87 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 19 Component diagram for CL2

5.6.2 Communication diagrams

The functionalities defined for symbIoTe CL2 are the following:

• Federation management including SLA handling;

• Monitoring and SLA violation;

• Adding, updating, removing resources to be shared within federation;

• Access to federated resources; and

• Calculation of trust.

Hereafter all functionalities are presented in the form of UML communication diagrams,
with detailed description of the exchanged messages.

5.6.2.1 Federation Management

Federation management includes all the interactions performed when an IoT platform
wants to join an existing federation, leave the federation, or perform some updates. The
updates can also relate to changes in bartering and trading agreements. The Platform

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 88 of 132
 © Copyright 2017, the Members of the symbIoTe

owner uses the GUI in Administration component to manage the federation. All the
platforms need to be informed of the changes.

Figure 20 Federation management

Detailed description:

• Message 1: The IoT platform owner gets access to the Administration GUI by
creating an account (if not already created before). In the response, the owner
receives a certificate for communication with symbIoTe system.

• Message 2: The IoT platform owner updates the status of the federation within the
Administration component.

• Message 3: The Administration sends a notification to the other IoT platform
owners affected by the federation updates. The example of these federation
updates is when Platform owner demands joining or leaving the federation.

• Message 4: The other IoT Platform owners are given the possibility to accept,
decline or just take notice of the previously performed changes within the
federation.

• Message 5: Depending on the nature of the operation, a SLA agreement is either
signed, when joining a federation, or removed, when leaving it.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 89 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 6: The Administration informs the Federation Manager, which is located
within the IoT platforms belonging to the affected federations, about the update.

• Message 7: The Federation Manager updates the federation data as needed.

• Message 8: The Federation Manager informs the Authentication & Authorization
Manager about the federation updates with the request to update the affected
token issuing policies.

• Message 9: The Authentication & Authorization Manager updates the policies as
needed.

• Message 10: The Authentication & Authorization Manager confirms the update of
the pertained token issuing policies.

• Message 11: The Federation Manager informs the Monitoring component about
resource rules to monitor. These rules will be based on the SLA agreement.

• Message 12: The Federation Manager informs the Bartering and Trading
component about the federation updates so that it can take actions according to it.

• Message 13: The Administration informs the Registry about the relevant updates
undergone by the federation.

5.6.2.2 Monitoring and SLA violation

Monitoring of the federation resources is necessary to be able to verify if SLAs are being
respected. Monitoring component in each federated platform sends the data to Core RM,
which forwards the data to SLA Manager to check for potential violations.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 90 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 21 Monitoring and SLA violation

Detailed description:

• Message1: The monitoring component obtains token(s) from the Core AAM.

• Message 2: The monitoring component sends metrics to the Core Resource
Monitor.

• Message 3: The Core Resource Monitor sends some of this metrics to the SLA
Manager for evaluation.

• Message 4: With this metrics, the SLA manager checks if it means a violation of
any signed SLA agreement of the source platform.

• Message 5: The SLA manager might need extra or aggregated data which will get
from the Core Resource Monitor.

• Message 6: In case of a violation, it will inform the Federation Manager of each
platform affected by the violation.

5.6.2.3 Add, update, and remove resources within federation

Each federated platform selects the resources it wants to expose in symbIoTe federation.
It has the ability to add selected resources to the federation, to update them or remove
from federation. Registration Handler performs all registration actions. The registered
resources (both home and foreign) are stored in Platform Registry. Subscription Manager
notifies all the other platforms within the federation of the changes.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 91 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 22 Add, update and remove resources in a federation

Detailed description:

• Message 1: Registration Handler wants to add/remove/update a resource to the
federation, resource information is sent to Platform Registry.

• Message 2: Resource information is forwarded to Subscription Manager.

• Message 3: Subscription Manager notifies subscribed federated platforms of the
new/removed/updated resource.

• Message 4: Subscription Managers of the platforms within federation forward the
notification to their own Platform Registries where resource information is
stored/deleted/updated.

5.6.2.4 Access to resources from a federated IoT platform

Native application finds the resource information shared within the federation in its own
Platform Registry. When it wants to access resources from federated platforms, it does
that through its Resource Access Proxy. Its home RAP then contacts the RAP of the
platform that stores resources, and acquires wanted data. Bartering and Trading Manager
is included in the process to be able to check the sharing or trading agreements between
platforms.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 92 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 23 Access to federated resources

Detailed description:

• Message 1 (optional): Application logs into the AAM of its platform, and obtains
home token(s). Optional if the application already has valid token(s).

• Message 2: Applications requests access to data from a federated IoT platform.

• Message 3 (optional): Application requests foreign token(s) from the federated IoT
platform. Optional, if the Application already has foreign token(s), as are the
messages 4-7.

• Message 4 (optional): challenge-response procedure between home RAP and
federated platform AAM.

• Message 5 (optional): AAM checks if the home platform has valid vouchers to
access its resources.

• Message 6 (optional): check revocation procedure between foreign AAM and home
AAM.

• Message 7 (optional): foreign AAM provides foreign token(s).

• Message 8: home RAP requests access to selected resources with foreign
token(s). Bartering & Trading Manager responds with a list of URLs from where
resources can be obtained.

• Message 9: home RAP accesses the selected resources through foreign RAP with
foreign token(s).

• Message 10: challenge-response procedure between foreign RAP and home RAP.

• Message 11: check revocation procedure between foreign RAP and foreign AAM.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 93 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 12: foreign RAP returns the data. Home platform can request the latest
measurement, historical measurements, create subscriptions or receive data in
streams.

5.6.2.5 Calculation of Trust

Trust Manager calculates the trust level for resources offered by each platform to define
platforms’ trust level and if its resources are trustworthy. The data for calculating trust is
obtained from Core Bartering and Trading component, Core Resource Monitor, and
Monitor at the CLD level.

Figure 24 Calculation of Trust

Detailed description:

• Message 1: The Trust Manager requests data from the Monitoring with regard to
the resources that the IoT platform offers within the federation.

• Message 2: The Trust Manager calculates the resource trust of the resources that
are offered by the IoT platform within the federation.

• Message 3: The Trust Manager shares with the Registration Handler the updated
resource trust level.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 94 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 4: The Trust Manager requests from the Core Resource Monitor historical
monitoring data concerning the resources offered by a specific IoT platform.

• Message 5: The Trust Manager requests from the Core Bartering and Trading
historical data concerning the transactions in which a specific IoT platform has
been involved.

• Message 6: The Trust Manager requests from the Federation Manager data related
to a specific IoT platform.

• Message 7: The Trust Manager requests data from the Monitoring regarding the
resources offered by a specific IoT platform within the federation.

• Message 8: The Trust Manager calculates the platform trust level for a specific IoT
platform.

5.7 Achieving Compliance Level-3 (CL3) and Level-4 (CL4)

As already stated in Section 3.3, CL3 assumes that platforms integrate symbIoTe
components within their SSPs to simplify the integration and dynamic reconfiguration of
IoT devices within local spaces. CL4 provides support for roaming devices registered with
a home platform that maintain their unique identifiers while moving through different SSPs.
Devices are dynamically reconfigured within an SSP, so that every new device is
reconfigured on the fly to become part of an SSP deployment within this local
environment.

An L3 compliant SDEV is able to move from one SSP to another seamlessly, i.e. it is
automatically reconfigured and re-annexed to a SSP. In particular, when visiting a
"foreign'' environment the SDEV will be able to use resources in the surrounding
infrastructure, and offer its own resources to others, provided that the required SLAs are in
place. In L3 mode, the SDEV is reconfigured as a new device each time it moves from
one SSP to another.

On the other hand, L4 compliance mandates that a SDEV connecting to a new SSP
maintains the association with its "home'' platform (a record of L4 device SSP "location"
and temporary URI is maintained in the Platform Registry in CLD), behaving as a roaming
(as opposed to nomadic) device. This also implies that the L4 SDEV is always identifiable
and traceable as it moves between SSPs.

In this section we identify the components and communication diagrams related to the
SSP and CL3/CL4. Since parts of CL3 and CL4 are still in specification phase, some
functionalities, especially relating to security, might be modified and will be reported in the
deliverables within WP4.

5.7.1 Component Diagram

Figure 25 shows the component diagram related to CL3 and CL4, where an application
interacts with devices inside or outside an SSP directly as well as with service/interface
exposed by the SSP9:

9 Only a subset of the services/interfaces are shown in this figure.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 95 of 132
 © Copyright 2017, the Members of the symbIoTe

• SSP Services/API is used by the application/enabler and/or the upper modules of
the symbIoTe architecture (CLD components) to interact with the S3 Middleware of
the SSP.

Figure 25 Component diagram for CL3 and CL4

5.7.2 Communications diagrams

The main identified functionalities for CL3 and CL4 are the following:

• App joins the SSP;

• SDEV (either L3 or L4) joins the SSP;

• Local platform joins the SSP;

• Access to SSP resources from within the SSP; and

• Access to SSP resources from outside the SSP.

5.7.2.1 Application joins SSP

The application (e.g., on a smart phone) joins an SSP to be able to access different IoT
devices already associated with it. Firstly, it recognizes symbiotic Wi-Fi SSID, and then
tries to access the Inkeeper to register. Afterwards, the application is able to access all
local resources through SSP RAP.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 96 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 26 Application joins SSP

Detailed description:

• Message 1: application recognizes the symbiotic Wi-Fi SSID and requests access
to the Innkeeper with limited connection.

• Message 2: acknowledgement for the first connection.

• Message 3: application contacts the Inkeeper to register with the SSP.

• Message 4 (optional): If the Application does not have token(s) to access SSP, it
logs in to the local AAM to acquire them.

• Message 5 (optional): local AAM issues the token(s).

• Message 6: Inkeeper sends back the confirmation to the application that it can
access the SSP.

• Message 7: Application associates to the SSP with possibility to access local
resources.

• Message 8: Confirmation.

• Message 9: application requests access to local resources through SSP RAP.

• Message 10: SSP RAP responds with requested data.

5.7.2.2 SDEV (L3 or L4) joins SSP

SDEV tries to access the SSP by registering to the Inkeeper. Optionally, if there is
connectivity to the Internet, it also registers to the Core. Note that in case of L4 roaming
devices, a notification to the Platform Registry is also needed since it stores records about
platform roaming resources. Afterwards, SDEV configures access to itself through SSP
RAP, RAP Gateway and RAP in CLD.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 97 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 27 SDEV joins SSP

Detailed description:

• Message 1: SDEV sends a request to the Innkeeper to join the SSP.

• Message 2: Inkeeper checks if SDEV has the rights to access SSP.

• Message 3 (optional): if SDEV needs to be accessed from outside the SSP, it has
to register to CLD and/or APP. If SDEV has sent its UID, then this is a SDEV with
roaming capability, and its new location needs to be registered (Message 3a). If
not, it is registered as a new device (Message 3b). Registration request goes
through Registration Handler to the Platform Registry which stores properties of
registered SDEVs.

• Message 4 (optional): Platform Registry responds with SDEV properties (message
4a), or confirms successful SDEV registration (message 4b)

• Message 5 (optional): Registration Handler informs RAP of the new location of
SDEV so that L1 and L2 Platforms or applications are able access it.

• Message 6 (optional): Registration Handler registers SDEV to the Core so that L1
applications are able to find it.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 98 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 7 (optional): Registration to APP and CLD is successful, SDEV properties
of already registered device (message 7a) or just confirmation (message 7b) is sent
to the Inkeeper.

• Message 8: Inkeeper confirms that SDEV has joined the SSP

• Message 9: SDEV registers its resources to SSP RAP

• Message 10: SSP RAP registers the same information to the Gateway RAP so that
applications from outside SSP can access this SDEV.

• Message 11: confirmation.

5.7.2.3 Local platform joins SSP

Local platform can join SSP through sym-Agent in a similar way as a Smart Device. Firstly,
it registers to the local Inkeeper. Optionally, it can register to the Registry in Core Services
so that it can be discovered by L1 applications. Note that this diagram only shows the
registration of the local platform. To register its resources, the platform’s sym-Agent needs
to follow the steps already defined for the case when SDEV joins the Smart Space, shown
in Figure 27.

Figure 28 Local platform joins SSP

Detailed description:

• Message 1: sym-Agent sends a request to the Inkeeper to join the SSP.

• Message 2: Inkeeper checks if sym-Agent has valid tokens.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 99 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 3 (optional): If the platform wants to be accessed from outside SSP, it
registers to Registry in symbIoTe Core. If platform is already registered, the
Inkeeper needs to provide platform properties (Message 3a). Otherwise, it registers
a new platform (Message 3b).

• Message 4 (optional): Registry responds with platform properties for the platform
which sent its UID (Message 4a), otherwise it sends a message about a successful
registration (Message 4b).

• Message 5: Confirmation to the sym-Agent.

5.7.2.4 Access to SSP resources from within the SSP

SSP resources can be accessed from within the SSP by and application, Smart Device, or
local platform. The access goes through SSP RAP component.

Figure 29 Access to SSP resources from within the SSP

Detailed description:

• Message 1: symbIoTe application or platform tries to access SSP resource through
SSP RAP with corresponding token(s).

• Message 2: Local AAM checks if the token(s) are valid.

• Message 3: result of the verification.

• Message 4: If the tokens are valid, and if sym-Agent has access rights for the
wanted resources, SSP RAP requests resource from a corresponding sym-Agent,
either sym-Agent for SDEV or sym-Agent for local IoT platform. Additionally, SSP
RAP sends information about the resource usage to Core RAM in APP.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 100 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 5: SSP RAP receives response from SDEV (Message 5a) and local IoT
platform (Message 5b).

• Message 6: SSP RAP responds with the wanted resources.

5.7.2.5 Access to SSP resources from outside the SSP

An application outside the SSP can access Smart Devices and local IoT platform
resources through Interworking Interface and RAP component in CLD. The request is
forwarded to RAP Gateway and SSP RAP in SSP.

Figure 30 Access to SSP resources from outside the SSP

Detailed description:

• Message 1: application contacts RAP in CLD with token(s).

• Message 2: RAP requests token validation from AAM.

• Message 3: If the validation is successful, RAP forwards the request to RAP
Gateway, which then forwards it to SSP RAP.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 101 of 132
 © Copyright 2017, the Members of the symbIoTe

• Message 4: SSP RAP requests resource from a corresponding sym-Agent (sym-
Agent for SDEV or sym-Agent for local IoT platform).

• Message 5: SSP RAP receives response from SDEV (Message 5a) and local IoT
platform (Message 5b).

• Message 6: response is forwarded through RAP Gateway to RAP in CLD

• Message 7: RAP sends information about the resource usage to Core RAM in
symbIoTe Core.

• Message 8: data is forwarded to the application.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 102 of 132
 © Copyright 2017, the Members of the symbIoTe

6 State of the Art Overview and Reference to symbIoTe

This section presents the reference architectures defined by standardization authorities as
well as projects and platforms with similar goals as symbIoTe. We put them into the
context of the symbIoTe architecture and provide mappings where applicable. IoT
platforms contributed by symbIoTe partners are also mentioned, with plans for their
integration within the future symbIoTe-enabled IoT ecosystem. Finally, we conclude the
section with a short summary of the symbIoTe positioning in the current IoT ecosystem.

6.1 Reference architectures

Defining the reference architecture for IoT has been the focus of various organizations
and projects. Hereafter we present a selected list or relevant initiatives (AIOTI, oneM2M,
Web of Things, OGC), specific reference models (Industrial Internet Reference
Architecture, Reference Architecture Model Industrie 4.0, ISO/IEC IoT Reference
Architecture), and projects (IoT-A) in order to put them in relation to the symbIoTe
architecture.

6.1.1 AIOTI

The Alliance for Internet of Things Innovation (AIOTI) consortium, initiated by the
European Commission, brings together stakeholders across the IoT universe. AIOTI has
developed a High Level Architecture (HLA) for IoT [1] that serves as the basis for
discussion within AIOTI. Due to its generic form, the architecture can be used as
reference architecture for IoT platforms. An overview of AIOTI HLA is given in Appendix in
the deliverable D1.2, while hereafter we concentrate on the mapping of the AIOTI layers to
the symbIoTe architecture.

Figure 31 depicts a mapping between the symbIoTe architecture and AIOTI HLA. The
Application Layer of AIOTI HLA corresponds to an Application or Enabler within the
symbIoTe architecture. The Application Layer consists of one or more Application Entities
that can be considered as a single Application/Enabler entity. Also, multiple instances of
the Application Entity can be built-in into a single symbIoTe Application/Enabler (e.g. an
application that uses an enabler is also an Application Entity). The IoT layer, as defined by
AIOTI, stretches through the symbIoTe Application Domain and Cloud Domain
components, containing all symbIoTe Core Services and symbIoTe-specific extensions of
a platform. The two components of the Smart Space domain (the Inkeeper and Local
Authentication and Authorization component), which assists in the Smart Space domain
management, can be considered as part of the IoT Entity functionality. All those
components mainly serve as support functions to provide IoT services (e.g., discovery of
appropriate data sources, collaboration with other platforms). The AIOTI Network Layer,
which spans through the Smart Space and Smart Device domain, is responsible for device
management, ensures the connectivity of smart devices and provides support for device
mobility and roaming.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 103 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 31 Mapping between the AIOTI HLA and symbIoTe architecture

Figure 32 depicts a mapping between the interfaces defined in AIOTI HLA and symbIoTe
functional components. Instead of providing the exact origin and end-point of
communication between components, we map only component end-points to AIOTI
interface. The number in bracket corresponds to the interface label used in the AIOTI HLA
description. An Application/Enabler listens for input from end-users or third parties, which
is marked as Commands(1) in Figure 32. Components that support various IoT services
(such as resource registration, resource search, resource monitoring, and security
component) implement interfaces corresponding to AIOTI IoT interfaces(2). In addition to
the IoT interfaces, a very important interface of the symbIoTe architecture is the Horizontal
services interface. The interface is used for cross-platform communication, i.e. direct
communication between platforms without third-party mediation. The horizontal services
interfaces are used in symbIoTe for bartering and trading of resources, or they serve for
telemetry communication in a device-roaming scenario. The Central Bartering and Trading
component can have also the interface to communicate with other external third-party
systems, such as banking in case of charging service. The Network control plain
interfaces are mostly present in the Smart Space Domain to take care of device

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 104 of 132
 © Copyright 2017, the Members of the symbIoTe

management and monitoring within local environments. The data plain interfaces are used
by an Application/Enabler to access resource-generated data: They can be located at the
CLD and/or SSP, depending on the implementation. The Resource Access Proxy except
the Data plain interface can have the Big Data interface, which can be used as data
provider to a Big Data processing system.

Figure 32 Mapping between the AIOTI HLA interfaces and symbIoTe architecture

6.1.2 oneM2M

oneM2M is a global standardization body for the machine-to-machine (M2M)
communications and IoT which has been established in 2012 following an initiative from
the European Telecommunications Standards Institute (ETSI). It is formed as an alliance
of standardization organizations with 200 member companies from across the world
working together “to develop a single horizontal platform for the exchange and sharing of
data among IoT devices and applications” [6]. oneM2M focuses on standardization of
platform interfaces and aims to provide an interworking framework across different

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 105 of 132
 © Copyright 2017, the Members of the symbIoTe

sectors. The telecommunications industry is clearly leading the oneM2M standardization
efforts, but the membership includes a broad range of industries. However, mechanisms
for interaction between different platforms are only vaguely addressed.

The first release of oneM2M specifications was published in January 2015, with updated
editions in March and August 2016. The released standards cover requirements,
architecture, application programming interface (API) specifications, security solutions and
mapping to common industry protocols such as CoAP, MQTT and HTTP. One of the
major oneM2M contributions in Release 1 is the definition of oneM2M functional
architecture which identifies the main components (called nodes in the oneM2M language)
within the field domain, which spans over various devices and gateways, and
infrastructure domain, which refers to cloud resources. oneM2M pays special attention to
the interworking of non-oneM2M devices with one-M2M compliant devices and identifies a
special component, an interworking proxy, which is responsible for the full semantic
interworking that includes the mappings of data models and protocols. Further details on
oneM2M functional architecture are provided in the Appendix in the deliverable D1.2.

The symbIoTe architecture is motivated by the oneM2M functional architecture, and thus it
is straightforward to map symbIoTe architectural domains to oneM2M nodes. Figure 33
depicts this mapping: Entities within the Infrastructure Node related to applications (IN-AE)
can be mapped to APP, while Common Service Entities (CSE) within the Infrastructure
Node map to the CLD. SSP relates to the oneM2M Middle Node, while Application
Service/Dedicated node clearly maps to SDEV.

Figure 33 Mapping of symbIoTe domains to oneM2M functional architecture

Hereafter we present the mapping of oneM2M Common Service Entities (CSE), which
define the features of oneM2M-compliant platforms, to symbIoTe components and their
envisioned functionalities.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 106 of 132
 © Copyright 2017, the Members of the symbIoTe

6.1.2.1 Compliance Level-1 (CL1)

In the case of CL1, a symbIoTe application is running outside the platform, while using
CSEs provided by the platform, as shown in Figure 34. CSEs provided by a platform may
include access to sensor data, activation of subscriptions, etc. within the oneM2M
Infrastructure Node that maps to symbIoTe CLD. However, to access platform CSEs,
external applications first use the symbIoTe Core Services which are not envisioned within
the oneM2M infrastructure domain. Those services would thus need to be specified at the
level of Infrastructure Node-Application Entity (IN-AE).

Figure 34 Mapping symbIoTe CL1 to oneM2M

However, oneM2M specifies some of the functionalities within a single platform which are
comparable to the functions envisioned within symbIoTe Core Services to work across
platforms. The major difference is in the scope, symbIoTe Core Services work across a
number of platforms, while oneM2M CSEs are defined for a single platform. Figure 35
shows the symbIoTe Core Services and their relation to oneM2M CSEs (listed in Appendix
in the deliverable D1.2). We have identified the following relationship between symbIoTe
components and CSEs: Registry – Data Management and Repository; Core Resource
Monitor (limited in functionality since it only monitors resources being offered by
symbIoTe, but cannot manage the actual IoT devices and associated services) – Device
Management; Search Engine – Discovery; Core Resource Access Monitor – Service
Charging and Accounting; Core Authentication and Authorization Manager – Security.

Figure 35 Mapping of symbIoTe Core Services to oneM2M CSEs

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 107 of 132
 © Copyright 2017, the Members of the symbIoTe

6.1.2.2 Compliance Level-2 (CL2)

In the case of CL2, existing (native) applications use CSEs within the platform space and
reuse resources of other platforms within a platform federation, as shown in Figure 36.
oneM2M already identifies an interaction between two platforms and names this interface
Mcc’, but no further details are currently provided regarding the functionality enabled
though this interface. symbIoTe CLD components which are required for CL2 are not yet
envisioned in oneM2M standards, and could thus be used to extend the existing CSEs of
oneM2M-compliant platforms, especially the ones related to bartering and trading.

Figure 36 Mapping symbIoTe CL2 to oneM2M

Figure 37 shows the symbIoTe CLD components and their mappings to oneM2M CSEs.
Those components would need to be integrated within existing CSEs of an oneM2M-
compliant platform and to extend their functionalities. They can be mapped to oneM2M
CSEs as shown in Figure 37: Registration Handler – Registration; Resource Access Proxy
– Communication management & delivery handling, and Subscription and notification;
Authentication and Authorization Manager – Security.

Some of the components in the CLD are also used to achieve symbIoTe CL1: For
example, Registration Handler, Resource Access Proxy and Monitoring need to be
implemented by L1 Platforms.

Figure 37 Mapping of symbIoTe CLD components to oneM2M CSEs

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 108 of 132
 © Copyright 2017, the Members of the symbIoTe

As it can be seen in Figure 36, CSEs of different platforms can communicate through the
Mcc' reference point. For instance, CSE Registration can communicate with Registration
of another platform using this reference point. However, the process of creating an IoT
Federation in symbIoTe terms, with reaching Service Level Agreement (SLA) and with
bartering and trading mechanism for shared resources, is currently not specified in the
oneM2M functional architecture, and thus symbIoTe components for Bartering and
Trading or Federation Manager cannot be mapped to oneM2M CSEs. This functionality
proposed by symbIoTe has potential to be proposed for standardization within the
oneM2M standardization process.

However, oneM2M-defined mechanisms can be used for data exchange between different
IoT platforms. Figure 38 shows a mechanism proposed in [28] where an application (IN-
AE smart city) from one platform (PF2) wants to receive data from a sensor (ADN-AE
sensor) connected to another platform (PF1). In order to do so, procedures of mutual
registration, resource announcement and subscription/notification are necessary.

Figure 38 Mutual registration and resource announcements [28]

To enable data exchange between different platforms, their IN-CSEs need to mutually
register, as shown in step 1. In this process, those CSEs express their interests in
resources from the other CSE. In step 2, MN-CSE registers to IN-CSE #1. By doing this,
all information from MN-CSE can be forwarded to applications registered to IN-CSE #1.
IN-AE (smart city) registers to IN-CSE #2 in step 3, thus enabling receiving information
available through this CSE. It also subscribes to IN-CSE #1 through IN-CSE #2 to receive
all the notifications from this node.

When a new sensor (AND-AE) is attached to MN-CSE, it sends a registration message.
This information is then announced to the nodes to which MN-CSE is registered, to IN-
CSE #1, and then to IN-CSE #2 since those two INs are mutually registered.
Announcement process creates a resource at a remote CSE linked to the original
resource. Since IN-AE smart city application is interested in sensor readings in IN-CSE #2,
it subscribes to AND-AE resource. When AND-AE performs a sensor reading, the

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 109 of 132
 © Copyright 2017, the Members of the symbIoTe

measurement is announced to MN-CSE. Afterwards, notifications are triggered to all
subscribed entities (IN-CSE #1, IN-CSE #2, IN-AE smart city).

This mechanism served as the starting point for designing the process of sharing resource
metadata between federated IoT platforms for symbIoTe CL2. Only resource metadata is
shared through symbIoTe components, while access to resource data is done through
other mechanisms.

6.1.2.3 Compliance Level-3 and Level-4 (CL3 and CL4)

In the case of CL3, symbIoTe Smart Spaces are considered, physical environments where
one or more IoT platforms provide services. Through Smart Spaces, registered devices,
referred to as symbIoTe Smart Devices, can communicate with other devices within the
Smart Space, regardless of the local IoT platforms to which those devices belong to. Local
IoT platforms can become L3 Compliant by implementing a symbIoTe Agent which
connects them to SSP. Each device can become a Smart Device by running symbIoTe
application enabling configuration with the Smart Space. L4 Platforms enable one
additional functionality, IoT device roaming. In such a case, one Smart Device can change
Smart Spaces, while those Smart Spaces are aware that this is one particular device. The
components for enabling CL3 and CL4 are the same, the only difference is additional
functionality of L4 Platforms. Figure 39 shows the nodes in oneM2M architecture involved
when talking about Smart Spaces and CL3.

Figure 39 Mapping CL3 and CL4 to oneM2M

Smart Devices can be mapped to Application Service Nodes (ASNs) in the Field Domain.
They contain services for registering to Smart Spaces, and functionalities enabling
symbIoTe applications to access them, which should in oneM2M be situated in CSEs.
Furthermore, ASNs within their Application Entities also need to be able to execute
applications, the same way as Smart Devices (e.g. application running on a smart phone
or an application performing sensor measurements on a sensor node).

Functionalities of the L3/L4 components are similar to L1 and L2 components, and can be
mapped to CSFs (Registry, Resource Access Proxy, ...). However, CL3/CL4 enables
interaction between devices on a lower level, when their platforms do not have a cloud. As
a result, CL3 actually cannot be linked with oneM2M architecture approach. In oneM2M,
connection between two IoT platforms should be through the Infrastructure node in CLD,

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 110 of 132
 © Copyright 2017, the Members of the symbIoTe

while symbIoTe also enables interaction on a lower level. This possibility takes advantage
of the fog computing paradigm, which will be presented and compared when mentioning
OpenFog Consortium approach in Section 6.1.9. While taking this notion into
consideration, functionalities for devices within a physical place, referred to as Smart
Space in symbIoTe approach, can be executed at a gateway (fog, or edge) level. Taking
the data into the cloud is not necessary for some cases, e.g. for smart home applications
where all the data that needs to be processed is within a certain physical place, and can
be handled within it.

6.1.3 IoT-A

Authors of IoT-A noticed a trend in the IoT world that steered towards each IoT system
manufacturer to produce its own, isolated IoT platform architecture. As a result, numerous
IoT systems currently available on market cannot communicate with each other. IoT-A
refers to this situation as an Intranet of Things, rather than Internet of Things, and has
tried to come up with a solution that would facilitate creating applications which use
multiple, heterogeneous platforms. As a result, they have created a set of guidelines, best
practices and, most of all, the reference architecture, to help IoT system developers make
their platforms interoperable [8]. As symbIoTe’s main goal is to transform existing (and
future) IoT platforms to become interoperable, the experience gained by the IoT-A team is
valuable for the symbIoTe development process.

IoT-A, in its definition, compares the IoT world to a tree. Roots are various hardware
devices, providing different functionalities and data using numerous transmission
protocols, whereas leaves are concrete application use-cases, e.g. Smart City, Retail,
Logistics. IoT-A places itself in a role of a trunk, thus providing architecture needed to
connect roots (devices) with leaves (software applications).

Figure 40 The IoT-A tree [8]

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 111 of 132
 © Copyright 2017, the Members of the symbIoTe

To accomplish this task, IoT-A provides a Reference Architecture. As said before, the
architecture provides a link between applications and devices using different Functional
Components (FC), assembled together to form Functional Groups (FG).

Figure 41 IOT-A reference architecture [8]

The main responsibilities of the Functional Groups, and their symbIoTe counterparts, are
as follows [8]:

• The IoT Process Management FG is responsible for transforming traditional
business processes into the IoT world. It provides the tools needed to model and
execute complex business scenarios. Enablers in symbIoTe architecture provide
this type of functionality, gathering data from multiple IoT platforms and offering
them to applications.

• The Service Organization FG contains all the necessary functionalities for dealing
with numerous services that construct IoT platforms. symbIoTe module with similar
functionalities is the Search Engine, which glues together all the data concerning
different platforms, their services, metadata etc.

• The Virtual Entity (VE) FG deals with discovering services that allow interacting and
provide information about IoT platforms. It is also responsible for finding and
managing VE associations. Cloud Domain modules deal with these responsibilities.
However, besides working with a single platform, it also allows different platforms to
communicate with each other.

• The IoT Service FG is responsible for handling low, device-level IoT services.
Responsibilities of this FG are handled by Resource Access Proxy, which provide a
uniform abstraction for interacting with different, heterogeneous IoT platforms.

• The Communication FG acts as a backbone, providing communication all the way
from user applications, via IoT platform infrastructure, up to low-level devices. It
provides uniform method of communication regardless of physical communication
type. It is obvious that this FG links the majority of other components, but main
modules handling its responsibilities in symbIoTe are Smart Space and Device
Domains.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 112 of 132
 © Copyright 2017, the Members of the symbIoTe

• The Security FG provides mechanisms, that allow to perform secure and trusted
interaction between system modules. All these mechanisms are provided by
symbIoTe Authentication and Authorisation Manager (AAM) and Security Handler
(SH).

• The Management FG takes care of managing the whole system, i.e. configuration,
member management and monitoring. Most of these functionalities are handled by
symbIoTe Core components: Registry keeps track of all member (users, platforms,
resources) information and Resource Monitor checks current system statuses.

Mapping of symbIoTe modules to IoT-A Functional Groups is depicted in Figure 42.

Figure 42 Mapping of symbIoTe to IoT-A reference architecture functional groups

6.1.4 Web of Things

Web of Things (WoT) intends to allow “things” to be part of the Web, enabling them to
communicate with each other and become accessible through standard Web
technologies. This is accomplished by reusing and extending the software architectures
and well-known Web standards, while taking into account thing-to-thing interaction
patterns, which are quite different from the ones we have today on the Web [9]. W3C has
launched the Web of Things Interest group at the start of 2015 which has focused on
gathering information on existing WoT-related solutions, and is now proposing to launch a
Web of Things Working Group to standardize those aspects that the Interest Group
believes are mature enough to progress to W3C Recommendations [10].

The WoT approach is based upon the fundamentals of Web architecture [10]:

• URIs for identifying Things and their descriptions;

• A variety of protocols for accessing Things, since no one protocol will be
appropriate in all contexts;

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 113 of 132
 © Copyright 2017, the Members of the symbIoTe

• Metadata for describing Things as a basis for interoperability and discovery, and
playing an analogous role to HTML for Web pages.

The listed principles also apply to the symbIoTe architecture, since the corresponding
requirements have been identified in Section 4. However, in contrast to the WoT
approach, which extends things so that they become interoperable, where thing-to-thing
interaction is vital for dynamic and context-aware environments, symbIoTe assumes that
things are managed by and shielded from third party applications and other platforms by
platform-specific software components.

The WoT approach focuses on two abstraction layers within the communication stack
[10]:

• Application layer: Programs that either implement a thing's behavior, or which
interact with a thing, e.g. exposing or utilizing APIs for control of sensors and
actuators, and access to associated metadata.

• Thing layer: Software objects that expose the compound state of devices or digital
services; data and interaction model, metadata, semantic annotation, Thing
Description.

Transfer-specific and networking functions are assumed to be in the focus of platform
developers. symbIoTe takes here quite a different position, since our assumption is that
platforms also focus on the “Thing layer”, and thus their existing components and APIs
cannot be neglected. Thus symbIoTe integrates platforms as a whole, and not things as
single entities, into an interoperable IoT ecosystem. Another important distinction is
related to the interoperability focus of WoT. WoT clearly deals with syntactic and semantic
interoperability, while issues related to organizational interoperability, which is of vital
importance to symbIoTe, are currently out of scope.

Note that WoT has so far focused on integrating sensors.

6.1.5 OGC Sensor Web Enablement

The Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) activities focus
on enabling WoT functionality by connecting all types of Web/Internet accessible sensors,
instruments, and other real world objects. The vision is to foster interoperability within
different sensor networks and platforms, as well as to define and approve the standards
for plug-and-play web-based networks. The goal can be achieved by SWE’s offer of
integration of several different standards. These SWE standards are already integrated
and implemented in several projects in the domain of Sensor Web, such as SANY and
OSIRIS, and in the global monitoring system (GEOSS), to name a few. These applications
have contributed to the improvement of the existing standards’ specifications. For
symbIoTe, the following OGC standards10 are relevant, since they define services, models
and interfaces that are also in focus of symbIoTe:

• SWE Common Data Model Encoding – Specifies a low-level data model and
encoding in order to define and package sensor related data in a self-describing
and semantically enabled way.

10 The full list can be found on http://www.opengeospatial.org/standards/

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 114 of 132
 © Copyright 2017, the Members of the symbIoTe

• Sensor Model Language (SensorML) – Defines a data model and encoding to
describe processes and processing components associated with the measurement
and post-measurement transformation of sensor observations.

• Observations and Measurements (O&M) – Definition of a data model and
schema for encoding measurements and observations.

• Sensor Observation Service (SOS) –Service model and interface encoding to
provision sensor measurements and observations, from simple sensors to complex
sensor systems, both physical and virtual.

• Sensor Planning Service (SPS) – Defines a service model and interface encoding
for the execution of sensor tasking and parameterization requests. It is used to
manage sensors and sensor networks and to influence the measurement process
according to specific needs and requirements.

• Sensor Alert Service (SAS) – Defines an interface to connect to a sensor with a
publish/subscribe model to be notified about alerts from the sensor.

• Sensor Event Interface (SES) – Defines an interface to be informed about sensor
events (like the availability of new observations) in a publish/subscribe model.

• Web Notification Service (WNS) – This service offers to inform clients about
notifications (alerts or events) from a sensor or from other elements within a
processing chain.

These OGC SWE standards can be used to remove the entry barrier for anyone who
wants to develop a WoT system, i.e., connect different devices and real world objects for
interoperability and accessibility purposes. On the other hand, the OGC SWE services rely
on fairly complex and “heavy” protocols. This implies an enormous challenge to implement
these protocols on current IoT hardware with existing energy and memory constraints.
Therefore, the OGC SWE standards may be more relevant in the context of stationary
sensors or gateway servers which provide a link to underlying sensor networks, while
symbIoTe requirements specify support for mobile IoT devices and actuators which are
not in the focus of OGC SWE standards.

6.1.6 Industrial Internet Reference Architecture

The objective of the Industrial Internet Reference Architecture (IIRA) is to “create broad
industry consensus to drive product interoperability and simplify development of Industrial
Internet systems that are better built and integrated with shorter time to market, and at the
end better fulfil their intended uses” [11]. The driving force behind IIRA is the Industrial
Internet Consortium (IIC), which is an open membership organization and was founded as
a program by the Object Management Group®. It is an international organization with
members around the world including many major players in the industrial automation
domain.

The IIRA is based on the ISO/IEC/IEEE 42010:2011 standard for systems and software
engineering architecture description. Following the conventions of this standard, the IIRA
is using viewpoints to model the involved stakeholders and their concerns. When
comparing the symbIoTe approach to IIRA, the most relevant viewpoint is the functional
viewpoint. A driving idea behind the functional viewpoint is the observation of the
unification of two different domains, the Information Technology (IT) and the Operations
Technology (OT).

In general, Operations Technology (OT) has traditionally been controlled by closed
systems, based on SCADA (Supervisory Control And Data Acquisition) systems and is

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 115 of 132
 © Copyright 2017, the Members of the symbIoTe

now experiencing a transformation towards systems based on the Internet Protocol (IP),
with important changes happening in the visibility of such systems, their intelligence and
interoperability. Thus, IIRA aims to define all viewpoints and considerations that have to
be taken into account in this transformation of industrial systems towards IoT.

A mapping between the symbIoTe architecture and three-tier IIRA Implementation
viewpoint general architecture and definition of functional domains is rather
straightforward:

• symbIoTe Application Domain corresponds to IIRA Enterprise Tier (in both
Business and Application Domains).

• symbIoTe Cloud Domain corresponds to IIRA Platform Tier (where platforms
include Information Domain and Operations Domain).

• symbIoTe Smart Space and symbIoTe Smart Device Domain both correspond to
IIRA Edge Tier as both gateways and endpoints belong to IIRA Edge Tier, with
distinction that device-to-gateway communication belongs to Proximity Network
while gateway-to-platform communication is function of Access Network. In IIRA the
Edge Tier has a single functional domain – Control Domain.

Figure 43 Comparison between symbIoTe and IIRA achitecture

Further details on IIRA are given in the Appendix of the deliverable D1.2.

6.1.7 Reference Architecture Model Industrie 4.0

The Reference Architecture Model Industrie 4.0 (RAMI4.0) [13] is an outcome of the
cooperation between the VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik
(GMA) and the Zentralverband Elektrotechnik- und Elektronikindustrie e.V (ZVEI). These
two organizations are representing members from the German automation industry and
the information and communication technology domain. Joint working groups from these
organizations are developing the RAMI4.0.

According to the authors of RAMI4.0, the global IoT trend in Germany is driven by the so-
called Industrie 4.0. The driving vision behind Industrie 4.0 is that real-time availability of
all relevant information within the complete value chain, throughout all business layers and
on all aggregation levels, will trigger a new industrial revolution. RAMI4.0 is supposed to

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 116 of 132
 © Copyright 2017, the Members of the symbIoTe

enable this vision by providing a unified approach to describe the complete automation
landscape and to select appropriate standards or, when necessary, to provide
requirements for additional standards. It is planned to be a German Norm, DIN SPEC
91345, which is currently being developed.

Like IIRA, RAMI4.0 also introduces a layered architecture concept to separate
interoperability aspects. Starting from the lowest Asset Level and Integration Level which
are dedicated to the integrability of system components, followed by the Communication
and Information Level dedicated to the semantic interoperability, finally the Functional and
Business Level is defined to support the composability of application units (see Figure 1 in
[13]).

One important feature of RAMI4.0 is the integration of the office floor and the shop floor.
In the past, these two layers have been mostly separated by different communication
infrastructures as well as different types of information models. However, the interactions
between both areas are becoming more and more important, and require more general
information concepts. Because of that development, RAMI4.0 introduces a so-called
Industrie 4.0 Component (I4.0) to encapsulate the individual building blocks of an
automation application. These I4.0 components are based on a common semantic model
between shop floor and office floor, and can be considered as a key feature of the
RAMI4.0 approach. This common information model plays a primary role for the reference
model. This concept is even introduced as a reference architecture model for semantic
technologies.

Just as in the Internet of Things domain everything is considered to be a Thing, RAMI4.0
considers every automation component to be a Thing. In order to create a common
information model, every automation component (Thing) becomes an I4.0 component by
being surrounded with an Administration Shell (see Figure 8 in [13]). This shell contains
the virtual representation and the technical functionality of the component. By wrapping all
components into an Administration Shell, a common information and communication
model is established, which is the backbone of the RAMI4.0 semantic interoperability
concept.

When comparing RAMI4.0 to other reference and functional architectures, a Thing
surrounded with an Administration Shell has conceptual similarities to a WoT thing, or
oneM2M Application Node. In contrast to RAMI4.0, symbIoTe does not focus on the
automation industry, nor it considers individual interoperable things as building blocks of
the future interoperable IoT ecosystem, but rather integrates the services offered by IoT
platforms and their device management tools through open APIs providing authenticated
and authorized access to those IoT-based services.

6.1.8 ISO/IEC Internet of Things Reference Architecture

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) are worldwide standardization organizations
responsible for many international standards used in a broad field of application areas.
The concept of the Internet of Things has been studied for many years and has constantly
gained momentum. In the past these developments have been done without any
dedicated IoT standards. Now the ISO/IEC has decided that it is time for a guiding
standard in order to achieve interoperability between different types of IoT systems. In
2014, the Working Group Sensor Networks (WG7) and Working Group Internet of Things
(WG10) from ISO/IEC Joint Technical Committee 1 published a Working Draft on the topic

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 117 of 132
 © Copyright 2017, the Members of the symbIoTe

of IoT standardization called Internet of Things Reference Architecture (IoT RA) [14] which
is currently still under development. The document is distributed only for review and
comments and may not be referred to as an international standard. The IoT RA shall
serve the following goals:

• describe the characteristics and aspect of IoT systems;

• define the IoT domains;

• describe the reference model of IoT systems; and

• describe interoperability of IoT entities.
In this early state, only a few design concepts are defined. One is the introduction of a
common vocabulary service to be used by all layers. Context-awareness, discoverability
and plug-and-play capability are considered major characteristics of an IoT system. This
requires a common model for the IoT entities to provide a shared conceptualization for the
architecture elements.

As the document is in an early stage, the focus is on the definition of terms and general
concept, while interoperability and technical details are not yet well covered. Thus at this
point is it still not possible to relate the symbIoTe to the emerging ISO/IEC RA.

6.1.9 OpenFog

OpenFog11 is a consortium with the aim of standardizing and promote fog computing. The
consortium was founded by Cisco Systems, Intel, Microsoft, Princeton University, Dell and
ARM Holdings in 2015. Fog computing is an architecture that pushes the intelligence of a
system (computing, storage, control and networking functions) down to the local area
network, processing data in a fog node or IoT gateway.

Figure 44 Fog Computing

In simple terms, it is an extension of the cloud to the edge, simplifying IoT applications by
removing the need to be consistently connected to the cloud and allows for the
deliverance of low latency computations. Using self-driving cars as an example, in a
traditional cloud computing model, all readings would be sent to the cloud. There, they
would be analysed by algorithms to detect any problem that would need some form of
actuation (e.g. detecting something on the road and making the car go around it) and it
would send the corresponding actions to be taken back to the car.

11 https://www.openfogconsortium.org

https://www.openfogconsortium.org/

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 118 of 132
 © Copyright 2017, the Members of the symbIoTe

But one has to question the need to send everything to be processed to the cloud. The
bandwidth needed to push sensor readings at scale can be too large, as can be the time
to send and receive messages. This is even more important in the context of critical
systems that need to take immediate actions upon detecting some problem.

Fog computing does not intend to replace the cloud, but rather to mutually benefit each
other. Decisions and tasks such as data analysis can be taken to the fog nodes while
other tasks such predictive analytics on historical data can be done at the cloud.

The OpenFog consortium released the OpenFog Reference Architecture12, a universal
technical framework designed to enable data-intensive requirements of the IoT, 5G and
artificial intelligence applications. It is not a standards documents, with Must, Should and
MAY requirements, but rather a high level guide for the industry to use architecturally.
Basically, it is a series of recommendations for a successful fog computing
implementation.

Figure 45 Fog Computing overview

Similar to symbIoTe, they have opted for an open approach, with the intention of avoiding
vendor lock-in, lower system costs and accelerate market adoption.

The reference architecture is based on eight pillars defined by the consortium:

• Security: trust, attestation, privacy;

• Scalability: localized command, control and processing, orchestration and
analytics, avoidance of network taxes;

• Openness: resource visibility & control, white box decision making, interoperability
and data normalization;

• Autonomy: flexibility, cognition and agility, value of data;

• Reliability, availability and serviceability;

12 https://www.openfogconsortium.org/ra/

https://www.openfogconsortium.org/ra/

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 119 of 132
 © Copyright 2017, the Members of the symbIoTe

• Agility: tactical and strategic decision making, data to wisdom;

• Hierarchy: fully cloud enabled computational and system autonomy at all levels;
and

• Programmability: Programmable software/hardware, virtualization and multi-
tenant, application fluidity.

While symbIoTe’s APP and CLD architecture is cloud-centric, the concept of Smart
Spaces is closer to what fog computing and OpenFog envision for the IoT world. Smart
Spaces provide local functionality for devices and platforms such as dynamic
reconfiguration of devices and support for roaming devices, as well as allowing platforms
and devices to function without cloud connectivity.

6.2 Related projects and platforms

This section presents a short overview on platforms and projects which are relevant to
symbIoTe goals and architecture. Following projects have been analysed: Fiware,
Compose, Crystal, iCore and IoT-EPI projects.

6.2.1 FIWARE

FIWARE is a set of open-source components directed at Future Internet that can be used
in any system that you might want to build. It can be applied in a variety of areas, such as
smart cities or environment sustainability. Due to its modularity, it is very simple to use,
only needing to make use of the components that you are interested in. The components
that FIWARE provides can be accessed via REST APIs, facilitating the process of
developing IoT applications. It provides replicability capabilities, allowing, for example, for
a solution developed for one city to be deployed in another city easily.

Hereafter we list a set of FIWARE components that are the most relevant to the symbIoTe
architecture:

• Orion Context Broker13 provides NGSI914 and NGSI1015 interfaces that allow:

o The registration of resources (e.g. temperature sensor);

o For updates regarding the resources to be sent (e.g. temperature changes);

o For notifications to be sent with a given frequency or when a change
happens (e.g. temperature changes);

o Querying the context broker to obtain up-to-date information provided by the
sensors.

Orion can be relevant to symbIoTe by enabling the registration of resources to
symbIoTe and for symbIoTe to provide a way for application developers to obtain
data from sensors.

13 http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
14 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
15 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification

http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 120 of 132
 © Copyright 2017, the Members of the symbIoTe

• KeyRock16 provides identity management functionality. It provides common
functionalities needed to handle users’ access to networks, services and
applications such as secure and private authentication, authorization and trust
managemet, user profile management and Single Sign-On. It is relevant for
symbIoTe as a tool used to handle users’ life-cycle functions. In symbIoTe, this
functionality is to be implemented in Authentication & Authorization Manager (AAM)
and Security Handler (SH).

• IDAS17 is a backend device management. It translates protocols specific to the IoT
into NGSI context information protocol, ready to be consumed by Orion. This allows
devices to be represented in a FIWARE platform. The component can be relevant
to symbIoTe as it has functionalities similar to Registration Handler (RH), and
Resource Access Proxy (RAP). Additionally, since it enables registration of devices,
it could also be relevant in Smart Space and Smart Device Domain (SSP, SSDEV).

Several of these enablers can be deployed using already built images. FIWARE also
provides an enhanced OpenStack-based cloud environment. The usage of these popular
projects can be relevant to the deployment and maintenance of the symbIoTe ecosystem.

6.2.2 COMPOSE

COMPOSE (Collaborative Open Market to Place Objects at your Service) is an open-
source ecosystem aiming at transforming the Internet of Things into an Internet of
Services [20]. The main vision of the project is to integrate the IoT with the IoS (Internet of
Services) through an open marketplace, in which data from Internet-connected objects
can be easily published, shared, and integrated into services and applications. The
marketplace provides all the necessary technological enablers, organized into a coherent
and robust framework covering both delivery and management aspects of objects,
services, and their integration. The platform offers connectivity to IoT devices
accompanied by advanced data management capabilities, including real-time data
processing capabilities. The project develops novel approaches for virtualizing smart
objects into services and for managing their interactions. This includes solutions for
managing knowledge derivation, secure and privacy preserving data aggregation and
distribution, dynamic service composition, advertising, discovering, provisioning, and
monitoring. To validate different aspects of the platform COMPOSE addresses the
following application areas: smart shopping spaces, smart city and smart territory.

16 http://catalogue.fiware.org/enablers/identity-management-keyrock
17 http://catalogue.fiware.org/enablers/backend-device-management-idas

http://catalogue.fiware.org/enablers/identity-management-keyrock
http://catalogue.fiware.org/enablers/backend-device-management-idas

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 121 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 46 COMPOSE high level architecture [15]

The architecture of COMPOSE system is shown in Figure 46. When mapping it to
symbIoTe architecture, it is obvious that COMPOSE Platform is actually similarly designed
as symbIoTe Core Services. The upper level comprises external applications, while the
layer below comprises things/devices available from different sources. Web objects,
physical external resources, open data from Figure 46 can be mapped to IoT services
offered by L1 IoT platforms.

Service objects are an internal representation of physical external resources or web
objects. Registry component has the similar functionality as the component with the same
name from symbIoTe – it holds semantic metadata for service objects hosted by the
platform, and enables discovery of those objects by external applications. Apart from that,
COMPOSE hosts the composition services engine to help external developers combine
the base service objects and applications into workflows and external applications.

6.2.3 CRYSTAL

CRYSTAL (CRitical sYSTem engineering AcceLeration) aims at establishing and pushing
forward an Interoperability Specification (IOS) and a Reference Technology Platform
(RTP) as a European standard for safety-critical systems [21]. The goal of the project is to
reduce complexity of the integration process, i.e. to enable interlinking and sharing data
between different systems based on standardized and open Web technologies. Such
solution should enable interoperability among various life cycle domains.

The main idea of the so-called Interoperability Specifications (IOS) is to rely on common
interoperability services, providing a common ground for integrating lifecycle and
engineering tools across different engineering disciplines and from multiple stakeholders
involved in the development of large scale safety-critical systems (i.e. the projects focuses
on four domains: the automotive, aerospace, rail and health sector). The common
denominator of the IOS is based on a lightweight and domain-agnostic approach,
providing basic capabilities for handling the whole lifecycle of engineering artefacts
manipulated throughout the development of safety-critical embedded systems.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 122 of 132
 © Copyright 2017, the Members of the symbIoTe

Even though Crystal is not focusing on IoT platforms but rather on engineering processes
and allows data sharing between them, it is related to symbIoTe goals as it ensures a data
repository that allows different system to access the data, providing also the necessary
semantics for each system to use the data. The results from this project are related to
symbIoTe component Registry which stores data from different sources and enables a
unified access to this stored data from external applications. However, symbIoTe covers
an enlarged scope in terms of interoperability aspects than Crystal.

6.2.4 iCore

The iCore initiative addresses two key issues in the context of the Internet of Things (IoT),
namely how to abstract the technological heterogeneity that derives from the vast amounts
of heterogeneous objects, while enhancing reliability and how to consider the views of
different users/stakeholders (owners of objects and communication means) for ensuring
proper application provision, business integrity and, therefore, maximize exploitation
opportunities [22]. To validate the proposed solutions, iCore addresses the following use
cases: ambient assisted living, smart office, smart transportation, and supply chain
management.

The iCore architecture comprises three levels of functionality: virtual objects (VOs),
composite virtual objects (CVOs) and functional blocks for representing the
user/stakeholder perspectives, as shown in Figure 47. VOs are representations of real
world objects that can be aggregated and merged in order to create new Virtual
Composite Objects (VCOs) that extend and generalize real world objects’ functionalities
and features. They are semantically described by using RDF triplets. On top of VOs and
VCOs, service enabling functions offer services to applications via API such as data
analysis ets.

Figure 47 iCore architecture [16]

Architecture of iCore is similar to symbIoTe core architecture, except that symbIoTe core
does not store the data provided by real-world objects, it is only a mediator between
applications and data provided by physical objects that is stored on IoT platforms.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 123 of 132
 © Copyright 2017, the Members of the symbIoTe

6.2.5 Positioning of symbIoTe with regard to other IoT-EPI Projects

SymbIoTe project is a part of the IoT-European Platforms Initiative (IoT-EPI) formed to
build a vibrant and sustainable IoT-ecosystem in Europe and aiming to maximize
opportunities for platform development, interoperability and information sharing. Other
projects which are a part of IoT-EPI are AGILE, BIG-IoT, bIoTope, VICINITY, Inter-IoT and
TagItSmart18.

In terms of the holistic and cross-domain approach which covers both devices, gateways,
cloud services and applications, symbIoTe has most similarities with Inter-IoT which also
considers interoperability at various levels of the IoT stack. A major difference between
symbIoTe and Inter-IoT is in the approach towards the information model. While Inter-IoT
enables platform interoperability by mapping different platform information models,
symbIoTe approach enables each platform to register extensions of the Core Information
Model so that platforms can register the aspects of their resources they regard important.
In such a way, platforms that do not use a standardized information models, that can be
mapped to other well-known models, can join the symbIoTe interoperability framework
with less effort, without the need to define mappings. We see this as a more flexible
approach that facilitates different SMEs, who are symbIoTe’s primary target group, to
interoperate with other IoT platforms. Additionaly, since symbIoTe offers flexible
interoperability mechanisms enabled by an incremental deployment of symbIoTe
functionality, IoT platforms can choose the layer on which they want to enable
interoperability. For instance, if platforms do not have a Cloud layer, they can integrate
symbIoTe SSP components without the need to use the Cloud if this is not in their interest.

When looking at the symbIoTe Core Services developed for the Application Domain, they
are relevant and comparable to the BIG-IoT architecture which develops an IoT
Marketplace with a significantly broader scope than the symbIoTe Core Services. The
envisioned symbIoTe Smart Space middleware can be put into relation to the AGILE
gateway which supports various devices and communication protocols. An analysis of
potential IoT-EPI project synergies shows that potential points for collaboration and
common agreement are open APIs being defined at the platform level (symbIoTe
Interworking API) and gateway level (symbIoTe Smart Space API).

6.3 IoT Platforms contributed by symbIoTe partners

Several platforms belonging to symbIoTe partners will be included in the symbIoTe
ecosystem. In this section, their most important features are mentioned, as well as plans
for their integration.

6.3.1 OpenIoT

The OpenIoT platform is an open source IoT platform enabling the semantic
interoperability of IoT services in the cloud. At the heart of OpenIoT lies the W3C
Semantic Sensor Networks (SSN) ontology, which provides a common, standards–based
model for representing physical and virtual sensors. OpenIoT also includes sensor
middleware that eases the collection of data from virtually any sensor, while at the same
time ensuring their proper semantic annotation. It offers visual tools that enable the
development and deployment of IoT applications with almost zero programming. Another

18 For short project descriptions visit http://iot-epi.eu/.

http://iot-epi.eu/

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 124 of 132
 © Copyright 2017, the Members of the symbIoTe

key feature of OpenIoT is its ability to handle mobile sensors, thereby enabling the
emerging wave of mobile crowd sensing applications. The platform is currently available
as an open source project (https://github.com/OpenIotOrg/openiot/) and supported by an
active community of IoT researchers, while being extensively used for the development of
IoT applications in areas where semantic interoperability is a major concern. As of June
2014, it consists of nearly 400.000 lines of code. In February 2015 there we 25 active
registered contributors to the OpenIoT source code and 66 users registered in developers
mailing list. OpenIoT received an award from Black Duck19, as being one of the top ten
open source project that emerged in 2013.

Within symbIoTe project, specific wrappers for the OpenIoT platform will be implemented
to enable symbIoTe CL1. Additionally, OpenIoT will be integrated within the symbIoTe IoT
federation, enabling CL2.

6.3.2 Symphony

Symphony is the Nextworks platform for the integration of home/building control
functionalities, devices and heterogeneous subsystems. Symphony can monitor,
supervise and control many different building systems, devices, controllers and networks
available from third-party suppliers. By intelligently correlating cross-system information, a
flexible and highly efficient platform is delivered to the stakeholders. The system is a
service-oriented middleware integrating several functional subsystems into a unified IP-
based platform. As hardware/software compound, Symphony encompasses media
archival and distribution, voice/video communications, home/building automation and
management, and energy management.

6.3.2.1 Architecture

The concept schematic of the Symphony suite is depicted in the following two pictures.
Being a commercial product whose IPR belongs to Nextworks, internal details of the
platform cannot be disclosed.

Figure 48 Symphony platform concept

19 https://www.blackducksoftware.com/about/news-events/releases/black-duck-announces-open-source-rookies-of-year-

winners

https://www.blackducksoftware.com/about/news-events/releases/black-duck-announces-open-source-rookies-of-year-winners
https://www.blackducksoftware.com/about/news-events/releases/black-duck-announces-open-source-rookies-of-year-winners

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 125 of 132
 © Copyright 2017, the Members of the symbIoTe

Nextworks is currently evolving the Symphony platform to further pursue functional
decomposition and allow service modules to be distributed out of the stand-alone system
over a wide area (i.e. local cloud, public cloud), in a truly flexible IoT paradigm. The next
planned step for Symphony is to include energy management options and become highly
distributed on a variety of hosting systems (e.g. domestic NAS or micro servers hosted at
home or at providers’ curbs or in the cloud) and highly flexible to incorporate more and
more technology drivers for sensor/actuators.

Within symbIoTe, Symphony will aim to achieve CL3, thus enabling creation of dynamic
smart spaces. The symbIoTe architecture and its smart residential collaboration
application scenario are key enablers of this strategy, allowing to open the system to the
interoperation with other IoT systems and inspiring the development of key features like:

• Generalized abstract model for all the ICOs (smartphones, printers, sensors,
actuators, etc.) with APIs to implement context-driven decisions/actions

• Automatic resource discovery and dynamic configuration of services

• Seamless multi-protocol adaptation, control of various systems, publishing of large
amounts of unstructured data (BigData) across the various and distributed decision
points

• Seamless use and integration with diverse local area / personal area connectivity
media like Zigbee, Z-Wave, Bluetooth LE

• Distributed execution of the platform middleware across any locally available
devices (e.g. mobile devices, residential devices, local routers)

6.3.3 Mobility BaaS

Nowadays cities are looking to implement systems that will allow them to actively get a
feel of their surroundings so that they can act in real time. The problem is that most of the
time, this type of systems do not integrate very well with each other, either because they
are from different vendors or because they are open-source projects built by independent
developers which need some work to integrate with the rest of the backend. With this in
mind, the Mobility Backend as a Service (MoBaaS) offers a set of services, in the form of
APIs, which intend to eliminate the friction created by having services from multiple
vendors.

MoBaaS will be a symbIoTe-enabled platform aiming to achieve CL1, used in the Smart
Mobility and Ecological Routing Use Case. It enables integration of data from many
sources, focusing on the mobility aspect of the city. Figure 49 shows which types of
services the MoBaaS offers and which kind of devices can be connected to it.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 126 of 132
 © Copyright 2017, the Members of the symbIoTe

Figure 49 MoBaaS overall architecture

Figure 49 represents the overall architecture of the MoBaaS and is divided into three
layers. The first layer, on the bottom, represents the devices that can be connected to the
MoBaaS and send data to the backend. These devices range between a sensor placed
somewhere in the city to a wearable that anybody can use. The middle layer is the
MoBaaS itself, which provides services via REST APIs. The MoBaaS provides many
services, ranging from APIs which grant access to devices to APIs that provide events for
those devices. For instance, if there are parking devices registered, the API will have
access to the check-ins and check-outs of vehicles (i.e. the timestamp a vehicle entered
and left a parking spot) during the time that the device is online. Additionally, it also offers
a routing engine which intends to broaden the spectrum of possible applications to be
developed. For example, it enables the possibility of having the optimal route to a specific
parking spot. The MoBaaS also offers an API that is not directly related to the mobility
scene, but that can be of great value for routing purposes. This API provides air quality
events which allow for applications with optimal ecological routing to be designed.

Lastly, the top layer provides an easy way for everyone to integrate their applications via
well-defined REST APIs and start using the MoBaaS.

6.3.4 nAssist

nASSIST is a software platform designed and conceived to allow agile, continuous
management of data in the energy efficiency, security and automation fields. nAssist is a
complete tool with which powerful solutions can be built whilst ensuring scalability,
flexibility, integrity and system security. The platform integrates various drivers, embedded
systems, SDKs, databases (NoSQL, MS Sql, Cloud Storage), Web applications, mMobile
applications and other software components (Scheduler, Complex event processing unit
and Event Manager). It is built following a Service Oriented Architecture paradigm and has

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 127 of 132
 © Copyright 2017, the Members of the symbIoTe

been designed to be easily adapted to different areas of application that use, or implicitly
need, data collection and data processing from logical or physical devices (sensors and
actuators).

nASSIST has modular design allowing for rapid expansion of the system. It is fully
prepared for large networks situated in different locations with high reliability and
redundant services as well as to support multiple customer. The platform interface has
been developed from day one for individual client customizations and for access from all
standard web browsers and mobile devices. nASSIST can be connected to different
platforms that generate alarms and incidences, positioning or sensor measurements by
means of specific drivers. The communication with hardware platforms is bidirectional,
allowing remote control of devices and systems.

Within symbIoTe project, the nAssist platform will be used in Smart Residence use case
as symbIoTe L1 Platform.

6.3.5 Navigo Digitale

The Navigo Digitale IoT Platform (ND) is a platform created to manage digital assets
pertaining to harbours used for boating and yachting. Its scope embraces both physical
entities (objects) and immaterial entities (documents and workflows).

It consists of a distributed platform, with instances associated to different ports across
Europe and running part in the cloud, and part on premise.

The ultimate purpose of ND is to provide services to the harbour’s activities (B2B) and to
its end-users (B2C).

The services of ND are created from the combination of functions and information made
available by physical and immaterial entities.

For example, a service can be based on one or more workflows which are triggered and
driven by data and actions provided by one or more physical objects. Such objects are
either monolithic (e.g. a weather report station or a water/petrol station instrumented with
remote control interfaces) or composite, that is "container" objects which in turn are made
of different objects (e.g. a building or a yacht equipped with a control platform). In order to
build its services, ND will need to be able to access all of these types of objects and to
extract the relevant information they can provide in a seamless way.

If we abstract physical and immaterial entities and consider them all as "network
controllable objects", we can see that ND is in a broad sense an IoT platform.
Furthermore, since its objects can be in turn governed by "inner" IoT platforms, we may
consider ND as an IoT meta-platform, or IoT hierarchical platform. For such objects, the
data model seen by ND is linked to the foreign platform's data model for that specific
object. For example, if a yacht (Vessel object in ND) is equipped with a symbIoTe
Compliant system (e.g. Nextworks’ Symphony), the latter system’s data will be exposed in
the ND Vessel object, including information about lights, sensors, engine control room’s
monitoring, etc.

Access to inner IoT platforms will be possible for any symbIoTe Compliant Platform: for
example, if ND needs to access a vessel’s fuel tank level (say, to propose a convenient
fuel provider or suggest a route) and the vessel is equipped with a symbIoTe Compliant
Platform, ND will be able to search for the resource, get authorization to access it, and
communicate with the vessel’s RAP to retrieve the data. In the symbIoTe ecosystem, ND

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 128 of 132
 © Copyright 2017, the Members of the symbIoTe

has a functionality of an enabler, it uses symbIoTe core to access the resources offered
by IoT platforms connecting devices in vessels.

6.4 Summary of symbIoTe position in the IoT ecosystem context

In this subsection, we summarize the main findings of the analysis comparing the
symbIoTe approach and its proposed architecture with other projects and initiatives in the
IoT space.

When comparing the symbIoTe architecture to the prominent reference architectures, we
can conclude that the symbIoTe architecture is in line with both the AIOTA and IoT-A
reference architectures. In fact, we can map the interfaces defined in AIOTI HLA to the
symbIoTe functional components, while IoT-A functional groups have their counterparts in
symbIoTe components. However, it should be noted that symbIoTe aims as implementing
functionalities for IoT device discovery, look-up, and name resolution across different
platforms which do not necessarily follow the IoT-A reference architecture, but rather
decide to expose their devices as Virtual Entities accessible through REST-based
interfaces.

The symbIoTe architecture is motivated by the oneM2M functional architecture, but
symbIoTe extends the scope by identifying additional features, in particular those related
to platform federations, bartering and trading as well as device roaming. In oneM2M,
platforms are supposed to interact only through the Cloud Domain and a corresponding
interface, but oneM2M does not provide many details on the particularities of platform-to-
platform interaction. symbIoTe specifies this process in more detail by defining
mechanisms for platform interaction (Bartering & Trading, SLA agreement). Additionally,
symbIoTe provides platforms with the possibility to share their resources to third-party
applications by using symbIoTe Core Services, which is a feature not envisioned in
oneM2M.

When comparing symbIoTe to other related projects listed in Section 6.2, the major
difference of symbIoTe is in the enlarged scope of interoperability concepts. Projects such
as COMPOSE, CRYSTAL, iCore and a recent project FIESTA-IOT20 focus on syntactic
and semantic interoperability, but not on organizational interoperability. symbIoTe
considers original features related to organizational interoperability by supporting the
creation of IoT Federations for secure interoperation, collaboration and sharing of
resources between two platforms, as well as IoT Device Roaming. There are also certain
differences in the proposed approaches when comparing them to L1 Compliance as
specified by symbIoTe. The major difference when comparing symbIoTe L1 solution to
iCore is in the fact that iCore stores the data provided by platform devices, while symbIoTe
stores only their metadata required for effective search. The COMPOSE project is not
actually focusing on IoT platforms but rather on the engineering processes and allows
data sharing between them, while CRYSTAL is targeting safety-critical systems.

20 http://fiesta-iot.eu/

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 129 of 132
 © Copyright 2017, the Members of the symbIoTe

7 Conclusion

This document presents the final collection of the symbIoTe system requirements and
reports the system’s functional architecture, with the respective components, entities and
interfaces. System requirements have been derived during an iterative process and based
on symbIoTe use cases. They are related to a wide range of features across the IoT
stack, from smart devices and gateways to cloud-based platform components and
applications. Some important symbIoTe specific requirements are as follows: the system
must support both sensors and actuators, and allow them to be mobile and change
location; mobile devices should be able to interact with their surrounding environment in
visited domains; access to both sensors and actuators is provided directly through the
platforms managing those devices while symbIoTe serves as an intermediary between
applications and platforms; access to platform devices needs to be authenticated and
authorized.

The document sets the foundations of the symbIoTe functional architecture in the context
of various interoperability aspects which are being supported by the symbIoTe
interoperability framework (syntactic, semantic and organizational interoperability).
symbIoTe defines an interoperability framework for IoT platforms and thus does not strive
to become another “superplatform”: it does not store any sensor-generated data outside of
IoT platform boundaries, but rather acts as a mediator between applications and platforms
ensuring secure and uniform access to platform resources through well-defined interfaces
(CL1). It supports Platform Federations for secure interworking of collaborating platforms
that want to barter/trade their resources (CL2). Moreover, it facilitates dynamic
configuration of IoT devices in Smart Spaces (CL3) and roaming of IoT devices (CL4).
The functional architecture is built around a layered stack in accordance with the AIOTA
reference architecture, and defines four domains: Application, Cloud, Smart Space and
Smart Device domain. It is motivated by the oneM2M architecture, but symbIoTe extends
the scope by identifying features which go beyond the oneM2M functional architecture:
These are related to platform federations, bartering and trading as well as device roaming.

In this document we have focused on defining the components for the Application and
Cloud Domain, Smart Spaces and Smart Devices Domain based on the identified
requirements. We have defined system behavior supporting syntactic and semantic
interoperability and identified communication diagrams describing component interactions
between platforms forming federations, thus enabling organizational interoperability.
Furthermore, we specify communication diagrams depicting the interactions enabling
dynamicity in Smart Spaces and roaming of IoT devices.

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 130 of 132
 © Copyright 2017, the Members of the symbIoTe

8 References

[1] H. van der Veer, A. Wiles. Achieving Technical Interoperability – the ETSI Approach.
ETSI White Paper No.3, 3rd edition, April 2008

[2] IERC. IoT Semantic Interoperability: Research Challenges, Best Practices,
Recommendations and Next Steps. Position Paper, March 2015

[3] Murdock, P., Elloumi, O. (eds). AIOTI High Level Architecture. Release 2.0, 2015

[4] Murdock, P., Elloumi, O. (eds). AIOTI High Level Architecture. Release 2.1, 2016

[5] Carrez, F. (ed). Final architectural reference model for the IoT v3.0. Release 3.0, July
2013

[6] oneM2M. The interoperability enabler for the entire M2M and IoT ecosystem. oneM2M
whitepaper, 2015

[7] oneM2M. M2M Functional Architecture. Technical specification, 2016, URL:
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-
%20Functional_Architecture-V2_10_0.pdf

[8] IoT-A. Deliverable D1.5 – Final architectural reference model for the IoT v3.0.
Technical specification, 2013

[9] J. Heuer, J. Hund, O. Pfaff. Toward the Web of Things: Applying Web Technologies to
the Physical World. IEEE Computer, 48(5): 34-42, 2015

[10] W3C White Paper for the Web of Things, 2016, URL:
https://www.w3.org/2016/09/IoTW/white-paper.pdf

[11] Industrial Internet Consortium. Industrial Internet Reference Architecture Technical
Report, 2015, URL: http://www.iiconsortium.org/IIRA-1-7-ajs.pdf

[12] R. M. Soley. First European testbed for the Industrial Internet Consortium. Bosch
Blog, 2015, URL: http://blog.bosch-si.com/categories/manufacturing/2015/02/first-
european-testbed-for-the-industrial-internet-consortium/

[13] VDI/VDE, ZVEI. Reference Architecture Model Industrie 4.0 (RAMI4.0). Status
Report, 2015, URL:
http://www.zvei.org/Downloads/Automation/5305%20Publikation%20GMA%20Status%
20Report%20ZVEI%20Reference%20Architecture%20Model.pdf

[14] International Organization for Standardization. ISO/IEC AWI/WD 30141/20.00
Internet of Things Reference Architecture (IoT RA). 2016, URL:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=6569
5

[15] COMPOSE project. Deliverable D1.2.2 – Final COMPOSE architecture document
v1.0. Technical specification, 2014

[16] iCore project. Deliverable D2.3 Architecture Reference Model. Technical
specification, 2013

[17] L. Macvittie. ABAC not RBAC, Welcomne to the (IoT) world of contextual security.
2015

[18] V. Hu, D.Ferraiolo, R. Kuhn, A. Schnitzer, K.Sandlin, R.Miller, K.Scarfone. Guide to
Attribute Based Access Control (ABAC) - Definition and Considerations. NIST Special

http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
http://dblp.uni-trier.de/pers/hd/h/Hund:Johannes
http://dblp.uni-trier.de/pers/hd/p/Pfaff:Oliver
http://dblp.uni-trier.de/db/journals/computer/computer48.html#HeuerHP15
https://www.w3.org/2016/09/IoTW/white-paper.pdf
http://www.iiconsortium.org/IIRA-1-7-ajs.pdf
http://blog.bosch-si.com/categories/manufacturing/2015/02/first-european-testbed-for-the-industrial-internet-consortium/
http://blog.bosch-si.com/categories/manufacturing/2015/02/first-european-testbed-for-the-industrial-internet-consortium/
http://www.zvei.org/Downloads/Automation/5305%20Publikation%20GMA%20Status%20Report%20ZVEI%20Reference%20Architecture%20Model.pdf
http://www.zvei.org/Downloads/Automation/5305%20Publikation%20GMA%20Status%20Report%20ZVEI%20Reference%20Architecture%20Model.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65695
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65695

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 131 of 132
 © Copyright 2017, the Members of the symbIoTe

Publication, 2014, URL:
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

[19] Zhou Y, De S, Wang W, Moessner K. Search Techniques for the Web of Things: A
Taxonomy and Survey. Sensors, 16(5), p. 600, 2016

[20] COMPOSE – Collaborative Open Market to Place Objects at your SErvice, URL:
http://www.compose-project.eu/, access: September 2016

[21] CRYSTAL – Critical sYSTem engineering AcceLeration, URL: http://www.crystal-
artemis.eu/, access: September 2016

[22] iCore – Empowering IoT through Cognitive Technologies, URL: http://www.iot-
icore.eu/, access: September 2016

[23] Crystal project. Deliberable D601.021: Interoperability Specification v1, 2014
[24] Fi-ware project. Deliverable D2.2: High-level Description. Technical specification,

2011
[25] G. Malim. Looking for a Benchmarking Framework for IoT platforms. IoT global

network, 2016, URL: http://www.iotglobalnetwork.com/iotdir/2016/02/16/looking-for-a-
benchmarking-framework-for-iot-platforms-1031/

[26] Network Working Group. Key words for use in RFCs to Indicate Requirement
Levels. Request for Comments 2119, 1997, URL: https://www.ietf.org/rfc/rfc2119.txt

[27] IEEE Standards Association. IEEE Standard for Information Technology – Systems
Design – Software Design Descriptions. Active standard, 2009, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5167255

[28] J. Kim et al., "Standard-based IoT platforms interworking: implementation,
experiences, and lessons learned," in IEEE Communications Magazine, vol. 54, no. 7,
pp. 48-54, July 2016. doi: 10.1109/MCOM.2016.7514163

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://www.compose-project.eu/
http://www.crystal-artemis.eu/
http://www.crystal-artemis.eu/
http://www.iot-icore.eu/
http://www.iot-icore.eu/
http://www.iotglobalnetwork.com/iotdir/2016/02/16/looking-for-a-benchmarking-framework-for-iot-platforms-1031/
http://www.iotglobalnetwork.com/iotdir/2016/02/16/looking-for-a-benchmarking-framework-for-iot-platforms-1031/
https://www.ietf.org/rfc/rfc2119.txt
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5167255

688156 - symbIoTe - H2020-ICT-2015 D1.4 – Final Report on System Requirements and Architecture
 Public

Version 2.1 Page 132 of 132
 © Copyright 2017, the Members of the symbIoTe

9 Abbreviations

AA Authentication and Authorization

AAM Authentication and Authorization Manager

ABAC Attribute Based Access Control

APP Application Domain

B&T Bartering & Trading component

CL symbIoTe Compliance Level

CLx (1-4) Level-x (1 to 4) symbIoTe Compliance

CLD Cloud Domain

DoA Description of the Action

GA Grant Agreement

IIRA Industrial Internet Reference Architecture

IoE Internet of Everything

IoT Internet of Things

JSON JavaScript Object Notation

KPI Key Performance Indicator

RA Reference Architecture

RAP Resource Access Proxy

RAM Resource Access Monitor

RAMI4.0 Reference Architecture Model Industrie 4.0

RM Resource Monitor

S3 symbIoTe Smart Space Middleware

SDEV Smart Device Domain

SLA Service Level Agreement

SLO Service Level Objective

SOTA State of the art

SSP Smart Space Domain

QoS Quality of Service

