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Crop yields in sub-Saharan Africa (SSA) are generally much 
lower than elsewhere. For instance, average maize yield in 
SSA is 1,446 kg ha−1, whereas average global maize yield, 

excluding SSA, is 5,783 kg ha−1 (refs. 1,2), and increasing agricul-
tural productivity in SSA could improve food security and rural  
welfare3–8. Increasing staple crop yield, the amount produced per 
unit cropland area, is also considered an important strategy to miti-
gate crop area expansion, and thus spare land for nature9. It is tech-
nically possible to strongly increase crop yields in many regions of 
SSA because there are large ‘ecological yield gaps’, the differences 
between the actual crop yields and the crop yields that could be 
attained given available technology and the soil and weather condi-
tions3,4. Reported national average ecological yield gaps for rainfed 
maize are as high as 4,800 kg ha−1 for Tanzania and Burkina Faso 
and over 9,000 kg ha−1 for Nigeria and Ethiopia10.

To achieve such substantially higher crop yields, farmers would 
need to intensify their production systems in several ways. While 
there are different approaches to increase yields, in all cases farmers 
would need to use much more fertilizer than they currently do11–13, 
and it is not clear if and/or where this would be economically sen-
sible from the farmers’ perspectives. The profitability of fertilizer 
use depends on the effective local price of fertilizer and crop out-
puts, and on the local crop response to fertilizer. Reported maize 
responses to nitrogen fertilizer across SSA vary between 5 and 53 kg 
grain per kg N applied (refs. 14–19), and fertilizer use has been found 
to be profitable in some regions20–24, but not in others25,26, with con-
siderable variation within countries. It is a challenge to generalize 
such reports because of the spatial variation in input and output 
prices, as well as in crop responses to fertilizer.

To better understand opportunities for increasing staple food 
production in SSA through increased use of fertilizers, we evalu-
ated location-specific ecological and economic conditions and how 
they affect crop responses to and economic returns on fertilizer 
investments. We compiled high-spatial-resolution data on soils, 
weather and local prices of fertilizer and maize grain. To predict 
crop response to fertilizer, we used an empirical machine-learning 
model derived from 12,081 observations from maize trials in 1,141 

unique locations across SSA, and a mechanistic (rule-based) fertil-
izer response model called QUEFTS. Both models were used to pre-
dict maize yield in response to 539 different fertilizer applications 
combinations of nitrogen (0–200 kg ha−1), phosphorus and potas-
sium (0–100 kg ha−1) for all 9 × 9 km spatial resolution grid cells of 
maize production in SSA.

Results and discussion
The empirical model explained 70% of the variation in the fertil-
izer trial data (Supplementary Figs. 2 and 3) whereas the mecha-
nistic model explained only 26%. The empirical model showed a 
plausible crop response to fertilizer that was stronger than the 
mechanistic model at low levels of fertility, but the predicted crop 
response levelled off earlier than the mechanistic model (Fig. 1 and 
Supplementary Figs. 4 and 5). The maize-area-weighted average 
predicted yield with no fertilizer was 1,282 kg ha-1 for the empiri-
cal model and 1,241 kg ha-1 for the mechanistic model (Fig. 1). 
The reported actual maize-area-weighted average yield was 1,723 
kg ha−1 (ref. 27). A nitrogen application of 60 kg ha−1 increased pre-
dicted yields to 3,001 kg ha-1 (empirical model) and 2,147 kg ha−1 
(mechanistic model) (Supplementary Figs. 4 and 5). The correla-
tion between the two models was 0.42 with no application and 0.34 
with a nitrogen application of 60 kg ha−1. The average response rate 
to an nitrogen application of 60 kg ha−1 was 29 kg grain per kg N 
applied for the empirical model and 15 kg grain per kg N applied 
for the mechanistic model. The two models predicted similar crop 
responses for much of East Africa (for example, Ethiopia, Kenya, 
Uganda, Tanzania), but there were large differences in the West 
African Sahel region where the empirical model predicted a stron-
ger response to nitrogen (Fig. 1). The lower nitrogen response of the 
mechanistic model in the West African Sahel was associated with a 
strong sensitivity to low soil phosphorus availability, which has been 
identified as the major constraint to crop and rangeland productiv-
ity in this region28,29.

The average maize-area-weighted price across SSA of 1 kg of 
nitrogen (in urea fertilizer) was US$2.49. It was especially low in 
Kenya (US$1.38) and Ghana (US$1.46), and very high in Burkina 
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Faso (US$3.05) and Togo (US$3.13). The average price of 1 kg of 
maize was US$0.23, ranging from US$0.11 in Uganda to US$0.36 
in Namibia (Fig. 2). The average nitrogen/maize relative price was 
11, that is, the price of 1 kg of nitrogen is equivalent to that of 11 kg 
of maize. Countries with low nitrogen/maize relative prices (favour-
able from a fertilizer use perspective) include South Africa (5.6), 
Kenya (6.6), and Ghana and Namibia (6.9). In contrast, the nitrogen/
maize relative prices are very unfavourable in Mali (18) and Uganda 
(23) (Fig. 2). Prices for other fertilizer products, which also contain 
potassium and/or phosphorus, were also estimated (Methods).

The empirical model predicted higher maximum profitability 
(US$344 ha−1) than the mechanistic model (US$88 ha−1) (Fig. 3). 
The amount of fertilizer needed to achieve maximum profitabil-
ity ranged from 15 to 245 kg ha−1 for the empirical model (average, 

93 kg ha−1) and from 0 to 400 kg ha−1 for the mechanistic model 
(average, 72 kg ha−1) (Supplementary Fig. 5). Both models iden-
tified areas with relatively high profitable fertilizer applications 
(>150 kg ha−1) and yields (>5,000 kg ha−1) in East Africa (western 
Ethiopia and western Kenya) and South Africa. The Sahel is an 
example of a region where the most profitable fertilizer applications 
were relatively low (<80 kg ha−1) and are associated with more mod-
est maize yields (<3,500 kg ha−1).

The maize-area-weighted mean ecological yield gap was 
5,928 kg ha−1. Ecological yield gaps were particularly high in East 
and Central Africa; in West Africa they were around 4,000 kg ha−1; 
while in parts of South Africa they were only about 2,000 kg ha−1 or 
less (Supplementary Figs. 6 and 7). On average the economic yield 
gap—the difference between current yield and the profit-maximizing 
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Fig. 1 | estimated maize yield and nitrogen use efficiency in SSA. a,b, Maize yield estimates (kg ha−1) in the absence of fertilizer for maize-producing areas 
from an empirical (machine learning) model (a) and a mechanistic (rule-based) model (b). c,d, Nitrogen use efficiency estimates (kg grain per kg N) for 
maize-producing areas from an empirical (machine learning) model (c) and a mechanistic (rule-based) model (d).
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Fig. 2 | Spatial variation in prices in SSA. a, Nitrogen price (US$ kg−1) in urea fertilizer. b, Maize price (US$ kg−1). c, Relative price (nitrogen price/maize price).
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yield—was 27% of the ecological yield gap: 2,309 kg ha−1 when com-
puted with the empirical model and 842 kg ha−1 with the mecha-
nistic model (Fig. 4a). The difference between the economic and 
ecologcal yields gaps was small in only few regions, such as South 
Africa, southern Zimbabwe, southern Ghana and western Kenya 
(Fig. 4). The average amount of fertilizer required to fill the eco-
nomic yield gap was 93 kg ha−1 (empirical model) and 72 kg ha−1 
(mechanistic model) (Supplementary Fig. 8).

Depending on the model used, there is no economic yield gap 
on 8–35% of the maize area in SSA (Fig. 5a). Profits from fertil-
izer use are likely to be between US$100 and US$300 ha−1, and the 
relative return of investment (value–cost ratio, VCR) from fertilizer 
use between 1.5 and 2.5 (Fig. 5b,c). The VCR was computed as the 
ratio between the benefit of fertilizer use (grain price × increase in 
grain yield due to the fertilizer application) and the fertilizer cost. 
The difference in the VCR between the two models is striking, with 
the empirical model suggesting that VCR > 2 almost everywhere, 
whereas the mechanistic model suggest that VCR < 2 in most of the 
continent.

Empirical versus mechanistic models. The differences between 
the models highlight the importance of research to develop accu-
rate fertilizer response models, whether empirical, mechanistic or a 
combination of both. The strength of empirical models is that they 
implicitly consider many factors that mechanistic models do not and 
are good at predicting within the domain of observations. However, 
empirical models can produce odd artefacts because of unbalanced 
data and are not good at extrapolation (for example, predicting 
yields for very high fertilizer applications that are not observed). 

Mechanistic models have plausible response curves and interac-
tions, but their strength is explanation rather than prediction30.

Fertilizer response rates from farm survey data tend to be lower 
than from experimental data31,32. Some of this difference may be 
due to survey data inaccuracy33–36, but trials may be biased towards 
agriculturally favourable areas and reflect systematically bet-
ter responses on small experimental plots compared with larger 
fields on actual farms which cannot be managed as intensively37. 
For these reasons, the response rates estimated with the empirical 
model may be higher than the rates many farmers can realistically 
achieve. Future work could attempt to build biology-guided empiri-
cal learning models by integrating the concepts and general shape of 
response functions and interactions from a mechanistic model with 
the flexibility of a machine-learning approach, but progress can 
only be made if and when more empirical data become available. 
The open data from the CGIAR38 enabled the construction of the 
empirical model, and such initiatives need to be strengthened and 
expanded to allow for progress to be made in this type of research.

Prices may vary considerably over space35 and time, seasonally 
and interannually39, and it is not obvious how best to account for 
this temporal variability when modelling economic returns. Even 
if imperfect, our price estimates are almost certainly more usefully 
reflective of farmers’ economic realities than the common assump-
tions of spatially constant prices in a country40. Prices will also 
change over time because of changes in the global economy (for 
example, energy prices) but also in national and regional economies. 
For example, an increased supply of fertilizer (and/or improved 
competition in input markets) should drive fertilizer prices down, 
and increased urban food demand may raise maize prices.
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Fig. 3 | Maximum profitability of fertilizer use and maize yield in SSA. a,b, Maximum profitability of fertilizer use (US$ ha−1) computed with an empirical 
(machine learning) model (a) and a mechanistic (rule-based) model (b) for maize in SSA. c,d, Maximum maize yield (dry matter, kg ha−1) in SSA 
computed with an empirical (machine learning) model (c) and with a mechanistic (rule-based) model (d).

NAtuRe Food | www.nature.com/natfood



Articles NAture FOOd

The case for the economic yield gap. While ecological yield gap 
analysis—the comparison of attainable yield with actual crop 
yield—is useful for understanding opportunities for agricultural 
development, under the prevailing conditions it is not a reason-
able goal to ‘fill the ecological yield gap’ in SSA as this would be 
uneconomic and the large amounts of fertilizer required would have 
strong negative environmental consequences13. Our economic yield 
gap assessment identifies more realistic upper limits for agriculture 
intensification. In most regions of SSA, given the crop response to 
fertilizer, the fertilizer and maize price ratio present a strong barrier 
to achieving higher yields.

It is likely that our economic yield gaps are somewhat inflated. 
This is because we did not account for production risk due to inter-
annual rainfall variability or the cost of insurance to protect against 
that41. In some regions, long-term weather forecasts may be a fea-
sible way to help farmers avoid investing too much in fertilizers in 
years with drought. Furthermore, farmers in remote rural settings 
generally face less favourable input–output price ratios than farm-
ers in less remote settings42,43. While isolation (distance to large cit-
ies) was a predictor in our price model, we had insufficient data 
to estimate the additional ‘last-mile’ transportation cost of fertilizer 
from a local market to any given farm location. Estimating effective 
farm-gate prices is an important goal for future work. Input supply 
constraints (including late delivery of inputs), limited liquidity at the 
time of investment and uncertainty about crop outcomes or market 
conditions (such as output prices at the time of sale) are additional 

reasons why poor farmers might be reluctant to invest in technolo-
gies with positive but relatively small expected returns7. The role 
of risk—in both production outcomes as well as marketing out-
comes—is a particularly important factor in the decision-making of 
risk-averse smallholders44. Some kinds of risk may have important 
spatial dimensions (for example, food price volatility increases with 
remoteness45), which suggests that explicitly modelling uncertainty 
in returns on production technology over large spatial scales would 
be a useful area of further analysis. For all the reasons mentioned 
above, our estimates of profitability are conservative, and the diver-
gence between economic and ecological yield gaps are likely to be 
even wider.

The effect of the agricultural input subsidy programme in Malawi 
is an example of how lower costs incentivized greater fertilizer usage 
which in turn led to crop productivity gains46. Such interventions 
may not be economically feasible, however, or may have unin-
tended negative economic consequences7. While other approaches 
to decreasing fertilizer prices could help—for example, through 
improving the efficiency of input supply markets—support for the 
use of mineral fertilizers together with other agronomic practices to 
improve soil fertility and yield—such as agroforestry and crop rota-
tion, intercropping with legumes or weed management—could be 
both ecologically and economically prudent47–49. For example, while 
nitrogen fertilizer use will generally increase maize yields, in some 
regions fertilizer use efficiency can also be improved by introduc-
ing more legumes in the cropping system50,51. However, the nitrogen  
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Fig. 4 | economic and relative yield gaps for maize production in SSA. a,b, Economic yield gaps computed with a mechanistic model (a) and with an 
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contribution to other crops from legumes is low in regions with 
acidic soils with limited phosphorous availability52. For these rea-
sons, instead of blanket recommendations for large heterogeneous 
areas53,54, fertilizer recommendations could be tailored to small 
regions and consider localized environmental conditions and vari-
ability, prices and agronomic practices. Approaches such as those 
we develop in this paper can help to guide nutrient management 
strategies which better reflect heterogeneity in the soil, climatic 
and economic conditions which affect fertilizer performance and 
returns on farm-level investments. Agricultural intensification has 
occurred when it is economically attractive55 or a necessity56, but 
the relatively low economic benefits of staple crop intensification 
suggest that it is important to compare these to potential gains from 
other investments, be it on-farm or off-farm57.

Methods
Empirical model. We built a random forest model of maize yield in response 
to fertilizer applications and environmental conditions, using the R packages 
‘randomForest’58 and ‘terra’59 for the spatial data. To train the model, we 
compiled a dataset of georeferenced maize observations associated with different 
levels of fertilizer application. We used the GARDIAN38 search engine to 
discover datasets and publications from repositories across the international 
agricultural research centres of CGIAR and others. Search keywords included 
Africa fertilizer, maize, fertilizer trials, nitrogen, macronutrient, soil fertility and 
nutrient omission trials. We compiled 227 datasets that had 12,081 maize yield 
observations distributed in 1,141 unique locations across SSA (Supplementary 
Fig. 1 and Supplementary Table 1).

In the model, we used the following predictor variables for the gridded soil 
properties data: effective root zone depth for maize60; soil pH (H2O); extractable 
phosphorous content (mg 100 kg−1); and soil organic carbon content (g kg−1) for 
the 0–30 cm topsoil61 (Supplementary Table 2). In addition, we used mean annual 
temperature (°C)62 and monthly rainfall by year63. We used monthly rainfall data 
for the years that matched the years and growing seasons of the yield data.

Mechanistic model. We used WOFOST64 implemented in Rwofost65 to compute 
water-limited yield (Yw) for maize, as determined by cultivar characteristics, the 
amount of incoming solar radiation, ambient temperature, carbon dioxide and 
water supply66. We used ERA5-Land daily weather data63 that we bias-corrected 
with WorldClim62 (Supplementary Table 2). The RZ-PAWHC dataset60 was used 
as input for soil water balance computation. We modified default crop parameters 
for the temperature sum (°C d−1) from emergence to anthesis and from anthesis to 
maturity to simulate a very early (600 and 650 °C d−1), early (700 and 800 °C d−1), 
medium (800 and 950 °C d−1) and late (900 and 1,000 °C d−1) variety. We ran the 
model for all soil cells combined with daily weather using an emergence day on 
the 15th of each month for each of the 18 years (1997–2015). To select a plausible 
growing season, we computed the average yield for each month, and the maximum 
of the resulting 12 values was used as the Yw for each variety; that is, for each soil 

cell we selected the sowing date that on average gave the highest Yw during the  
18 yr period. We report the average yield for the best performing variety.

Yield responses to nitrogen, phosphorus and potassium fertilizer applications, 
given a few soil properties were also estimated with the Quantitative Evaluation of 
the Fertility of Tropical Soils (QUEFTS) model67,68 as implemented in Rquefts61,69. 
QUEFTS was originally developed for maize under rainfed conditions. The model 
assumed that nitrogen, phosphorus and potassium are the main growth-limiting 
factors. QUEFTS estimates native soil supply of nitrogen, phosphorus and 
potassium from soil parameters such as pH and organic matter content. Yield 
is computed based on an estimate of actual nutrient uptakes and crop nutrient 
requirements and cannot exceed water-limited yield. We computed the base 
(unfertilized) soil supply of nitrogen, phosphorus and potassium after calibrating 
with the zero-fertilizer treatments of the compiled trial data soil chemical 
properties data from ref. 68 (Supplementary Table 2).

We calibrated the native nutrient supply from soils (in the absence of fertilizers) 
that QUEFTS uses with the experimental data described above; and we used the 
default response rate parameters for maize that come with the model. We evaluated 
the QUEFTS model predictions using the trial data used for the empirical model 
described above.

Price data. We used a database of fertilizer prices in markets across 18 countries 
in SSA35 to predict the fertilizer price in these countries (Supplementary Table 4). 
As we had most data for urea (a source of inorganic nitrogen), we fitted random 
forest models of urea prices as a function of longitude, latitude and additional 
predictor variables that capture aspects of market access (distance to the nearest 
port; town with over 50,000 inhabitants; town with over 100,000 inhabitants; 
and town with over 250,000 inhabitants)70, demand (urban and rural population 
density)71, cropland72 and the environment (annual precipitation)62 (Supplementary 
Table 3). The most important variables in the country-level random forest models 
were latitude and longitude, followed by rural population density, precipitation and 
population density.

For countries for which we had no market data we built another model by 
pooling all the data and using all the predictor variables except for location 
(longitude and latitude). We modelled relative (to the countries’ reported average 
price) urea price within all countries and multiplied that by the reported price 
to get subnational price variation that matches the average national price. We 
estimated the price of other fertilizers using linear regression models where the 
urea price was the sole predictor variable35. The slopes (price relative to the urea 
price) were US$1.20 kg−1 for diammonium phosphate, US$1.14 kg−1 for triple 
superphosphate, US$1.03 kg−1 for NPK (15–15–15) and US$0.97 kg−1 for potassium 
chloride (Supplementary Fig. 8).

We used a database of cereal prices across 168 markets and 30 countries in  
SSA compiled by Cedrez et al.39 (Supplementary Table 5 and Supplementary Fig. 9);  
and followed their methodology to predict maize price at the beginning of the 
harvesting season as a function of access to market (travel time to market) and 
precipitation (Supplementary Table 3). The most important variables were latitude, 
longitude and precipitation.

Crop response predictions and profitability. We predicted yield responses to 
539 different combinations of nutrient applications for each of the 442,156 grid 
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cells with maize. Nitrogen treatments were 0 and from 10 to 100 kg ha-1 in six steps 
of 15 kg ha-1, and from 100 to 200 kg ha−1 in four steps of 25 kg ha−1; phosphorous 
and potassium treatments were 0 and from 10 to 100 kg ha−1 in steps of 15 kg ha−1. 
For each cell, we ran both models 539 times. There were 44,156 cells with maize, 
thus we had a total of 373,013 × 539 × 2 = 476,644,168 runs. We used the ‘fertApp’ 
function from the R package Rquefts to compute, for each fertilizer treatment 
(for example, 50N–30P–0K), the optimal fertilizer application rates given a target 
nutrient application, the available fertilizer blends (for example, diammonium 
phosphate, NPK 15–15–15, potassium chloride, triple superphosphate, urea) and 
their prices. Finally, we multiplied the computed fertilizer application cost by 1.10 
to account for the cost of the investment (that is, 10% interest).

We computed profitability (US$ ha-1) for each fertilizer treatment and location 
as follows: we multiplied the difference in yield achieved by a treatment (for 
example, 50N–30P–30K) versus the control (0N–0P–0K) (kg ha-1) by the maize 
price (US$ kg-1) and then subtracted the cost of the fertilizer (US$ kg-1) from that 
amount. For each location, we identified the maximum profitability that can be 
achieved, which of the 539 fertilizer treatments had the maximum profitability, and 
the yield and fertilizer use associated with that maximum profitability. Note that 
our measure of profitability is not inclusive of other costs associated with fertilizer 
use, such as labour.

Ecological and economic yield gaps. We computed the ecological yield gap as 
the difference between the attainable yield (that is, the water-limited yield, or the 
maximum yield that can be achieved without irrigation) computed with WOFOST 
and the reported current maize yields27. We computed the economic yield gap as 
the difference between the profit-maximizing yield and the current yield. Finally, 
we computed the relative yield gap to compare differences in the ecological and 
economic yield gaps for each location.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The experimental data compiled for the current study are available at https://
dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/O9FYCV.

Code availability
The R code used is available at https://github.com/reagro/ecyldgap.
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