Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published July 31, 2021 | Version v1
Journal article Restricted

Phytochemical profiling of several Hypericum species identified using genetic markers

Description

´a, Katarína Brunˇ´akova, B´alintova´a, Miroslava, Henzelyova´, Jana, Kolarˇcik, Vladislav, Kim´akova´, Andrea, ´, Linda Petijova, ´a, Eva ˇCell ´arov (2021): Phytochemical profiling of several Hypericum species identified using genetic markers. Phytochemistry (112742) 187: 1-16, DOI: 10.1016/j.phytochem.2021.112742, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112742

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD23019FF8AED5EC974C8299E05451E

References

  • Agapouda, A., Booker, A., Kiss, T., Hohmann, J., Heinrich, M., Csupor, D., 2019. Quality control of Hypericum perforatum L. analytical challenges and recent progress. J. Pharm. Pharmacol. 71 (1), 15-37. https://doi.org/10.1111/jphp.12711.
  • Alali, F.Q., Tawaha, K., Gharaibeh, M., 2009. LC-MS and LC-PDA analysis of Hypericum empetrifolium and Hypericum sinaicum. Z. Naturforsch. C Biosci. 64 (7-8), 476-482. https://doi.org/10.1515/znc-2009-7-802.
  • Antognoni, F., Lianza, M., Poli, F., Buccioni, M., Santinelli, C., Caprioli, G., Iannarelli, R., Lupidi, G., Damiani, E., Beghelli, D., Alunno, A., Maggi, F., 2017. Polar extracts from the berry-like fruits of Hypericum androsaemum L. as a promising ingredient in skin care formulations. J. Ethnopharmacol. 195, 255-265. https://doi.org/10.1016/j. jep.2016.11.029.
  • Avato, P., 2005. A survey of the Hypericum genus: secondary metabolites and bioactivity. In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry, vol. 30. Elsevier, pp. 603-634. https://doi.org/10.1016/S1572-5995(05)80043-2.
  • Bagdonaite, E., Janulis, V., Ivanauskas, L., Labokas, J., 2012a. Between species diversity of Hypericum perforatum and H. maculatum by the content of bioactive compounds. Nat. Prod. Commun. 7 (2), 199-200. https://doi.org/10.1177/ 1934578X1200700220.
  • Bagdonaite, E., M´artonfi, P., Repcˇ´ak, M., Labokasa, J., 2012b. Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania. Ind. Crop. Prod. 35 (1), 302-308. https://doi.org/10.1016/j. indcrop.2011.07.018.
  • B´alintov´a, M., Brunˇ´akov´a, K., Petijov´a, L., Cell ˇ´arov´a, E., 2019. Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant Physiol. Biochem. 135, 348-358. https://doi.org/10.1016/j. plaphy.2018.12.024.
  • Bansal, A., Chhabra, V., Rawal, R.K., Sharma, S., 2014. Chemometrics: a new scenario in herbal drug standardization. J. Pharm. Anal. 4 (4), 223-233. https://doi.org/ 10.1016/j.jpha.2013.12.001.
  • Blattner, F.R., 1999. Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27 (6), 1180-1186. https:// doi.org/10.2144/99276st04.
  • Bonhomme, V., Picq, S., Gaucherel, C., Claude, J., 2014. Momocs: outline analysis using R. J. Stat. Software 56, 1-24. https://doi.org/10.18637/jss.v056.i13.
  • Braunberger, C., Zehl, M., Conrad, J., Wawrosch, C., Strohbach, J., Beifuss, U., Krenn, L., 2015. Flavonoids as chemotaxonomic markers in the genus Drosera. Phytochemistry 118, 74-82. https://doi.org/10.1016/j.phytochem.2015.08.017.
  • Bridi, H., Meirelles, G.C., von Poser, G.L., 2018. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry 155, 203-232. https://doi.org/10.1016/j.phytochem.2018.08.002.
  • Brunˇ´akova ´, K., Cell ˇ´arov´a, E., 2016. Shoot tip meristem cryopreservation of Hypericum species. In: Jain, M.S. (Ed.), Protocols for in Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, second ed., vol. 1391. Humana Press, New York, pp. 31-46. https://doi.org/10.1007/978-1-4939-3332-7_3. Methods in Molecular Biology.
  • Chattaway, M.M., 1926. Notes on the chromosomes of the genus Hypericum, with special reference to chromosome size in H. calycinum. J. Exp. Biol. 3, 141-143.
  • Chen, H., Muhammad, I., Zhang, Y., Ren, Y., Zhang, R., Huang, X., Diao, L., Liu, H., Li, X., Sun, X., Abbas, G., Li, G., 2019. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front. Pharmacol. 10, 1272. https://doi.org/10.3389/fphar.2019.01272.
  • Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., Zhou, S., 2016. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16 (1), 138-149. https://doi.org/10.1111/1755- 0998.12438.
  • Choze, R., Delprete, P., Litao, L., 2010. Chemotaxonomic significance of flavonoids, coumarins and triterpenes of Augusta longifolia (Spreng.) Rehder, Rubiaceae-Ixoroideae, with new insights about its systematic position within the family. Rev. Bras. Farmacogn. 20, 295-299. https://doi.org/10.1590/S0102- 695X2010000300002.
  • Chrea, B., O' Connell, J., Silkstone-Carter, O., O' Brien, J., Walsh, J., 2014. Nature' s antidepressant for mild to moderate depression: isolation and spectral characterization of hyperforin from a standardized extract of St. John' s Wort (Hypericum perforatum). J. Chem. Educ. 91 https://doi.org/10.1021/ed300800f.
  • Cirak, C., Radusiene, J., 2019. Factors affecting the variation of bioactive compounds in Hypericum species. Biol. Futura. 70, 198-209. https://doi.org/10.1556/ 019.70.2019.25.
  • Cirak, C., Radusiene, J., Jakstas, V., Ivanauskas, L., Seyis, F., Yayla, F., 2016. Secondary metabolites of seven Hypericum species growing in Turkey. Pharm. Biol. 54 (10), 2244-2253. https://doi.org/10.3109/13880209.2016.1152277.
  • Contandriopoulos, J., Lanzalavi, M., 1968. Contribution a `l'´etude cytotaxinomique des Hypericum de Gr`ece. B. Soc. Bot. Fr. 115 (1-2), 5-13. https://doi.org/10.1080/ 00378941.1968.10838527.
  • Crockett, S.L., Douglas, A.W., Scheffler, B.E., Khan, I.A., 2004. Genetic profiling of Hypericum (St. John' s Wort) species by nuclear ribosomal ITS sequence analysis. Planta Med. 70 (10), 929-935. https://doi.org/10.1055/s-2004-832619.
  • Crockett, S.L., Robson, N.K., 2011. Taxonomy and chemotaxonomy of the genus Hypericum. Med. Aromat. Plant Sci. Biotechnol. 5 (Special Issue 1), 1-13. PMCID: PMC3364714.
  • Crockett, S.L., Schaneberg, B., Khan, I.A., 2005. Phytochemical profiling of new and old world Hypericum (St. John' s wort) species. Phytochem. Anal. 16 (6), 479-485. https://doi.org/10.1002/pca.875.
  • Das, S., Roy, A.S., 2020. Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: a molecular docking study. ChemRxiv. Preprint. https:// doi.org/10.26434/chemrxiv.12245270.v1.
  • Desjardins, Y., Dubuc, J.F., Badr, A., 2009. In vitro culture of plants: a stressful activity! Acta Hortic. 812, 29-50. https://doi.org/10.17660/ActaHortic.2009.812.1.
  • Doleˇzel, J., Bartoˇs, J., 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot-London. 95 (1), 99-110. https://doi.org/10.1093/aob/mci005.
  • Doleˇzel, J., Ci ˇˇzkov´a, J., ˇSimkov´a, H., Bartoˇs, J., 2018. One major challenge of sequencing large plant genomes is to know how big they really are. Int. J. Mol. Sci. 19 (11), 3554. https://doi.org/10.3390/ijms19113554.
  • Doleˇzel, J., Greilhuber, J., 2010. Nuclear genome size: are we getting closer? Cytom. A 77 (7), 635-642. https://doi.org/10.1002/cyto.a.20915.
  • Doleˇzel, J., Greilhuber, J., Suda, J., 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2 (9), 2233-2244. https://doi.org/10.1038/ nprot.2007.310.
  • Dresler, S., Kova´ˇcik, J., Strzemski, M., Sowa, I., W´ojciak-Kosior, M., 2018. Methodological aspects of biologically active compounds quantification in the genus Hypericum. J. Pharmaceut. Biomed. 155, 82-90. https://doi.org/10.1016/j. jpba.2018.03.048.
  • Emerenciano, V.P., Milittao, J.S., Campos, C.C., Romoff, P., Kaplan, M.A., Zambon, M., Brant, A.J., 2001. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem. Systemat. Ecol. 29 (9), 947-957. https://doi.org/10.1016/s0305-1978(01)00033-3.
  • Erlund, I., 2004. Review of flavonoids quercetin, hesperetin, and naringenin. Nutr. Res. 24 (10), 551-874. https://doi.org/10.1016/j.nutres.2004.07.005.
  • European Pharmacopoeia, 2016. European Directorate for the Quality of Medicines & HealthCare: European Treaty Series, ninth ed., vol. 50. Council of Europe, Strasbourg. ISBN 9789287181275 9287181276.
  • Fico, G., Vitalini, S., Colombo, N., Tom`e, F., 2006. Hypericum perforatum L., H. maculatum Crantz., H. calycinum L. and H. pulchrum L.: phytochemical and morphological studies. Nat. Prod. Commun. 1 (12), 1129-1132. https://doi.org/10.1177/ 1934578X0600101211.
  • Gagnieu, A., Wilhelm, J.P., 1965. Genre Hypericum. Anon., (Ed.), Travaux biologiques d´edit `a Prof. In: Gagnieu, A. (Ed.), Les chromosomes dans la cellule, la plante, l' esp`ece, Ed. Plantefol, Paris, pp. 472-473.
  • Firoozabady, E., 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220 (4601), 1049-1051. https://doi.org/10.1126/ science.220.4601.1049.
  • Galeotti, N., 2017. Hypericum perforatum (St John' s wort) beyond depression: a therapeutic perspective for pain conditions. J. Ethnopharmacol. 200, 136-146. https://doi.org/10.1016/j.jep.2017.02.016.
  • Galla, G., Basso, A., Grisan, S., Bellucci, M., Pupilli, F., Barcaccia, G., 2019. Ovule gene expression analysis in sexual and aposporous apomictic Hypericum perforatum L. (Hypericaceae) accessions. Front. Plant Sci. 10, 654. https://doi.org/10.3389/ fpls.2019.00654.
  • Gamborg, O.L., Miller, R.A., Ojima, K., 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50 (1), 151-158. https://doi.org/ 10.1016/0014-4827(68)90403-5.
  • Gibbons, B., 2003. Greece: Travellers Nature Guides. Oxford University Press, New York, p. 317. ISBN-13 : 978-0198504375.
  • Henzelyov´a, J., Cell ˇ´arov´a, E., 2018. Modulation of naphthodianthrone biosynthesis in hairy root-derived Hypericum tomentosum regenerants. Acta Physiol. Plant. 40, 82. https://doi.org/10.1007/s11738-018-2664-1.
  • Howard, C., Bremner, P.D., Fowler, M.R., Isodo, B., Scott, N.W., Slater, A., 2009. Molecular identification of Hypericum perforatum by PCR amplification of the ITS and 5.8S rDNA region. Planta Med. 75 (8), 864-869. https://doi.org/10.1055/s-0029- 1185397.
  • Isah, T., 2015. Adjustments to in vitro culture conditions and associated anomalies in plants. Acta Biol. Cracov. Bot. 57, 9-28. https://doi.org/10.1515/abcsb-2015-0026.
  • Jendˇzelovsk´a, Z., Jendˇzelovsky, R., Kuch´arov´a, B., Fedoroˇcko, P., 2016. Hypericin in the light and in the dark: two sides of the same coin. Front. Plant Sci. 7, 560. https://doi. org/10.3389/fpls.2016.00560.
  • Kassambara, A., 2020. Rstatix: pipe-friendly framework for basic statistical tests. R package version 0.6.0. https://CRAN.R-project.org/package=rstatix.
  • Kassambara, A., Mundt, F., 2020. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org /package=factoextra.
  • Kim´akov´a, K., Kim´akov´a, A., Idkowiak, J., Stobiecki, M., Rodziewicz, P., Marczak, L., Cell ˇ´arov´a, E., 2018. Phenotyping the genus Hypericum by secondary metabolite profiling: emodin vs. skyrin, two possible key intermediates in hypericin biosynthesis. Anal. Bioanal. Chem. 410 (29), 7689-7699. https://doi.org/10.1007/ s00216-018-1384-0.
  • Kitanov, G.M., 2001. Hypericin and pseudohypericin in some Hypericum species. Biochem. Systemat. Ecol. 29 (2), 171-178. https://doi.org/10.1016/s0305-1978(00) 00032-6.
  • Kladar, N., Srdenovi´c, B., Grujic ´, N., Bokic ´, B., Rat, M., Anaˇckov, G., Boˇzin, B., 2015. Ecologically and ontogenetically induced variations in phenolic compounds and biological activities of Hypericum maculatum subsp. maculatum. Hypericaceae. Braz. J. Bot. 38, 703-715. https://doi.org/10.1007/s40415-015-0177-3.
  • Koch, M.A., Scheriau, C., Betzin, A., Hohmann, N., Sharbel, T.F., 2013. Evolution of cryptic gene pools in Hypericum perforatum: the influence of reproductive system and gene flow. Ann. Bot-London 111 (6), 1083-1094. https://doi.org/10.1093/aob/ mct065.
  • Kolarˇcik, V., Vaˇskov´a, D., Mirkov´a, M., M´artonfi, P., 2019. Pollen morphology in natural diploid-polyploid hybridogeneous complex of the genus Onosma (Boraginaceae-Lithospermeae). Plant Systemat. Evol. 305, 151-168. https://doi. org/10.1007/s00606-018-1559-3.
  • Koˇsuth, J., Smelcerovic, A., Borsch, T., Zuehlke, S., Karppinen, K., Spiteller, M., Hohtola, A., Cell ˇ´arov´a, E., 2010. The hyp-1 gene is not a limiting factor for hypericin biosynthesis in the genus Hypericum. Funct. Plant Biol. 38 (1), 35-43. https://doi. org/10.1071/FP10144.
  • Kucharikov´a, A., Kim´akov´a, K., Janfelt, C., Cell ˇ´arov´a, E., 2016a. Interspecific variation in localization of hypericins and phloroglucinols in the genus Hypericum as revealed by desorption electrospray ionization mass spectrometry imaging. Physiol. Plantarum 157 (1), 2-12. https://doi.org/10.1111/ppl.12422.
  • Kucharikov´a, A., Kusari, S., Sezgin, S., Spiteller, M., Cell ˇ´arov´a, E., 2016b. Occurrence and distribution of phytochemicals in the leaves of 17 in vitro cultured Hypericum spp. adapted to outdoor conditions. Front. Plant Sci. 7, 1616. https://doi.org/10.3389/ fpls.2016.01616.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547-1549. https://doi.org/10.1093/molbev/msy096.
  • Kusari, S., Sezgin, S., Nigutov´a, K., Cell ˇ´arova ´, E., Spiteller, M., 2015. Spatial chemoprofiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal. Bioanal. Chem. 407, 4779-4791. https://doi.org/10.1007/ s00216-015-8682-6.
  • Kusari, S., Zuhlke, S., Borsch, T., Spiteller, M., 2009. Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70 (10), 1222-1232. https://doi.org/ 10.1016/j.phytochem.2009.07.022.
  • Lan, K., Zhang, Y., Yang, J., Xu, L., 2010. Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. J. Chromatogr. A 1217 (8), 1414-1418. https://doi.org/10.1016/j. chroma.2009.12.031.
  • Lˆe, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. J. Stat. Software 25 (1), 1-18.
  • Lopez, V., Les, F., Iannarelli, R., Caprioli, G., Maggi, F., 2016. Methanolic extract from red berry-like fruits of Hypericum androsaemum: chemical characterization and inhibitory potential of central nervous system enzymes. Ind. Crop. Prod. 94, 363-367. https://doi.org/10.1016/j.indcrop.2016.09.007.
  • Loureiro, J., Rodriguez, E., Dolezel, J., Santos, C., 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot-London 100 (4), 875-888. https://doi.org/10.1093/aob/mcm152.
  • Loureiro, J., Tr´avniˇcek, P., Rauchova, J., Urfus, T., Vit, P., Stech, M., Castro, S., Suda, J., 2010. The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82 (1), 3-21.
  • Lyles, J.T., Kim, A., Nelson, K., Bullard-Roberts, A.L., Hajdari, A., Mustafa, B., Quave, C. L., 2017. The chemical and antibacterial evaluation of St. John' s wort oil macerates used in Kosovar traditional medicine. Front. Microbiol. 8, 1639. https://doi.org/ 10.3389/fmicb.2017.01639.
  • Maggi, F., Ferretti, G., Pocceschi, N., Menghini, L., Ricciutelli, M., 2004. Morphological, histochemical and phytochemical investigation of the genus Hypericum of the Central Italy. Fitoterapia 75 (7-8), 702-711. https://doi.org/10.1016/j.fitote.2004.09.009.
  • Mandrone, M., Scognamiglio, M., Fiorentino, A., Sanna, C., Cornioli, L., Antognoni, F., Bonvicini, F., Poli, F., 2017. Phytochemical profile and α- glucosidase inhibitory activity of Sardinian Hypericum scruglii and Hypericum hircinum. Fitoterapia 120, 184-193. https://doi.org/10.1016/j.fitote.2017.06.020.
  • M´artonfi, P., Repcˇ´ak, M., M´artonfiov´a, L., 2006. Secondary metabolites during ontogenetic phase of reproductive structures in Hypericum maculatum. Biologia 61, 473-478. https://doi.org/10.2478/s11756-006-0079-8.
  • Matzk, F., Hammer, K., Schubert, I., 2003. Coevolution of apomixes and genome size within the genus Hypericum. Sex. Plant Reprod. 16, 51-58. https://doi.org/10.1007/ s00497-003-0174-8.
  • Meseguer, A.S., Aldasoro, J.J., Sanmartin, I., 2013. Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John' s wort (Hypericum). Mol. Phylogenet. Evol. 67 (2), 379-403. https://doi.org/10.1016/ j.ympev.2013.02.007.
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plantarum 15, 473-497.
  • Murin, A., 1960. Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. PMID: 13726940 Stain Technol. 35, 351-353.
  • Napoli, E., Siracusa, L., Ruberto, G., Carrubba, A., Lazzara, S., Speciale, A., Cimino, F., Saija, A., Cristani, M., 2018. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species - a comparative study. Phytochemistry 152, 162-173. https://doi.org/10.1016/j.phytochem.2018.05.003.
  • Nedialkov, P.T., Zheleva-Dimitrova, D., Girreser, U., Kitanov, G.M., 2009. Benzophenone O-glycosides from Hypericum elegans. Nat. Prod. Res. 23 (13), 1176-1180. https:// doi.org/10.1080/14786410802278327.
  • Nielsen, N., 1924. Chromosome numbers in the genus Hypericum. Hereditas 5 (3), 378-382.
  • Nigutov´a, K., Kusari, S., Sezgin, S., Petijov´a, L., Henzelyov´a, J., B´alintov´a, M., Spiteller, M., Cell ˇ´arov´a, E., 2019. Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants. J. Pharm. Pharmacol. 71 (1), 46-57. https:// doi.org/10.1111/jphp.12782.
  • Noack, K.L., 1939. Uber Hypericum - Kreuzungen VI: Fortpflanzungsverh¨altnisse und bastard von Hypericum perforatum. L. Zeitschrift fur inductive Abstammungs- und Vererbungslehre 76, 569-601. https://doi.org/10.1007/BF01740899.
  • Nogueira, T., Medeiros, M.A., Marcelo-Curto, M.J., Garcia-P´erez, B., Luna-Herrera, J., Costa, M.C., 2013. Profile of antimicrobial potential of fifteen Hypericum species from Portugal. Ind. Crop. Prod. 47, 126-131. https://doi.org/10.1016/j. indcrop.2013.03.005.
  • Nurk, N.M., Crockett, S.L., 2011. Morphological and phytochemical diversity among Hypericum species of the Mediterranean basin. PMCID: PMC3364718 Med. Aromat. Plant Sci. Biotechnol. 5 (Special Issue 1), 14-28.
  • Nurk, N.M., Madrint´an, S., Carine, M.A., Chase, M.W., Blattner, F.R., 2013. Molecular phylogenetics and morphological evolution of St. John' s wort (Hypericum; Hypericaceae). Mol. Phylogenet. Evol. 66 (1), 1-16. https://doi.org/10.1016/j. ympev.2012.08.022.
  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O' Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E., Wagner, H., 2020. Vegan: community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.
  • Ornano, L., Feroci, M., Guarcini, L., Venditti, A., Bianco, A., 2018. Anti-HIV agents from nature: natural compounds from Hypericum hircinum and carbocyclic nucleosides from Iridoids. In: Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry, vol. 56. Elsevier, pp. 173-228. https://doi.org/10.1016/B978-0-444-64058-1.00006-6.
  • Park, S., Kim, K., 2004. Molecular phylogeny of the genus Hypericum (Hypericaceae) from Korea and Japan: evidence from nuclear rDNA ITS sequence data. J. Plant Biol. 47, 366-374. https://doi.org/10.1007/BF03030553.
  • Pilepi´c, K.H., Bali´c, M., Blaˇzina, N., 2011. Estimation of phylogenetic relationships among some Hypericum (Hypericaceae) species using internal transcribed spacer sequences. Plant Biosyst. 145 (1), 81-87. https://doi.org/10.1080/ 11263504.2010.544875.
  • Porzel, A., Farag, M.A., Mulbradt, J., Mulbradt, J., Wessjohann, L., 2014. Metabolite profiling and fingerprinting of Hypericum species: a comparison of MS and NMR metabolomics. Metabolomics 10, 574-588. https://doi.org/10.1007/s11306-013- 0609-7.
  • Pradeep, M., Kachlicki, P., Franklin, G., 2020. Simultaneous determination of naphtodianthrones, emodin, skyrin and new bisanthrones in Hypericum perforatum L. in vitro shoot cultures. Ind. Crop. Prod. 144, 112003. https://doi.org/10.1016/j. indcrop.2019.112003.
  • Pustahija, F., Brown, S.C., Boguni´c, F., Baˇsic ´, N., Muratovic ´, E., Ollier, S., Hidalgo, O., Bourge, M., Stevanovi´c, V., Sijak-Yakovev, S., 2013. Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Plant Soil 373, 427-453. https://doi.org/10.1007/s11104-013- 1794-x.
  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  • Raclariu, A.C., Paltinean, R., Vlase, L., Labarre, A., Manzanilla, V., Ichim, M.C., Crisan, G., Brysting, A.K., de Boer, H., 2017. Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS. Sci. Rep-UK. 7 (1), 1291. https://doi.org/10.1038/s41598-017-01389-w.
  • Radulovic ´, N.S., Ethorthevic ´, A.S., Pali´c, R.M., 2010. The intrasectional chemotaxonomic placement of Hypericum elegans Stephan ex Willd. inferred from the essential-oil chemical composition. Chem. Biodivers. 7 (4), 943-952. https://doi.org/10.1002/ cbdv.200900252.
  • Raduˇsien´e, J., Bagdonait´e, E., Kazlauskas, S., 2004. Morphological and chemical evaluation on Hypericum perforatum and H. maculatum in Lithuania. Acta Hortic. 629 (629), 55-62. https://doi.org/10.17660/ActaHortic.2004.629.7.
  • Reynaud, C., 1980a. Contribution `al'´etude cytotaxinomique du genre Hypericum L. en Gr`ece. Bull. Soc. Bot. France, Lett. Bot. 127 (4), 345-353. https://doi.org/10.1080/ 01811797.1980.10824465.
  • Reynaud, C., 1980b. Etude ´cytotaxinomique de quelques Hypericum d' Iran. Biol. Ecol. Meditt. 7 (1), 49-56.
  • Reynaud, C., 1973. Contribution `al'´etude cytotaxinomique du genre Hypericum L. en Turquie. I. Bull. Soc. Bot. France. 120 (5-6), 201-215. https://doi.org/10.1080/ 00378941.1973.10839157.
  • Reynaud, C., 1981. Contribution a`l'´etude cytotaxonomique du genre Hypericum L. en Turquie. II. Biol. Ecol. Meditt. 8, 181-192.
  • Robson, N.K.B., 1957. Hypericum maculatum Crantz. Proc. Bot. Soc. Br. Isles 2, 237-238.
  • Robson, N.K.B., 1958. Hypericum maculatum in Britain and Europe. Proc. Bot. Soc. Br. Isles 3, 99-100.
  • Robson, N.K.B., 1977. Studies in the genus Hypericum L. (Guttiferae) 1. Infrageneric classification. Bull. Nat. Hist. Mus. Bot. 5, 29-355.
  • Robson, N.K.B., 1981. Studies in the genus Hypericum L. (Guttiferae) 2. Characters of the genus. Bull. Nat. Hist. Mus. Bot. 8 (2), 55-226.
  • Robson, N.K.B., 1985. Studies in the genus Hypericum L. (Guttiferae) 3. Sections 1. Campylosporus to 6a. Umbraculoides. Bull. Nat. Hist. Mus. Bot. 8 (2), 55-226.
  • Robson, N.K.B., 1996. Studies in the genus Hypericum L. (Guttiferae) 6. Sections 20. Myriandra to 28. Elodes. Bull. Nat. Hist. Mus. (London), Bot. 26 (2), 75-217.
  • Robson, N.K.B., 2001. Studies in the genus Hypericum L. (Guttiferae) 4(1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). Bull. Nat. Hist. Mus. Bot. 31 (2), 37-88.
  • Robson, N.K.B., 2002. Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull. Nat. Hist. Mus. (London), Bot. 32, 61-123.
  • Robson, N.K.B., 2010. Studies in the genus Hypericum L. (Hypericaceae) 5(2). Sections 17. Hirtella to 19. Coridium. Phytotaxa 4, 127-258. https://doi.org/10.11646/ phytotaxa.4.1.3.
  • Robson, N.K.B., 2016. And then came molecular phylogenetics - reactions to a monographic study of Hypericum (Hypericaceae). Phytotaxa 255 (3), 181-198. https://doi.org/10.11646/phytotaxa.255.3.1.
  • Robson, N.K.B., Adams, P., 1968. Chromosome numbers in Hypericum and related genera. Brittonia 20 (2), 95-106. https://doi.org/10.2307/2805614.
  • Rusalepp, L., Raal, A., Pussa, T., Maeeorg, U., 2017. Comparison of chemical composition of Hypericum perforatum and H. maculatum in Estonia. Biochem. Systemat. Ecol. 73, 41-46. https://doi.org/10.1016/j.bse.2017.06.004.
  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W., 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A 81 (24), 8014-8018. https://doi.org/10.1073/pnas.81.24.8014.
  • Smelcerovic, A., Spiteller, M., 2006. Phytochemical analysis of nine Hypericum L. species from Serbia and the F.Y.R. Macedonia. PMID: 16599273 Pharmazie 61 (3), 251-252.
  • Smelcerovic, A., Zuhlke, S., Spiteller, M., Raabe, N., Ozen ¨, T., 2008. Phenolic constituents of 17 Hypericum species from Turkey. Biochem. Systemat. Ecol. 36 (4), 316-319. https://doi.org/10.1016/j.bse.2007.09.002.
  • Sorsa, V., 1962. Chromosomenzahlen Finnischer Kormophyton I. Annales Academiae Scientiarum Fennicae, series A IV (Finland). Biologica 58, 1-14.
  • Stamenkovi´c, J., Radojkovi´c, I., Dordevi´c, A., Jovanovic ´, O., Petrovi´c, G., Stojanovi´c, G., 2013. Optimizationof HPLC method for the isolation of Hypericum perforatum L. methanol extract. Biol. Nyssana. 4 (1-2), 81-85.
  • Stojanovi´c, G., Dordevic ´, A., ˇSmelcerovi´c, A., 2013. Do other Hypericum species have medical potential as St. John' s wort (Hypericum perforatum)? Curr. Med. Chem. 20 (18), 2273-2295. https://doi.org/10.2174/0929867311320180001.
  • LXXIII Strid, A., Franzen, R., 1981. Report on hieracium pavichii, 4. In: Love ¨, A. (Ed.), IOPB Chromosome Number Reports, vol. 30, pp. 829-842. https://doi.org/10.1002/ j.1996-8175.1981.tb04309.x. TAXON.
  • Suda, J., Kyncl, T., Freiova, R., 2003. Nuclear DNA amounts in Macaronesian angiosperms. Ann. Bot. 92 (1), 153-164. https://doi.org/10.1093/aob/mcg104.
  • Suda, J., Kyncl, T., Jarolimov´a, V., 2005. Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Plant Systemat. Evol. 252 (3), 215-238. https://doi.org/10.1007/s00606-004-0280-6.
  • Suda, J., Krahulcov´a, A., Tr´avniˇcek, P., Krahulec, F., 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55 (2), 447-450. https:// doi.org/10.2307/25065591.
  • Sugiura, T., 1936. Studies on the chromosome numbers in higher plants, with special reference to cytokinesis, I. Cytologia 7 (4), 544-595. https://doi.org/10.1508/ cytologia.7.544.
  • Swift, H., 1950. The constancy of desoxyribose nucleic acid in plant nuclei. PNAS. USA. 36 (11), 643-654. https://doi.org/10.1073/pnas.36.11.643.
  • Tawaha, K.A., Gharaibeh, M.Y., El-Elimat, T., Alali, F.Q., 2010. Determination of hypericin and hyperforin content in selected Jordanian Hypericum species. Ind. Crop. Prod. 32 (3), 241-245. https://doi.org/10.1016/j.indcrop.2010.04.017.
  • Temsch, E.M., Temsch, W., Ehrendorfer-Schratt, L., Greilhuber, J., 2010. Heavy metal pollution, selection, and genome size: the species of the Zerjav ˇstudy revisited with flow cytometry. J. Bot., Le 1-11. https://doi.org/10.1155/2010/596542. Article ID 596542.
  • Tian, J., Zhang, F., Cheng, J., Guo, S., Liu, P., Wang, H., 2014. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum. L. Sci. Rep. 4, 5632. https://doi.org/10.1038/srep05632.
  • Tolonen, A., Hohtola, A., Jalonen, J., 2003. Fast high-performance liquid chromatographic analysis of naphthodianthrones and phloroglucinols from Hypericum perforatum extracts. Phytochem. Anal. 14 (5), 306-309. https://doi.org/ 10.1002/pca.720.
  • Tolonen, A., Uusitalo, J., Hohtola, A., Jalonen, J., 2002. Determination of naphthodianthrones and phloroglucinols from Hypericum perforatum extracts by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 16, 396-402. https://doi.org/10.1002/rcm.591.
  • Tuna, G., Duyu, G., Uzun, K., Yucel, G., Tuna, M., 2017. Determination of nuclear DNA content and ploidy of Hypericum perforatum L. accessions collected from Western Turkey. Tarim. Bilim. Derg. 23 (4), 395-403. https://doi.org/10.15832/ ankutbd.385863.
  • Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B., 2020. Gplots: Various R Programming Tools for Plotting Data. R package version 3.1.1. htt ps://CRAN.R-project.org/package=gplots.
  • Weight, C., Parnham, D., Waites, R., 2007. LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation. Plant J. 53 (3), 578-586. https://doi.org/10.1111/j.1365-313X.2007.03330.x.
  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, second ed. Springer-Verlag, New York, ISBN 978-3-319-24277-4.
  • Winge, O ¨., 1925. Contributions to the knowledge of chromosome numbers in plants. Cellule 35, 303-324.
  • Xenophontos, M., Stavropoulos, I., Avramakis, E., Navakoudis, E., D¨ornemann, D., Kotzabasis, K., 2008. Influence of the habitat altitude on the (proto)hypericin and (proto)pseudohypericin levels of hypericum plants from Crete. Planta Med. 74 (12), 1496-1503. https://doi.org/10.1055/s-2008-1081337.
  • Zdunic, G., Godjevac, D., Savikin, K., Petrovic, S., 2017. Comparative analysis of phenolic compounds in seven Hypericum species and their antioxidant properties. Nat. Prod. Commun. 12 (11), 1805-1811. https://doi.org/10.1177/ 1934578X1701201140.
  • Zeliou, K., Koui, E.M., Papaioannou, C., Koulakiotis, N.S., Iatrou, G., Tsarbopoulos, A., Papasotiropoulos, V., Lamari, F.N., 2020. Metabolomic fingerprinting and genetic discrimination of four Hypericum taxa from Greece. Phytochemistry 174, 112290. https://doi.org/10.1016/j.phytochem.2020.112290.
  • Zheleva-Dimitrova, D., Nedialkov, P., Girreser, U., Kitanov, G., 2012. Benzophenones and flavonoids from Hypericum maculatum and their antioxidant activities. Nat. Prod. Res. 26 (17), 1576-1583. https://doi.org/10.1080/14786419.2011.582468.