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Abstract. The inevitable environmental and technical limitations of
image capturing has as a consequence that many images are frequently
taken in inadequate and unbalanced lighting conditions. Low-light im-
age enhancement has been very popular for improving the visual quality
of image representations, while low-light images often require advanced
techniques to improve the perception of information for a human viewer.
One of the main objectives in increasing the lighting conditions is to
retain patterns, texture, and style with minimal deviations from the
considered image. To this direction, we propose a low-light image en-
hancement method with Haar wavelet-based pooling to preserve texture
regions and increase their quality. The presented framework is based on
the U-Net architecture to retain spatial information, with a multi-layer
feature aggregation (MFA) method. The method obtains the details from
the low-level layers in the stylization processing. The encoder is based
on dense blocks, while the decoder is the reverse of the encoder, and
extracts features that reconstruct the image. Experimental results show
that the combination of the U-Net architecture with dense blocks and
the wavelet-based pooling mechanism comprises an efficient approach in
low-light image enhancement applications. Qualitative and quantitative
evaluation demonstrates that the proposed framework reaches state-of-
the-art accuracy but with less resources than LeGAN.

Keywords: Image enhancement · low-light images · Haar wavelet pool-
ing · U-Net.

1 Introduction

In the digital era, a plethora of photos are acquired daily, while only a frac-
tion is captured in optimal lighting conditions. Image acquisition in low-lighting
conditions is challenging to be improved when low brightness, low contrast, a



2 E. Batziou et al.

narrow gray range, color distortion and severe noise exists, and no other sensor
is involved as for example multiple cameras of different specifications. Image
enhancement has significantly been improved over the last years with the popu-
larity of neural network architectures that have outperformed traditional image
enhancement techniques. The main challenge in low-light image enhancement
is to maximize the information involved from the input image on the available
patterns and extract the colour information that is hidden behind the low values
of luminance. This challenge has been tackled using the traditional approaches
of histogram equalization [17] and Retinex theory [21] while neural network ap-
proaches either involve Generative Adversarial Networks or Convolutional Neu-
ral Networks architectures [14].

Although a wide range of solutions have already been applied in image en-
hancement, none of them has yet considered photorealistic style transfer. Tar-
geting in improving the quality of under-exposed images, photorealistic style
transfer requires as input, one under-exposed image that has been captured in
low-lighting conditions, along with an image of normal lighting conditions. The
proposed approach is trained using a collection of style images that all have op-
timal lighting conditions, which are then transferred to the given under-exposed
images through an enhancer module.

However, texture, brightness, contrast and color-like information need to be
effectively reconstructed in the generated enhanced image, but it has been re-
ported that Haar wavelet-based pooling is superior to max-pooling for generating
an image with minimal information loss and noise amplification [36]. Wavelet un-
pooling recovers the original signal by performing a component-wise transposed-
convolution, while max-pooling does not have its exact inverse. Max-pooling that
the encoder-decoder structured networks used in the WCT [22] and PhotoWCT
[23] are not able to restore the signal and they need to perform a series of post-
processing steps for the remaining artifacts. The multi-layer feature aggregation
mechanism is adopted as it is presented in [25], but with a Haar wavelet-based
transformation to support the Adaptive Instance Normalization for image en-
hancement in low-lighting conditions.

In this work, we propose an novel framework for image enhancement on low-
light conditions. A modified U-Net based architecture is designed that involves
dense blocks, which contain dense, convolutional, and wavelet pooling layers to
better preserve texture regions in image enhancement. The framework requires as
input low-light and normal-light images, where encoding is using low frequency
(LL) components and unpooling is performed with high frequency components
(LH, HL, HH), which leads to better image enhancement. Our method achieves
state-of-the-art results but with less computational resources, both in training
and testing phases.

The remainder of the paper is structured as follows. Section 2 provides an
overview of state of the art in image enhancement while Section 3 presents the
proposed framework analysing and providing details for any of its aspect. Sec-
tion 4 provides experiments that demonstrate the effectiveness of the proposed
approach, and finally Section 5 concludes this work.
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2 Related Work

Image enhancement has been initially relied on the statistical method of his-
togram equalization [4]. Histogram equalization enhances the images through
the expansion of their dynamic range either at a global [12] or a local level [17].
In particular, the method [19], which is based on histogram equalization, en-
hances the image contrast by expanding the pixel intensity distribution range.
Other works propose the use of double histogram equalization for image en-
hancement [2]. The statistical properties of adjacent pixels and large gray-level
differences have been utilized by Lee et al. [17] to adjust brightness at local lev-
els. Histogram equalization methods produces visually accepted images with less
resources but with many distortion as local pixel correlations are not considered.

Since this type of methods lack physical explanation, several image enhance-
ment methods have been proposed based on Retinex theory. Retinex based
methods for image enhancement have estimated illumination and reflectance
with more details through the designed weighted variation model [6]. In [10] the
authors have estimated a coarse illumination map, by computing the maximum
intensity of each RGB pixel channel, and then they refine the coarse illumination
map using a structure prior. Another Retinex model has been proposed Li et al.
[21] that takes into consideration the noise in the estimation of the illumination
map through solving the optimization problem of generating a high-contrast im-
age with proper tonal rendition and luminance in every region. Furthermore,
an adaptive multi-scale Retinex method for image enhancement has been pro-
posed in [16] where each single-scale Retinex output image is weighted and it
is adaptively estimated, based on both the input content image to generate an
enhanced image with a natural impression and appropriate tone reproduction
in each area of the image. Additional works have combined the camera response
with the traditional Retinex model to obtain an image enhancement framework
[27]. Contrary to the methods that change the distribution of image histogram
or that rely on potentially inaccurate physical models, Retinex theory has been
revisited in the work of [35]. The authors proposed Retinex-Net, that uses a
neural network network to decompose the input images into reflectance and il-
lumination, and in an additional layer an encoder–decoder network is used to
adjust the illumination. Contrary to the combination of Retinex based meth-
ods with neural networks for image enhancement, these methods may generate
blurry artifacts that reduce the quality of the generated image.

In the deep learning era, several approaches have been introduced for im-
age enhancement. In [24], the authors apply the LLNet on the low-light image
enhancement problem, proposing the stacked sparse denoising of a self-encoder,
based on the training of synthetic data to enhance and denoise the low-light noisy
input image. In [29] the authors have proposed MSRNet, that is able to learn the
end-to-end mapping from low-light images directly to the normal light images
with an optimization problem. In [8] the authors introduce a neural network
architecture that performs image enhancement with two layers; a data-driven
layer that enables slicing into the bilateral grid, and a multiplicative operation
for affine transformation to compute a bilateral grid and by predicting local affine
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color transformations. In addition, the work of [13] proposes the use of a trans-
lation function to learn with a residual convolutional neural network training,
aiming to improve both color rendition and image sharpness. The neural network
includes a composite perceptual error function that combines content, color and
texture losses. A convolutional neural network has also been proposed in [32],
where the authors introduce an illumination layer in their end-to-end neural net-
work for under-exposed image enhancement, with the estimation of an image-
to-illumination mapping for modeling multiple lighting conditions. The work of
[20] has proposed a trainable CNN for weak illumination image enhancement,
called LightenNet, which learns to predict the relationship between illuminated
image and the corresponding illumination map. A feature spatial pyramid model
has been proposed in [30] with a low-light enhancement network, in which the
image is decomposed into a reflection and an illumination image and then are
fused to obtain the enhanced image. A GLobal illumination-Aware and Detail-
preserving Network (GLADNet) has been proposed in [33]. The architecture of
the proposed network is split into two stages. For the global illumination pre-
diction, the image is first downsampled to a fixed size and passes through an
encoder-decoder network. The second step is a reconstruction stage, which helps
to recover the detail that has been lost in the rescaling procedure. Motivated by
the good performance of neural networks, but at a higher computational cost,
generative adversarial networks combine two neural networks and have also been
involved in image enhancement.

The flourishing of GANs has led to several image enhancement solutions
aiming to eliminate paired data for training. In [5] the authors introduce En-
hanceGAN, which is an adversarial learning model for image enhancement, where
they highlight the effectiveness of a piecewise color enhancement module that
is trained with weak supervision and extend the proposed framework to learn-
ing a deep filtering-based aesthetic enhancer. Moreover, the unpaired learning
method for image enhancement of [3] is based on the framework of two-way
generative adversarial networks, with similar structure to CycleGAN, but with
significant modifications, as the augmentation of the U-Net with global features,
the improvement of Wasserstein GAN with an adaptive weighting scheme, and
an individual batch normalization layer for generators in two-way GANs. In ad-
dition, Zero-DCE [9] takes a low-light image as input and produces high-order
tonal curves as its output, which are then used for pixel-wise adjustment on the
input range of to obtain the enhanced image. Furthermore, in [7] the authors
present an unsupervised low-light image enhancement method named Le-GAN,
which includes an illumination-aware attention module and an identity invariant
loss. In a similar alternative, the work of [18] proposes an unsupervised learning
approach for single low-light image enhancement using the bright channel prior
(BCP), where the definition of loss function is based on the pseudo ground-truth
generated using the bright channel prior. Saturation loss and self-attention map
for preserving image details and naturalness are combined to obtain the enhanced
result. Finally, EnlightenGAN [14] is an unsupervised GAN-based model on the
low-light image enhancement, that utilizes a one-way GAN and a global–local
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discriminator structure. Although these methods enhance the holistic brightness
of the input, they result to the generation of over-exposed regions.

In contrast, the proposed approach adopts a modified U-Net based archi-
tecture with dense blocks and wavelet pooling layers. The low frequency (LL)
component is involved in encoding while decoding utilizes the high frequency
components (LH, HL, HH) of the input image. Consequently, the proposed ap-
proach is able to preserve the structure and texture information through this
wavelet pooling transformation.

3 Methodology

To achieve photorealism, a model is expected to recover the structural informa-
tion of a given image, while it enhances the image’s luminance effectively. To
address this issue, the proposed U-Net-based network is combined with wavelet
transformations and Adaptive Instance Normalization (AdaIN), as it is illus-
trated in Fig. 1. More specifically, the image recovery is addressed by employing
wavelet pooling and unpooling, in parallel preserving the information of the
content to the transfer network. The frameworks uses as input low-light images
along with normal-light images to generate the enhanced images. Afterwards,
dense blocks are used to enhance the quality of feature transferring and skip
connections in the transferring process. Intending to a natural stylization effect,
the enhanced features are inserted into the image reconstruction process, along
with the connected features of different levels from the encoding process.

3.1 Network architecture

Following a U-Net alteration, the proposed network is comprised by the following
three sub-components: encoder, enhancer and decoder. The encoder and decoder
formulate the symmetric structure of a U-Net, as it has been originally intro-
duced by Ronneberger et al. [28], aiming to preserve the structural integrity of an
image. The encoder includes convolutional and pooling layers that also involve
a downsampling mechanism, while the decoder has a corresponding upsampling
mechanism. The U-Net architecture has been designed with a skip connection
between encoder and decoder modules. On top of the existing skip connections,
the Photorealistic Style Transfer Network called UMFA [25] includes also multi-
layer feature aggregation (MFA) and AdaIN blocks [11], in a module which is
called enhancer. The enhancer module and the encoder both include a Haar
wavelet-based pooling layer, replacing the traditional max-pooling layer in order
to capture smooth surface and texture information. In Figure 1, the red and
blue solid lines represent the features of the normal-light and low-light images,
respectively, while the Haar wavelet-based pooling is in the the dense blocks of
the encoder and the AdaIN block of the enhancer module.

Encoder: The encoder of the proposed framework is illustrated in the green
box of Fig. 1 and it has convolutional layers and downsampling dense blocks.
Downsampling dense blocks contain a Haar wavelet-based pooling layer, a dense
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Fig. 1. Proposed image enhancement framework based on U-Net architecture and
wavepooling layers.

block and two convolutional layers. A dense block is created by three densely
connected convolutional layers. The Haar wavelet transformations of the pooling
layer implements downsampling operations to halve the feature size, keeping the
dimensions identical to a max pooling layer. The encoder allows to keep multi-
scale image information and to process high-resolution images.

Decoder: The decoder, which is illustrated in the yellow box of Fig. 1,
mirrors the encoder structure, with four upsampling blocks to formulate a U-
Net structure along with the aforementioned encoder. Each block consists of an
upsampling layer, three convolutional layers and a concatenation operation that
receives the corresponding encoder feature coming from the enhancer module.

Enhancer: In the purple box of Figure 1 the structure of the enhancer
module is depicted. This module passes multi-scale features from the encoder
to the decoder. Feature aggregation allows the network to incorporate spatial
information from various scales and keep the detailed information of the input
image. Features are inserted from the previous layer to the next one for all pairs
of layers of the encoder, then they are transformed using AdaIN to enhance the
input image. The pooling layer is again based on Haar wavelet transformation,
briefly described as follows.

Haar wavelet pooling has four kernels, {LLT , LHT , HLT , HHT }, where the
low (L) and high (H) pass filters are:

LT = 1√
2
[1 1] (1)
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HT = 1√
2
[−1 1] (2)

The output of each kernel is denoted as LL, LH, HL, and HH, respectively,
representing each one of the four channels that are generated from the Haar
wavelet-based pooling. The low-pass filter LL contains smooth surface and tex-
ture, while the high-pass filters (LH, HL, HH) extract edge-like information of
different directions (i.e. vertical, horizontal, and diagonal). Every max-pooling of
UMFA method [25] is replaced with the wavelet pooling. Motivated by [36], the
max-pooling layers are replaced with wavelet pooling, the low frequency compo-
nent (LL) is passed to the next encoding layer. The high frequency components
(LH, HL, HH) are skipped to the decoder directly. Using the wavelet pooling
the original signal can be exactly reconstructed by wavelet unpooling operation.
Wavelet unpooling fully recovers the original signal by performing a component-
wise transposed-convolution, followed by a summation. Haar wavelet, being one
of the simplest wavelet transformations, splits the original signal into channels
that capture different components.

3.2 Loss functions

Following the approach of [25], the total loss function Ltotal is computed as a pre-
defined weighted sum of enhancement loss, content loss and structured similarity
(SSIM) loss functions, respectively:

Ltotal = αLenh + βLcont + γLSSIM (3)

where Lcont and LSSIM are computed between the input low-light content image
and the enhanced output image. Lenh is the enhancement loss between the input
normal-light image and the enhanced output image. Lcont and Lenh are based
on the perceptual loss [15]. The parameters α, β, γ represents the weights of the
above three losses. For the content loss, the relu2 2 is chosen as the feature layer,
different from the perceptual loss and the Gram matrices of the features are used
for the normal-light image features. The enhancement loss Lenh is the sum of all
outputs from the four ReLU layers of the VGG-16 network and the SSIM loss is
calculated as:

LSSIM = 1− SSIM(C,E) (4)

where SSIM(C,E) represents the output of structural similarity (SSIM) [34]
measure between the input low-light content image C and enhanced output im-
age E. SSIM is a perception-based model that incorporates important perceptual
information, including luminance and contrast terms.

4 Experimental Results

The following section provides insights on the considered datasets, the config-
urations adopted for the conducted experiments as well as the qualitative and
quantitative validation of the corresponding results in comparison with other
relevant works.
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Fig. 2. Qualitative comparison of the proposed framework with state-of-the-art.

4.1 Datasets

Two benchmark datasets namely LOL [35] and SYN [35] respectively were
utilised to accomplish an effective performance comparison on the low-light and
enhanced images. LOL dataset has 500 image pairs, where 485 pairs of them are
randomly selected for training and 15 pairs for testing. SYN dataset has 1,000
image pairs, and where 950 pairs of them are randomly selected for training and
50 pairs for testing.

4.2 Training process

The training process was initiated by feeding the model with the normal-light
and low-light images. For both datasets, the weights for total loss was set as
α = 0.5, β = γ = (1− α) ∗ 0.5 following the default values of [25]. Similarly, the
number of epochs is set to 150 for the LOL dataset and 100 for the SYN dataset.
The batch size is set 4 for both datasets. All input images are 256×256 pixels.
Adam optimizer is used for training and the optimal learning rate is 0.0001.

Fig. 3. Qualitative comparison of the proposed framework with state-of-the-art on
SYN dataset.
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Fig. 4.Qualitative comparison of the proposed framework with state-of-the-art on LOL
dataset.

4.3 Results

The baseline methods of the presented comparison are the histogram equalization
methods of [1, 17], the Retinex theory based methods of [10, 21, 35, 16, 27, 6], the
neural network approaches of [20, 26, 30, 33] and the GANs based approaches of
[7, 9, 14] due to their relevance to low-light image enhancement problem and the
fact that they cover all different approaches based on histogram equalization,
Retinex-based methods, neural networks and GANs. The proposed approach
denoted in Table 1 and Fig.2 as ”Ours”.

Table 1. Quantitative results on LOL and SYN datasets.

2*Methods LOL SYN Times
PSNR SSIM PSNR SSIM training testing

LIME [10] 15.484 0.634 14.318 0.554 - -

RobustRetinex [21] 13.876 0.669 16.873 0.714 - -

JED [26] 13.685 0.657 - - - -

HE [1] 14.800 0.386 - - - -

AMSR [16] 11.737 0.304 - - - -

CRM [27] 12.327 0.472 - - - -

LightenNet [20] 10.301 0.401 - - - -

Zero-DCE [9] 10.770 0.426 15.600 0.796 - -

FSP [30] 19.347 0.751 - - - -

LDR [17] 15.484 0.634 13.187 0.591 - -

SRIE [6] 17.440 0.649 14.478 0.639 - -

GLADNet [33] 20.314 0.739 16.761 0.797 - -

Retinex-NET [35] 17.780 0.425 16.286 0.779 - -

EnlightenGAN [14] 18.850 0.736 16.073 0.827 - -

Le-GAN [7] 22.449 0.886 24.014 0.899 25.6h 8.43ms

Ours 21.266 0.784 19.212 0.716 10.7h 5.27ms

The visual quality of the proposed framework is compared with other meth-
ods and the results are shown in Fig 2. It is observed that the GLADNet [33],
Retinex-Net [35], EnlightenGAN [14] and Zero-DCE [9] are not able to fully re-
construct the hidden information of the low-light input image on the left. These
methods increase the brightness of the image, but the color saturation of the
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results is lower compared to the proposed approach. Moreover, they suffer from
noise and color bias. In Figs. 3 and 4 we present more qualitative results on SYN
and LOL dataset respectively. It is observed that there are some bright regions of
the results generated by the compared methods, especially on LOL dataset,which
are over- exposed in the enhanced outputs. In contrast, the proposed approach
performs well in all datasets with nearly no artifacts and generates quite real-
istic normal-light images. In addition to the two given datasets, the proposed
framework is also tested in a qualitative manner in the no-paired ExDARK [31]
dataset. For this purpose as normal-light image is used for the inference mode
a random selected cat image from the web and as it is illustrated in Fig.2 the
outputs is realistic and enhanced.

Moreover, a quantitative evaluation is provided in Table 1, where the pro-
posed approach is compared with the aforementioned methods for LOL and
SYN datasets, as they were reported in [7, 30]. The Peak Signal-to-Noise Ratio
(PSNR) scores correspond to the average value of the complete test set of en-
hanced images in LOL and SYN datasets. We observe that the highest PSNR
values for each image test correspond to the output of the proposed framework
and the method of Le-GAN [7]. PSNR values show that the generated images
from the proposed approach and Le-GAN method, obtain higher proximity to
the input normal-light images than the imaged generated by all other methods.
Compared to Le-GAN, the proposed approach is significantly more efficient,
without the need of the additional computational resources that are reported in
[7] and this is depicted in training and testing times (1). More specifically, the
training time of Le-GAN method is 25.6 h, 2.5 times hogher the training time
of the proposed approach and they use 3 NVIDIA 3090ti GPUs. The training
time of our method is 10.7h on the NVIDIA GeForce RTX 2060 SUPER. More-
over, Le-GANs execution time on a 600 × 400 image is about 8.43ms, 1.5 times
up to the execution time of the proposed approach . In Le-GAN, the method
requires 3*24GB (standard Memory of 3 NVIDIA 3090ti) contrary to 8GB of
oursAs far as SSIM value is concerned, the outputs of the presented framework
on LOL dataset is on top-2 higher scores and on SYN dataset the outputs have
comparable results with other state-of-the-art methods.

5 Conclusions

In this work, a photorealistic style transfer approach is adapted and modified to
low-light image enhancement. The proposed method is based on a U-net archi-
tecture using dense blocks and three main modules, namely encoder, enhancer,
and decoder. The encoder and enhancer include a Haar wavelet based pooling
layer for downsampling that has shown superiority compared to max pooling
in transferring brightness, contrast and color-like information from one input
image to a generated. Experiments in two benchmark datasets compared the
proposed method with recent works in image enhancement, showing that the
proposed approach on two benchmark low-light datasets achieves state-of-the-
art with at less computational resources, both in training and testing processes.
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Future modifications will focus on evaluating further the impact of the wavelet
incorporation and their deployment in other levels of the architecture.
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