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Abstract—In the power system decarbonization roadmap,
novel grid management tools and market mechanisms are fun-
damental to solving technical problems concerning renewable
energy forecast uncertainty. This work proposes a predictive
algorithm for procurement of grid flexibility by the system
operator (SO), which combines the SO flexible assets with active
and reactive power short-term flexibility markets. The goal is to
reduce the cognitive load of the human operator when analyzing
multiple flexibility options and trajectories for the forecasted
load/RES and create a human-in-the-loop approach for balancing
risk, stakes, and cost. This work also formulates the decision
problem into several steps where the operator must decide to
book flexibility now or wait for the next forecast update (time-
to-decide method), considering that flexibility (availability) price
may increase with a lower notification time. Numerical results
obtained for a public MV grid (Oberrhein) show that the time-
to-decide method improves up to 22% a performance indicator
related to a cost-loss matrix, compared to the option of booking
the flexibility now at a lower price and without waiting for a
forecast update.

Index Terms—Uncertainty, forecasting, risk, electrical grid,
flexibility, decision-making.

I. INTRODUCTION

IN recent years, the integration levels of renewable en-
ergy sources (RES) have been steadily increasing since

the concern about global warming and energy dependency
pushed nations worldwide to set ambitious RES targets. In
this context, Holttinen et al. reported RES curtailment and
congestion problems in several power systems [1], e.g., wind
energy dispatch-down level in Ireland rising from 5.3% to
11.4%; 30% increase of RES curtailment in Chile due to
grid congestion and inflexible thermal generators; significant
transmission constraints remain in Germany due to delayed
grid reinforcements. A survey from CIGRE showed that RES
is expected to have more impact on the need for short-term
flexibility (from 15-min to 12-hours) compared to real-time
and very short-term time horizons [2].

The literature about modern grid planning methodologies
and ongoing revisions of the regulatory frameworks consider
the use of active measures (flexibility from local grid re-
sources) to postpone traditional grid investments while ac-
commodating ambitious RES targets at the same time [3].
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This paradigm will require the design of flexibility markets for
grid-centric services like congestion management and voltage
control, which range from voluntary short-term procurement
up to mid-/long-term tenders [4], complemented with regu-
lated (or non-market) mechanisms like non-firm connection
agreements, dynamic grid tariffs or bilateral contracts.

Therefore, it is necessary to revisit the traditional power
system operating processes and software in control rooms, in-
cluding human-machine interaction [5]. In particular, the high
RES integration levels require a risk-aware decision-making
structure where the activation of flexibility can be planned to
ensure sufficient capacity to handle the forecasted technical
issues. In this sense, it is crucial to provide fast decision-aid
to operators and reduce the volume of information, particularly
under load and RES forecast uncertainty.

A. Literature Review
The optimal power flow (OPF) method (and its variants)

is the standard approach for short-term management of grid
flexibility. With the impact of RES forecast uncertainty in the
grid operational planning, the risk-based OPF and OPF under
forecast uncertainty problems are timely and relevant and,
in [6], the state-of-the-art methods, are categorized as a) risk-
neutral and risk-averse two-stage stochastic optimization, b)
chance-constrained optimization, c) robust optimization, and
d) distributionally robust optimization. For the sake of com-
pleteness, we present several OPF-based approaches below.

In stochastic and chance-constrained (CC) optimization, the
uncertainty is represented via a probability distribution. Zhang
and Li proposed a CC-OPF with a back-mapping approach
and a linear approximation of the power flow equations where
uncertainty follows a multivariate Gaussian [7]. Roald et
al. described a CC-OPF model solved using a randomized
optimization technique, representing RES and load forecast
uncertainty via scenarios [8]. This work was generalized to
the AC OPF problem in [9]. Mezghani et al. proposed a data-
driven method based on sparse regression to reduce the number
of scenarios required to solve the stochastic AC OPF [10].

Robust optimization does not make any specific assumptions
on probability distributions, and the uncertain parameters are
assumed to belong to a deterministic uncertainty set. Soares
et al. described a two-stage robust AC OPF for a distribution
system operator (DSO) contracting market-based DER flexi-
bility [11], where uncertainty is defined as the convex hull.
Guo et al. considered ambiguity sets for multi-period control
policies robust to forecast and sampling errors, using different
linearizations of the AC power flow equations [12].

Reinforcement learning is also emerging as an alterna-
tive to traditional mathematical optimization for the OPF
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problem, when formulated as a sequential Markov decision
process [13]. Yet, integration of forecast uncertainty remains
an open challenge for RL, at least for large-scale grids.

The present paper follows a different direction from the
OPF-based methods and, instead of formulating a mathe-
matical optimization problem, it proposes a decision-making
sequence where the human operator is directly involved in
the interpretation of action-cause relations leveraging from
sensitivity indices, and its attitude towards risk is integrated
to find the preferred solution. This approach is aligned with
the industry’s need to have simple and easily interpretable
control rules and a limited number of actions, such as the MV
generation curtailment algorithm, developed by EDF R&D for
Enedis (French DSO) to deliver day-ahead constraints forecast
and generators’ limitation calculation until the real-time set-
points are sent to generators [14]. An approach based on
sensitivity indices was proposed in [15] to forecast which RES
power plants must be curtailed and to what extent and ranks
the flexible resources solely based on the sensitivity value.

The present paper also formulates the decision-making
problem in a time-to-decide fashion where the human operator
must decide to i) book flexibility now (and pay an availability
price) or ii) wait for the next forecast update and book
flexibility later (if necessary). This decision problem has been
around in other domains, and one illustrative example is the
time-dependent version of the cost-loss ratio as described by
Murphy and Ye in [16]. Other examples are: Wanke and
Greenbaum, when exploring airspace congestion resolution,
formulated a three-stage decision tree to find the optimal time
and type of action [17]; Jewson et al., in meteorological fore-
casts, proposed an extended cost–loss model to decide whether
to base a decision on the first forecast or to wait for the second
forecast [18]. The same authors also suggested a method of
effectively conveying information regarding forecast changes
to human decision-makers [19]. This was achieved by in-
troducing different metrics, e.g., mean absolute change and
probability of change of size x.

In the energy domain, specifically in terms of energy trad-
ing, Tankov and Tinsi proposed stochastic differential equa-
tions to describe the evolution of the forecast error as new in-
formation becomes available [20]. Bellenbaum et al. designed
a two-stage stochastic regional flexibility market mechanism
that integrates the trade-off between early procurement at
low-cost and later procurement at a higher cost but with
better forecasts and knowledge about the flexible load [21].
Mühlpfordt et al. established a relation between the price
of uncertainty and the total variational distance between the
densities of the in-hindsight OPF and CC-OPF solutions [22].
The price of uncertainty can be used to decide between solving
technical problems in real-time or in predictive mode.

B. Contribution

Compared to the state-of-the-art discussed above, the main
contributions from this paper are the following:

• A predictive grid management framework that uses sen-
sitivity indices and risk metrics to rank flexibility options
and provide a summarized view to human operators

in multi-criteria problems, taking the form of risk vs
cost curves. This approach stands in contrast to OPF-
based methods [6] that, despite their mathematical in-
terpretability, do not enable human operators to analyze
action-cause relations extracted from sensitivity indices.
Furthermore, it facilitates enhanced interaction between
operators and the decision-aid tool, specifically by allow-
ing them to rank and explore various flexibility solutions
and adjust the risk level based on the decision stakes. This
relationship between risk level and stakes has not been
previously studied in prior works about stochastic [8], [9]
and robust optimization [11], [12]. As opposed to [14],
the proposed approach includes information about fore-
cast uncertainty and, conversely to [14], [15], it proposes
a multi-criteria decision problem, ranking the flexible re-
sources according to different criteria (instead of selecting
resources solely based in the highest sensitivity).

• Introduces a time-to-decide formulation for the decision-
making problem, which was overlooked in the state-of-
the-art formulations [9]–[12], [14], [15], and that holds
particular relevance in dynamic environments, where
frequent forecast updates are necessary for adapting to
changing conditions. While [21] introduces a flexibility
market mechanism, it overlooks the methodology em-
ployed by the system operator to estimate flexibility
needs. Thus, the proposed approach is complementary
to [21] as it addresses this crucial aspect. Moreover,
unlike [22], the proposed approach allows the operator to
interpret risk-cost relations and make decisions that rely
not solely on a distance metric. Additionally, this work
presents a novel concept known as second-level forecast-
ing. This novel approach involves employing a second-
level model to forecast the uncertainty (represented by
a set of quantiles) of future (uncertainty) forecasts. It
was determined through experimentation that an encoder-
decoder deep learning model showed higher accuracy
than other approaches. This approach contrasts with [18],
which applies a parametric approach inadequate for mod-
eling RES forecast uncertainty.

C. Structure

The rest of this paper is organized as follows: Section II
describes the conceptual framework; Section III describes
how knowledge regarding flexibility modeling is derived for
utilization in the decision-aid phase of Section IV; Section V
presents the numerical results for the Oberrhein MV grid; the
conclusions and future work are discussed in Section VI.

II. CONCEPTUAL FRAMEWORK

A. Flexibility market operation

Based on the reviewed commercial flexibility market plat-
forms [4] and the survey recently conducted by the Joint
Research Centre (JRC) with companies like EPEX SPOT or
Enedis [23], this work assumes that both long-term and short-
term products will probably be requested in future flexibility
markets, subject to the specific network needs in each case.
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The long-term flexibility products are designed to defer net-
work investment, while the short-term flexibility products tar-
get congestion management and the strengthening of network
resilience. However, a significant challenge lies in determining
the appropriate price caps (or annual flexibility budget), which
is comparatively more straightforward regarding long-term
products associated with investment deferral [24].

According to JRC, while the present state of local flexibility
markets in Europe does not provide a conclusive outlook
regarding their future characteristics, a notable finding from
the interviews is the anticipation of transitioning towards short-
term flexibility markets [23]. The main reasons are [23]:
a) by enabling smaller assets (e.g., EVs) to participate in
the procurement process, there is enhanced liquidity that
arises due to their ability to accurately forecast its flexibility
potential only in the short-term; b) improved grid forecasts
closer to real-time mitigate volume risk for network operators.
Nevertheless, long-term contracts are expected to persist as a
means of securing reliability and integrating flexibility into the
long-term expansion of networks.

The focus of this work is on the short-term horizon,
drawing inspiration from successful System Operator pilots
such as the CoordiNet project Swedish pilot [25], sthlmflex
project with NODES platform [23], and the Redispatch 2.0 in
Germany [26]. Additionally, insights are drawn from market
operator initiatives such as Enera Flexmarkt, operated by
EPEX SPOT [23], and OMIE with the IREMEL platform [4].
It is important to note that this methodology extends beyond
flexibility market procurement. It can also be applied for
defining curtailment signals, particularly for RES with non-
firm connection contracts (like Enedis in France [14]).

For this work, the following assumptions were made. Firstly,
day-ahead and intraday flexibility markets occur before each
energy trading session, which aligns with the flexibility market
platforms offered by NODES, GOPACS, and Enera [4]. The
market operator collects the bids submitted by FSP and pro-
vides this information to Transmission System Operator (TSO)
and/or DSO. The flexibility needs can be revised in the intra-
day sessions with updated load and RES forecasts and changes
in the flexibility band. Secondly, availability and dispatch
payments are used for contracted flexibility. Thirdly, a pay-
as-bid pricing method is considered for flexibility payment,
widely recognized as the most common payment scheme [4].

The availability price is a mitigation measure to ensure
enough flexibility volume in the market [4]. However, it
is important to acknowledge that liquidity issues related to
flexibility markets can still arise. For instance, the price cap es-
tablished through the long-term analysis [24] may significantly
limit revenue opportunities for Flexibility Service Providers
(FSPs) in technical constraints management markets, partic-
ularly for those already involved in more lucrative markets
such as wholesale energy trading and frequency control. While
addressing liquidity problems falls beyond the scope of this
work, the proposed methodology offers valuable contributions
to mitigate this issue. Firstly, the implementation of second-
level forecasting effectively reduces the overall cost associated
with flexibility use, as shown in section V. This approach min-
imizes expenses and discourages an open-book mentality in
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Fig. 1: Building blocks of the risk-aware flexibility procurement

the process of flexibility procurement. Secondly, the proposed
methodology also serves as a valuable tool to communicate
the potential risk of flexibility scarcity to the operator, as
illustrated in section V-E.

Furthermore, without loss of generality, this work considers
hourly market intervals and three forecasting moments: i) day-
ahead forecast (for D+1) with numerical weather predictions
(NWP) generated at 0h00, i.e., between t+24|t and t+48|t;
ii) updated NWP data at 12h00, i.e., between t + 12|t and
t + 36|t; iii) 2-hour forecast before delivery, which can be
used for intraday participation, i.e., t+ 2|t.

Finally, the study and integration of various TSO-DSO
coordination schemes are outside the scope of this work.
However, it is important to note that information from both
TSOs and DSOs can be effectively integrated into the proposed
methodology, as elaborated in the subsequent section.

B. Methodology

Fig. 1 presents the building blocks of the proposed method-
ology. It departs from a large volume of information, namely
the full electrical grid, RES/load uncertainty forecasts, and
a set of flexibility options, i.e., dispatchable distributed gen-
eration, RES curtailment, demand response (DR), storage,
network reconfiguration, on-load tap changer (OLTC) and
capacitor banks/reactor shunts (CB/RS). Step by step, all this
information is filtered and finally condensed into a risk-cost
curve from where the human operator can select a preferred
solution. This approach reduces the cognitive load of human
operators and offers simplicity when analyzing the multiple
flexibility options under uncertainty. Moreover, it enables
simultaneous analysis of multiple lines/buses with a high
probability of technical problems. The load and RES forecast
uncertainty is represented by random vectors (or scenarios)
that can be generated by physical or statistical approaches and
capture the spatial dependency of forecast errors.

The first step focuses on running a power flow for each sce-
nario, and computing, for each node and branch, the probabil-
ity of having an over/under-voltage and congestion issue. The
operator can set a minimum probability to select and analyze a
reduced set of critical buses/lines. For this subset of elements,
sensitivity indices (see section III-A) relating active/reactive
power and the line’s current and node’s voltage are computed.
Then, in a second step, the flexibility options are filtered
based on a sensitivity index minimum threshold to identify
the most “relevant” options for a specific technical problem.
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The third step includes performing a flexibility ranking with
the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) method [27] (section IV-A), considering
a set of risk metrics that measure how effective a flexibility
option is in solving a technical problem under uncertainty.
It can also include probabilistic information (risk metrics)
from the TSO or DSO associated with conflicting actions.
Finally, the final step focuses on the design of a risk-cost curve
(section IV-B) by combining a subset of flexibility options
(e.g., 3 to 5 options) selected by the operator and considering
only the non-dominated solutions. The flexibility capacity of
these options may also be constrained in the curves due to
conflicting actions arising from the activation of flexibility
by both DSO and TSO. The risk can be represented by
different metrics, and without loss of generality, this work
uses the probability of having a congestion or under/over-
voltage problem. To obtain a preferred solution, we consider
two decision-making paradigms: one based on the maximum
risk threshold and the other based on a trade-off value (sec-
tion IV), where the risk threshold and trade-off values are
conditioned by the stakes level (i.e., risk of cascading failure)
and operator’s preferences. Note that this relation between risk
and stakes borrows the fundamental idea behind confidence-
based decision-making theory [28].

The methodology above does not provide information about
the best moment to book flexibility, considering that i) forecast
uncertainty will decrease with time and ii) the flexibility
availability price might increase with a shorter notification
time. Thus, a time-to-decide problem is formulated based on
the second-level forecasting concept (section III-D), where
the goal is to forecast how the RES and load uncertainty
forecasts change over time, as new information is available.
The term second-level forecast comes from the fact that we
are, in essence, computing a forecast of forecast uncertainty.
For the flexibility price, it is assumed that the SO has a forecast
or that the price offers with different notification times are
available in advance.

The second-level forecast of conditional quantile ⌢
q
α

t+k|t,
Eq. 1, generated with information available at time instant
t (forecast launch time) for time interval t+ k, with nominal
proportion α (0 < α < 1), and a forecast update rate of z
time intervals, corresponds to the conditional expected value
of quantile q̂αn,t+k|t+z of the next forecast (i.e., generated at
t+ z) for the same time interval t+ k. f is the second-level
forecasting model for each conditional quantile α, and uses
as covariates i) quantile forecasts q̂αt+k|t generated at t and ii)
engineered features that explain the level of uncertainty in the
power forecast generated at t and exogenous variables such as
NWP, both denoted by Xα

t+k|t with l variables, plus a random
shock et+k|t.

⌢
q
α

t+k|t = E[q̂αt+k|t+z|q̂
α
t+k|t,X

α
t+k|t]

= f
(
q̂αt+k|t, x̂

1
t+k|t, . . . , x̂

l
t+k|t

)
+ et+k|t

(1)

Fig. 2 depicts the integration of second-level forecast-
ing into the time-to-decide problem, considering: i) forecast
launched at 0h00 (t) for lead-time t + 30 (day-ahead), and
ii) two second-level forecasts for the forecast that will be
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Fig. 2: Time-to-decide framework and risk-stakes relation. The
integration of second-level forecasts into the time-to-decide problem
generates risk-cost curves for a) forecast launched at 0h00 for lead-
time t+30|t, and b) two second-level forecasts, one for the t+18|t
forecast (NWP updated at 12h00), and another for the t+2|t forecast.
The preferred solution for the human operator is selected from a risk
threshold conditioned by the risk-stakes relation

generated 12 hours later with NWP updated at 12h00 (i.e.,
⌢
q
α

t+30|t = E[q̂αt+30|t+12|q̂
α
t+30|t,X

α
t+30|t]), and another for the

forecast that will be generated 2-hours before delivery time
(i.e., ⌢

q
α

t+30|t = E[q̂αt+30|t+28|q̂
α
t+30|t,X

α
t+30|t]). This leads to

three risk-cost curves that inform the operator about the possi-
ble outcome of waiting for the next forecast to book flexibility,
each one corresponding to three different forecasting launch
times for the “delivery hour”, t+30|t, t+18|t, and t+2|t. In
this illustrative example, the preferred option would be to wait
for the next forecast since the curve obtained with the second-
level forecast for t + 2|t indicates a lower flexibility cost for
the same risk level.

Finally, it is essential to mention that contingencies were not
considered. However, the methodology can be easily extended
to include information about the probability of contingencies
in the risk modeling and combined with the scenarios.

III. KNOWLEDGE CONSTRUCTION FOR FLEXIBILITY
PROCUREMENT

A. Sensitivity indices (SI)

1) Analytical method: The Ybus compound matrix
method [29] was used for the analytical derivation of node
voltages and line currents SI. Using the complete admittance
matrix of the network, this method takes advantage of the
sparsity in the admittance matrix. It achieves computational
efficiency surpassing that of Jacobian-based methods.
Moreover, it applies to networks with any number of slack
buses. For topology reconfiguration, the impedance (Zbus)
matrix method was used to obtain SI (distribution factors)
due to its linearity and computational efficiency [30].

2) Machine learning proxy: The SI vary with the grid oper-
ating conditions, meaning each scenario requires an analytical
calculation. To decrease the computational time due to its
fast inference time, the gradient boosting trees (GBT) model
is used as a proxy to extract functional knowledge relating
SI and grid operating conditions. Firstly, a large set of grid
operating scenarios is generated with the NORTA (NORmal To
Anything) method [31]. Then, the SI are analytically computed
for this generated set of grid operating scenarios, and the
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GBT is fitted over this data using active and reactive nodal
power injection as input features. To keep low the number
of input variables while leveraging on the localized impact
of active/reactive power nodal injections, the Spearman rank
correlation coefficient was applied to measure the correlation
between the time series of nodal power injection and the SI.
Only the nodal injections exhibiting a correlation above 0.5
were selected as input features.

The GBT model is then used to derive SI δt+k
i→j,s (Eq. 2)

for the forecasted scenario s, and for grid element i (i.e.,
line/bus) and flexible resource j, and using as input a matrix
of forecasted active P̂t+k

s and reactive Q̂t+k
s power nodal

injections for lead-time t + k. The mean absolute percentage
error of estimated SI with GBT was less than 1%.

δ̂t+k
j→i,s = f(P̂t+k

s , Q̂t+k
s ) (2)

The analytical method is only used for generating the training
set of the GBT proxy, using network operating scenarios
generated by the NORTA method. Subsequently, the GBT
model is used in the remaining steps of the methodology.

B. Interpretation from sensitivity indices

The SI relate the rate-of-change in nodal voltage/line current
as a linear function of active/reactive power modulation,
variation in CB/RS elements, or OLTC tap position. This
information could assist the human operator in figuring out
the causal relationship between the technical issue and the
flexibility options. Fig. 3 depicts a causality tree divided into
two levels (unrelated to the network topology), which is help-
ful to guide the human operator analysis to the most suitable
flexibility options. In Level 1, the SI represent the influence
of each flexibility option on reducing the overload in line i
via downward/upward (active power) action over the current
operating point of each bus j. Since the activation of flexibility
can have an inverse impact on other grid elements (e.g., cause
congestion in another line), the SI in Level 2 represent the
negative (inverse) impact on other grid elements, which can
be used to constrain the activated flexibility in each node j.

From the SI and scenarios, it is possible to compute the
contribution Cj of each grid node (load or generator) j forecast
uncertainty to the forecasted technical problem in grid element

i, via the average deviation of a set of S scenarios around the
point forecast ŷ∗t+k|t,j weighted by the SI:

Cj =
1

S

S∑
s=1

ŷ∗t+k|t,j − ŷst+k|t,j

ŷ∗t+k|t,j
· δsj→i (3)

where δj→i is the sensitivity of resource j to grid element i,
and for scenario s.

C. Flexibility modeling

1) Active and reactive power nodal flexibility: Comprises
a FSP aggregating DER or individual RES power plants, DR,
and storage system per grid node, providing flexibility via
upward/downward actions around their operating point. The
FSP can use advanced aggregation functions, such as [32], to
effectively manage and optimize the heterogenous DER, con-
sidering technical constraints, market dynamics, operational
objectives, and different asset owners.

The flexibility value (FV), Eq. 4, represents the amount of
active/reactive power that is computed per flexible resource j,
based on δsj→i, to solve a technical problem considering the
max/min operational limit λlim (e.g., voltage or current limits)
and the forecasted operating conditions λs

i for each scenario
s, where i means the element with a technical issue. The
suggested upward (Flexup

j ) and downward flexibility margin
(Flexdown

j ) in the flexibility market is an upper limit for
FV s

j→i.

FV s
j→i =

λlim − λs
i

δsj→i

(4)

As illustrated in Fig. 3, a specific flexibility action may
create technical issues in other grid elements with opposite
SI signs. Thus, Eq. 5 is applied to limit the FV s

j→i value,
conditioned by the operational limits of the other grid elements
v.

FV
′s
j→i =

sgn
(
FV s

j→i

)
·min{|FV s

j→i|,min∀v∈V,v ̸=i{|λ
max−λs

v

δsj→v
|}},

if: sgn
(
δsj→i

)
̸= sgn

(
δsj→v

)
(5)

In situations where conflicting actions between TSO and
DSO may arise during the activation of flexibility, Eq. 5 can
be applied to limit the FV s

j→i value. For example, suppose
activating a flexible resource within the distribution network
leads to technical issues in the transmission network. In that
case, the TSO can communicate the parameters of Eq. 5
to enable the DSO to compute the corresponding limitation.
Alternatively, the TSO can simply communicate the limitation
percentage applicable to that specific resource.

Reaching the lower limit λmin for elements with the same
SI sign is also possible where the elements are forced to a
minimum operational limit (i.e., bus voltage should be above
0.9 p.u.). In this case, Eq. 6 is applied.

FV
′s
j→i =

sgn
(
FV s

j→i

)
·min{|FV s

j→i|,min∀v∈V,v ̸=i{|λ
min−λs

v

δsj→v
|}},

if: sgn
(
δsj→i

)
= sgn

(
δsj→v

)
(6)
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Moreover, the activation of FV s
j→i also creates a change

in the slack bus active and/or reactive power injection (in the
opposite direction of the flexibility use), which can lead to
technical problems in grid elements with the same SI sign
of δsj→i. Thus, Eq. 7 is applied to limit the FV s

j→i avoiding
a second order technical problem due to the slack bus (sb)
operating point variation.

FV
′s
j→i =

sgn
(
FV s

j→i

)
·min{|FV s

j→i|,min∀v∈V,sb∈SB{| − λmax−λs
v

δssb→v
|}},

if: sgn
(
δsj→i

)
= sgn (δssb→v)

(7)
where V is the line and bus elements set, and SB is the set
of slack buses in the system. The same constraint in Eq. 6 is
applied for the slack bus but conditioned to grid elements with
the opposite SI sign of δsj→i due to a reverse reaction of the
slack bus to the flexibility use.

2) Active power redispatch: Combined upward/downward
action between two (or more) flexible resources/nodes, such
that total active power feed-in remains virtually unchanged,
but the congestion is removed. Note that, currently, redispatch
actions are primarily employed by TSOs and are included in
our proposed methodology for completeness. The application
of such actions in distribution networks is still a subject of
ongoing discussion, as highlighted in [33]. However, initiatives
such as redispatch 2.0 and 3.0 in Germany [26] have the
potential to extend redispatch actions to distribution networks.

In this case, the individual SI in Eq. 4 are replaced by the
ones computed by Eq. 8 for several n flexibility resources
(i.e., j1, j2, ..., jn) participating in redispatch, where bsj→i is
an indicator function equal to +1 if the action is upward and
−1 if downward.

δs{j1,j2,...,jn}→i = Σj=jn
j=j1

bsj→i · δsj→i (8)

To avoid technical issues in other elements (lines or buses)
Eq. 5-7) are checked for all units participating in re-dispatch.

3) Reactive power flexibility from CB/RS: The FV for shunt
elements follows Eq. 4 and moves on discrete steps determined
by the steps of the CB/RS unit as formulated in Eq. 9. The
FV is communicated to the human operator regarding step
changes in shunt elements.

FV s
j→i ∈ {±Qu

j ,±2Qu
j ...,±stpmax

j ·Qu
j } (9)

where stpmax
j is an integer parameter representing the max-

imum allowed step-change in CB/RS and Qu
j is the reactive

power per step change in shunt element j.
4) OLTC: : in this case, the FV in Eq. 4 will be equal to

tap[%] · tpos, where tpos and tap[%] mean tap-position and
tap-percentage (i.e., percentage of voltage adjustment versus
one-step change in tap-position). Thus, Eq. 4 is reformulated
to Eq. 10, where λs

i is voltage in bus i and scenario s.

FV s
j→i = tap[%] · tposs = λlim − λs

i

δsj→i

(10)

Moreover, the goal is to determine the required voltage set-
point that will be automatically translated to a tap position by
the OLTC, using the relation from Eq. 11.

V (set− point)
s
j = (1 + tap[%] · tposs) · V (set− point)

ne
j

(11)
In Eq. 11, if the tap position (tposs) remains zero, the

voltage will be unchanged and equal to the voltage set-point
of OLTC j in neutral tap position V (set− point)

ne
j (i.e., zero

tap position). Then, Eq. 11 could be revised as Eq. 12 using
Eq. 10:

V (set− point)
s
j = (1 + FV s

j→i) · V (set− point)
ne
j (12)

Like other flexibilities, the FV should be limited by the
operating margins of other grid buses using an equation
analogous to Eq. 5. Similarly, the limitation of flexibility
capacity can also arise due to conflicting actions between TSO
and DSO, as explained earlier.

5) Network topology: A combination of switching actions
proposed to change the network topology while ensuring it
remains a traceable-connected graph. The candidate switch-
ing actions are selected based on their area-of-effectiveness,
defined as the minimum path between two-side buses of
the switched line using graph theory. This approach avoids
simulating all possible switching actions. Therefore, the clos-
ing/opening actions are determined as follows: a) the closing
action is applied to normally open lines whose area-of-
effectiveness includes the congested line; b) the opening action
is applied to normally closed lines in the area-of-effectiveness
of the selected closing action. It was assumed that the opening
action only applies when preceded by a closing action within
the same area to prevent additional technical issues. As a
result, the proposed actions can include a single closing action,
sequential closing actions, and sequential closing and opening
actions. This type of flexibility is considered in the decision-
aid phase of section IV together with the other flexibilities.

D. Second-level forecasting
The second-level forecasting concept builds upon a set of

computed probabilistic forecasts (set of quantiles) generated
with any forecasting algorithm. In this work, we used a
GBT model with feature engineering [34], with truncated
generalized Pareto distribution for the distribution’s tails [35].
This GBT model was extended with additional input variables
for second-level forecasting, namely variables engineered with
the quantiles from the first-level forecast, i.e., forecast for the
day D + 1 with NWP data generated at 0h00 of day D.

A second model was an Encoder-Decoder Artificial Neural
Network (ED-ANN) [36]. The Encoder comprises two layers,
which are Long Short-Term Memory (LSTM) network layers.
The LSTM has feedback connections and can model temporal
or sequential information. The Decoder comprises three inter-
nal layers: one LSTM and two fully connected layers, with
linear activation function. The Decoder produces the output
iteratively, and the hidden state produced at each forecast
step generates the next forecast. In the training phase, teacher
forcing was used, i.e., using the actual first-level forecast
values as input for training the Decoder.
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IV. DECISION-AID PHASE

A. Flexibility ranking
After calculating the FV s

j→i (see section III), the next
step is ranking the individual flexibility options according
to their effectiveness in solving the technical problem under
forecast uncertainty. Firstly, the line loading/bus voltage after
flexibility use is computed for each scenario:

λ
′s
i = FV s

j→i · δsj→i + λs
i (13)

where λs
i and λ

′s
i are the line loading/bus voltage of element

i before and after flexibility activation.
Secondly, for each scenario, s, the severity function

from [37] associated with line congestion/voltage violation
(see Eq. 14) is applied to the value of λ

′s
i , where λ%

i is
the loading percentage of the line i (an analogous equation
is applicable for voltage problems).

Severityi = 0.1 ·
(
λ%
i − 90

)
(14)

The flexibility cost corresponding to FV s
j→i is also com-

puted considering the flexibility bid price. The cost of the
system operator assets was computed with the methodology
from [38], described in Appendix A.

It is important to underline that the goal here is to rank
each flexibility option. Thus, cost and severity are computed
for each scenario and flexibility option. Then, risk metrics
are computed from the severity and flexibility cost, namely:
expected value and value-at-risk (VaR) of the flexibility
cost, expected value and VaR of the severity, probability
of over/under-voltage, or congestion. In situations involving
conflicting actions between TSO and DSO, an alternative
approach to constrain the FV s

j→i in Eq. 5 (as explained in
section III-C) is to incorporate risk metrics that quantify the
potential impact on the TSO or DSO networks. This can
include metrics such as the probability of congestion occurring
in an upstream line within the TSO network.

Note that these metrics are computed for all flexibility op-
tions described in section III-C, including network reconfigu-
ration actions (whose impact is estimated with the Zbus matrix
– see section III-A1). Then, the TOPSIS method is applied to
rank the flexibility options (i.e., set of alternatives), using the
risk metrics as criteria. There is no differentiation between
flexibility types during the ranking process. For instance, if
a network switching action ranks among the top solutions, it
will be included in the set of actions used to construct the
risk-cost curves discussed in the following subsection.

B. Risk-cost curves
The top three to five flexibility options are selected for

combination following the flexibility ranking. All the possi-
ble combinations, including binary actions and actions with
discrete and continuous values, are considered. Only the non-
dominated ones create the risk-cost curve among all these
possible combinations.

This approach is applied to the uncertainty forecast available
in the present time and to the second-level forecasts generated
with the methodology described in section III-D, which will
result in multiple risk-cost curves (one for each forecast).

C. Decision-making paradigms

The final step (decision) requires the involvement of a
human decision-maker to select a preferred solution from the
risk-cost curve(s). Two alternative decision-making paradigms
are considered:

1) Maximum risk-threshold: Sets a maximum threshold for
the risk level conditioned by the decision stakes. In this work,
the stakes are directly linked to the risk of cascading failures in
the grid if the technical problem is a congested line. A similar
concept can be derived for voltage problems, e.g., propagation
effects of over-voltage in the protection system. The cascading
risk is computed by simulating (using the Zbus method, in each
scenario s) the impact on all the grid lines of tripping the
congested line i and computing the expected number of lines
tripping. This expected value is normalized between 0 and a
maximum pre-defined value for the cascading simulation and
re-scaled into a scale of integer numbers that is easy to analyze
by a human operator (e.g., between 1 and 10).

It is necessary to find, via interaction with the human
decision-maker, a functional relation between stakes (risk
of cascading) and maximum risk threshold so that stakes
condition the risk level in each decision. A simple method to
find this functional relation is a direct rating (e.g., the decision-
maker is asked to state the maximum risk for stakes equal to
10). Still, other methods like direct mid-point can be used [39].

2) Risk-cost trade-off: The preferred solution is the one
with the minimum equivalent cost, Eqcost (Eq. 15), obtained
by considering a trade-off value µ between risk and cost
for each solution p in the curve. The trade-off value can
be determined by interaction with the decision-maker, such
as indifference judgments [39], and estimated for each stake
level, creating a functional relation between trade-off value
and stakes. In this case, the higher the stakes, the higher the
trade-off value, i.e., the decision-maker is willing to pay more
to decrease risk.

Eqcostp = costp + µ · riskp (15)

V. NUMERICAL RESULTS

A. Case-study description

The 20 kV Oberrhein MV network supplied by two 25
MVA HV/MV substations1 was used with some modifications
to increase RES penetration and create technical problems.
The network supplies 141 MV/LV (secondary) substations
and 61.86 MW loads (peak power) through four MV feeders.
The topology is meshed but is operated as a radial grid. It
contains 147 consumers, nine WPP, four CHP units, and three
storage systems. The secondary substation load measurements
were taken from the Iowa Distribution Test System [40], and
the wind power measurements are from WPP in France (the
location cannot be disclosed for confidentiality reasons). The
NWP are from the ECMWF High-Resolution Forecast model.
Without loss of generality, the uncertainty forecast has been
applied only for WPP, and a perfect forecast was used for the

1https://pandapower.readthedocs.io/en/v2.0.0/networks/mv oberrhein.html

https://pandapower.readthedocs.io/en/v2.0.0/networks/mv_oberrhein.html
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TABLE I: Functional relation between stakes and risk
threshold/trade-off value for different DM

Stakes (ρ) range
Decision-making approach 0 ≤ ρ ≤ a∗ a < ρ ≤ 7 7 < ρ ≤ 10

DM A: Maximum risk threshold 10 6 3
DM B: Maximum risk threshold 20 15 10
DM C: Maximum risk threshold 25 20 20
DM D: Risk-cost trade-off 30 50 70
DM E: Risk-cost trade-off 70 90 110

∗ Parameter a for DM A is equal to 3, for DM B, DM D and DM E is equal
to 4, and for DM C is equal to 2.

substation load and CHP. The training period is from 2019-
04-01 to 2020-03-30, and the testing period is six months,
starting on 2020-04-01.

In terms of flexibility, the bid by generation units (i.e.,
WPP and CHP) was considered as 30% of the point forecast
for upward/downward directions, while the upward direction
for WPP was not considered. As assumed in [41], a shorter
notification time can increase the flexibility price. Thus, the
following was considered: 40% price increment for booking
flexibility 12 hours later (assuming the present moment as
the reference time) and 90% for booking two hours before the
delivery time. A sensitivity analysis of these prices is presented
in Section V-F. Without loss of generalization, it was assumed
that availability and activation prices for flexibility are equal.

For DR, we considered a specific time schedule for its avail-
ability, and the maximum flexibility is 30% of the electrical
energy consumption in a specific hour for upward/downward
directions. In the case of storage units, flexibility was deter-
mined by the FSP as a function of battery state-of-charge and
depth-of-discharge.

To evaluate the impact of different human decision-
makers (DMs), different curves relating stakes and risk
threshold/trade-off are considered in Table I.

The proposed methodology can address both congestion and
voltage issues. However, the main focus was on congestion
problems.

B. Benchmark Strategies and Evaluation Metrics

For benchmark, the following strategies were considered:
Time-to-decide (T2D): Novel concept proposed in this work
where the operator decides i) book flexibility now or ii) wait
for the next forecast update and book flexibility later.
Decision-now (DN): The operator, using the information from
uncertainty forecasts, decides to book flexibility at the lowest
(availability) cost based on forecasts generated with NWP
generated at 0h00.
Deterministic 1 (D1): The operator decides, based on a deter-
ministic forecast, to i) book flexibility now or ii) wait for the
next forecast update and book flexibility later.
Deterministic 2 (D2): The operator always decides based on
the very short-term forecast, i.e. t+ 2|t.
The probabilistic method from [15].

The overall evaluation of the results considered two evalu-
ation matrices: the classical confusion matrix and the cost-

TABLE II: Cost-loss matrix to evaluate the performance of the
predictive grid management process

Event occurred Event did not occur

Action taken
Cell A:

Rate-of-occurrence (h%)
Flex cost (C) + Loss (L)

Cell B:
Rate-of-occurrence (m%)

Flex cost (C)

Action not taken
Cell C:

Rate-of-occurrence (f%)
Loss (L)

Cell D:
Rate-of-occurrence (c%)

Zero cost

loss matrix (see Table II). The confusion matrix is used
to evaluate the performance of each strategy in detecting
congestion problems, from which F-score accuracy metrics are
computed to measure the balance between the precision (i.e.,
dividing the true positives (TP) by anything that was classified
as a positive) and recall (i.e., dividing the TP by anything that
should have been classified as positive).

The cost-loss matrix draws inspiration from the threshold-
based cost-loss analysis method described in [42] for eval-
uating weather forecasts. For this problem, the matrix was
adapted to the following: flex cost (C) corresponds to the
preventive actions cost (i.e., flexibility cost); loss (L) corre-
sponds to real-time emergency action (i.e., load or generation
curtail) to solve the congestion problem with a monetary cost
corresponding to the value-of-lost-load (VoLL), considered to
be 12000 e/MWh [43]. The table can be summarized into
the summation of the matrix elements, each weighted by the
percentage of occurrence, which is performance indicator γ:

γ = (C + L) · h+ C ·m+ L · f + 0 · c (16)

C. Second-level forecasting performance

1) Input variables analysis: The set of input variables is
divided into five categories. Group I consists of variables
computed from the NWP data (i.e., generated at 0h00 in day
D), namely: the wind module and direction at 10 and 100
meters, averaged for the locations of the wind turbines in each
wind power plant, lags and leads (t ± 3) of these variables,
as described in [34]. The first three components of the PCA
decomposition of the NWP variables across all wind power
plants (WPP) are also part of this group. Group II pertains to
calendar variables, namely sine and cosine transformations of
the hour of the day.

Group III are variables directly extracted from the first-
level forecasts, namely the quantiles 5%, 95%, and the tar-
get quantile. Group IV is a proxy for the uncertainty level
extracted from the first-level forecasts, namely: the difference
between quantiles one position away from the target quantile
(i.e., previous and following quantiles); the difference between
quantiles two positions away from the target quantile; the aver-
age and standard deviation of the set of target and neighboring
quantiles (two before and two after the target quantile); inter-
quantile range.

Group V includes variables computed from a poor man’s
ensemble [44], given that we have a time horizon of up to 90
hours and 12 hours NWP updates. Using these variables did
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TABLE III: List of input data variations for the second-level
forecasting model

Name Variable Groups Modifications

Var1 I-IV Include another set of variables, identical
to Group I, but with NWP variables

generated at 0h00 of day D-1. This set
does not include lags and leads

Var2 I-IV Same as Var1 but not using lags and
leads in both Group I and the identical

set added
Var3 I-IV Same as Var1, using lags and leads in

both Group I and the identical set added
Var4 I-III
Var5 I-V
Var6 I-V Group V is modified using averages and

std. dev. of the differences in NWP
consecutive runs

not yield any improvement in almost all quantiles. In fact, on
average, the model performed was worse than the best model,
i.e., -0.17% improvement in the second-level forecast for the
12h forecast, and -0.03% for the 2-hours ahead second-level
forecast. The meteo-risk index proposed in [44] reflects the
spread of the European Centre for Medium-Range Weather
Forecasts (ECMWF) ensemble forecasts was also tested as an
input variable. The improvement was below 2.9%, which does
not justify the cost associated with this data. Different variants
of input variables were tested, as shown in Table III.

The second-level forecasting skill is evaluated with the
Mean Squared Error (MSE) considering the difference be-
tween forecasted quantile (q̂αt+k|t+z) and second-level forecast

of the same quantile (⌢q
α

t+k|t). Moreover, a naive benchmark
model where ⌢

q
α

t+k|t = q̂αt+k|t was used, assuming that there
is no variation in the quantile forecasts with an information
update. The MSE improvement over the benchmark model
was computed for each model. As mentioned in Section II,
two second-level forecasts are considered: second-level fore-
cast for forecast updated with NWP generated at 12h00,
and second-level forecast for two hours-ahead forecast. We
used data from nine wind power plants (WPP) for our ex-
periments. Data from April 2019 to March 2020 was used for
model training, and from this portion, about 25% random sam-
ples were selected for validation. The testing period spanned
from April to September 2020. Note that the input and target
quantiles of the training period have been produced through
k-fold cross-validation.

Table IV presents the mean (overall WPP, quantiles 5%
to 95% with 5% increments) improvement over the naive
model for different model variations from Table III. The best
performance is from model variation Var1. This combination
of variables is used to compare GBT and ED-ANN.

2) Model comparison: The results, averaged by WPP and
including extreme quantiles (lower than 5% and higher than
95%), are shown in Table V. Starting with the second-level
forecast for the 12h00 forecast launch time in day D, we
observe that ED-ANN shows results comparable with the GBT,
although the improvement is higher for the former in five WPP.
For the second-level forecast for two hours-ahead forecast,

TABLE IV: Mean percentage improvement (per WPP) over the
naive model for different model variations.

Model VariationsSecond-level forecast
Var1 Var2 Var3 Var4 Var5 Var6

NWP generated at 12h00 9.17 7.27 9.36 9.11 9.10 8.39
2-hours ahead forecast 14.06 13.69 12.42 11.93 14.08 11.46

TABLE V: Improvement over naive model per WPP

Second-level forecast
Model

WPP
0 1 2 3 4 5 6 7 8

12h forecast
GBT 17.0 23.0 18.5 25.8 17.5 18.5 15.4 15.1 14.3

ED-ANN 13.7 25.2 18.6 26.1 18.9 16.5 15.8 13.0 11.9
2-hours ahead forecast

GBT 19.4 32.7 19.9 16.3 18.7 22.6 17.9 13.6 23.2
ED-ANN 24.9 31.2 22.8 21.5 20.9 26.7 21.5 16.2 23.1

the ED-ANN outperforms the GBT model for seven WPP.
Both improve on the naive model, showing the potential for
exploring the second-level forecasting concept, in particular,
the ED-ANN architecture.

D. Illustrative example

This subsection presents an example for line 155 on August
13, at 17h00, to demonstrate the potential of the time-to-
decide approach in reducing false congestion alarms since the
observed (real) loading of this line was 37.6%. The forecast
launched at 0h00 for day D+1 (i.e., t + 42|t) estimated a
probability of congestion equal to 39.6%. In contrast, the
two second-level forecasts (for D+1 with NWP at 12h00,
and for t + 2) show a decrease in the probability, 23.6%,
and 16.6% correspondingly, which might indicate a false
congestion alarm.

Fig. 4 illustrates the contribution of the nine WPP (Cj in
Eq. 3), depicted through gradient color, for the false congestion
alarm in line 155. In this case, the highest contribution (i.e.,
36.7%) is from the WPP at bus 51 (where line 155 is
connected), which has a higher forecast absolute error for
that time interval (47.26% of rated power), followed by WPP
connected to bus 31 with a contribution of 23.87% and an
absolute forecast error of 52.53%.

Fig. 5 depicts the line loading’s probability density function
(PDF) for the three different forecasts obtained with the
kernel density estimation over the scenarios samples. The
point forecast (100.3% of the line loading) and observed value
(37.6% of the loading) are also presented.

The risk vs cost curves for each forecast are depicted in
Fig. 6. Using the risk threshold-stakes curve in Table I, and
since, in this case, the stakes are equal to 6, the risk threshold
is equal to 6% (in DM A) and 15% (in DM B). For DM A,
book flexibility only two hours in advance (t+2|t) is preferred.
Note that the stakes for the two second-level forecasts are
equal to 4, which leads to a risk threshold of 6% for DM A.
Therefore, the operator should wait for the upcoming forecasts
and not book any flexibility. Then, 12 hours later, the operator
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Fig. 4: Contribution (C) of RES power plants forecast uncertainty
to the forecasted probability of congestion in one line
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Fig. 5: PDF of the line loading obtained with day-ahead forecast
and second-level forecasts

receives an updated forecast for the same hour (now lead-time
t+30|t) and a second second-level forecast for t+30|t+28.
Due to the lower total flexibility cost in the second-level
forecast for t + 30|t + 28, the operator will postpone the
flexibility booking for the last forecast in t + 2|t. The very
short-term forecast launched at t + 2|t estimates a near zero
probability of congestion, as depicted in Fig. 7, meaning that
no flexibility is necessary for that specific hour. The same
procedure could be followed for the risk level of DM B, and
it would also reach this point where flexibility is not used.
Therefore, the proposed time-to-decide methodology can result
in a reduction of the flexibility cost and false alarms through
the use of second-level forecasts.

E. Practical issues

1) Flexibility scarcity: Flexibility scarcity events might
occur (e.g., due to low flexibility market liquidity) and can
be detected in advance by the proposed method. For instance,
on April 14, at 11h00, the observed loading at line 49 was
124.47%. This congestion was detected with the forecast for
t + 35|t with a probability of 89.9%. The risk-cost curve for
the t + 35|t forecast is depicted in Fig. 8. The set of actions
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Fig. 6: Risk-cost curves for the forecast and two second-level
forecasts launched at 0h00
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Fig. 7: PDF of line loading of forecast launched at t+ 2|t

for the lowest reachable risk (i.e., 79.6%) are active power
curtailment of 30% in WPP and CHP unit of bus 29 and WPP
of bus 51 together with 20% in buses 43 and 117. However,
these actions are insufficient for solving this technical issue or
reaching an acceptable risk threshold for a decision-maker. In
this case, the congestion problem will occur, leading to real-
time control actions (e.g., RES curtailment) and a monetary
loss of 329.76e.

2) Conflicting action between TSO and DSO: In this il-
lustrative example, line 155 on July 5 at 04h00, a solution
at the distribution level creates transmission-level problems.
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Fig. 8: Risk-cost curve for a case with flexibility scarcity
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Fig. 9: Risk-cost curves for the cases with and without TSO
limitation in the flexibility value (FV )

The TSO has two possibilities to integrate this information: a)
incorporating risk metrics into the flexibility ranking that quan-
tify the potential impact on the TSO network (as explained in
section IV-A); b) imposing a limit on the FV s

j→i value to
prevent technical problems in the transmission network (as
explained in section III-C).

To illustrate the first possibility, Table VI presents the
modification in the flexibility ranking by incorporating the
probability of congestion in the transmission network (referred
to as “TSO risk” in the Table for simplicity) and the set of top
flexible resources. Using this approach, the information from
the TSO would be used to influence the flexibility ranking
and select the actions with a lower probability of creating
technical problems in the upstream network. This implies
that flexibility options with higher costs may be placed in
the top-ranked positions because of their capability to avoid
technical issues in the transmission network. For the second
possibility, Fig. 9 depicts the risk-cost curves as an example
for the t + 28|t forecast, with and without TSO limitation
to the FV s

j→i. The curve with TSO limitations shows that to
maintain the same risk threshold (e.g., 5%), a higher cost for
flexibility is necessary. As a result, constraints on flexibility
due to conflicting TSO-DSO actions could result in expensive
solutions.

TABLE VI: Flexibility ranking without and with TSO limitation

Without TSO limitation With TSO limitation

Flexibility actions Flexibility actions TSO risk [%]

APC WPP @ bus 31 APC WPP @ bus 51 8.33
APC WPP @ bus 65 APC WPP @ bus 65 16
APC WPP @ bus 51 APC WPP @ bus 31 77.42
APC WPP @ bus 29 APC CHP unit @ bus 30 71.58
APC CHP unit @ bus 30 APC WPP @ bus 29 98.44

1 APC stands for active power curtailment.

3) Changes in flexibility level: The forecasted congestion
of line 155 on July 5 at 05h00 was selected for sensitivity
analysis of the flexibility level (i.e., maximum flexibility per
flexibility resource). Three flexibility levels were considered:
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Fig. 10: Risk-cost curves for the t+2|t forecast considering different
flexibility levels

10%, 30% (which will be used in the remaining work), and
70% of the RES point forecast or load. The impact of this
change on the risk-cost curve for t+2|t is depicted in Fig. 10.
It shows that reducing the flexibility level can prevent the
curve from reaching a lower risk level. Moreover, for the
same risk level, the total flexibility cost for a 70% flexibility
level is lower since a larger volume of flexibility from top-
ranked solutions is available. The result of the T2D strategy
for different flexibility levels is presented in Table VII for
DM A. In the 10% flexibility level, the risk-cost curve cannot
reach the risk threshold defined by the DM, and real-time RES
curtailment actions will be necessary to solve the congestion
problem. Increasing the flexibility level to 30% and 70%,
the congestion will be solved with the “reserved” flexibility.
However, the cost of booking flexibility with a 70% flexibility
level is lower. In both 30% and 70%, the solutions obtained
by the T2D strategy outperform the DN strategy.

TABLE VII: Sensitivity analysis of the T2D strategy for different
flexibility levels

T2D approach DN approach

Flexibility
level Flexibility cost [C] Loss [C] Total cost [C] Total cost [C]

10% 78.9 945.5 1024.4 1024.4
30% 457.4 0 457.4 525.2
70% 426.1 0 426.1 520.3

F. Overall evaluation

An overall evaluation was conducted over six months from
April to September 2020). All the simulations were run on
a cloud-based virtual machine with AMD EPYC CPU with
8-core 2.94 GHz, 32 GB RAM, and Microsoft Windows 10
Pro. Table VIII presents the computational time of each step
in the proposed method.

To evaluate the congestion detection performance of each
strategy, the F1-score and F3-score are reported in Table IX.
The T2D approach achieves the highest score, with DM A
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TABLE VIII: Computational time of different steps in the proposed
methodology

Step Computational time (sec.)

Flexibility value calculation 64s (0.25s/scenario)
Flexibility ranking 0.016s
Risk-cost curve 47.59s
Decision-aid 0.14s

TABLE IX: Accuracy metrics for evaluating congestion detection
performance and cost-loss matrix performance indicator-γ

Strategy Precision Recall F1-Score F3-Score γ [Me]

D1 0.53 0.08 0.13 0.08 26.03
D2 0.53 0.03 0.06 0.03 27.03
Model from [15] 0.45 0.74 0.56 0.69 14.74
DN: DM A 0.45 0.71 0.55 0.67 5.05
T2D: DM A 0.56 0.79 0.66 0.76 3.98
DN: DM B 0.49 0.63 0.55 0.61 6.21
T2D: DM B 0.65 0.69 0.67 0.69 4.93
DN: DM C 0.50 0.60 0.54 0.59 6.63
T2D: DM C 0.66 0.66 0.66 0.66 5.27
DN: DM D 0.43 0.69 0.53 0.65 4.92
T2D: DM D 0.50 0.77 0.61 0.73 4.29
DN: DM E 0.44 0.69 0.53 0.65 4.76
T2D: DM E 0.48 0.78 0.59 0.73 3.72

(using a lower risk threshold) showing higher performance in
F3-score, while DM B outperforms in F1-score. The determin-
istic strategies show the lowest score due to a lower rate of
TP detection (and a high rate of FN cases). The probabilistic
approaches overcome this limitation, and the rate of FP is
reduced in the T2D strategy due to the information provided
by the second-level forecasts. The benchmark model from [15]
is outperformed by T2D in DM A, B, D, and E.

The results of the cost-loss matrix per DM strategies are
presented in Fig. 11–12. The probabilistic strategies show
a lower rate-of-occurrence and total cost in Cell C “action
not taken, event occurred”. This shows their effectiveness in
addressing overlooked congestion cases, in contrast to the
deterministic strategies. The higher rate-of-occurrence and
total cost in matrix row “action taken” (Cells A+B) are due
to more congestion problems solved, mixed with some false
congestion alarms (a “side-effect” of risk-based approaches).

Compared to the DN strategy, the T2D strategy shows
a lower rate-of-occurrence and total cost for matrix Cell
C “action not taken, event occurred” and Cell A “action
taken, event occurred” since, with the use of second-level
forecasting, the human operator may decide book flexibility
now or postpone the decision to the next forecast. In this
case, the strategy also benefits from the possibility of detecting
overlooked congestion (i.e., reducing the FN cases). Moreover,
the T2D strategy can significantly reduce the cost caused by
false alarms, which is reflected in a higher rate-of-occurrence
in Cell D “action not taken, event did not occur”. The
possibility of selecting the flexibility booking moment by
the T2D strategy can reduce the cost significantly, as explained
in section V-D. The comparison between the three different
DM, shows distinct results and that DM A with lower risk
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Fig. 12: Total cost for each cell of the cost-loss matrix.

thresholds (in comparison to DM B and C) can further reduce
the loss of preventive management while paying more for the
flexibility than the other two DM. The trade-off strategy (DM
D and E) provides the DM with the ability to manage the
balance between risk and cost effectively. For example, DM
D was willing to pay 30e and 70e to achieve a 1% reduction
in risk. This level of control over risk and cost is not possible
with the risk-threshold strategy (DM A-C), where the DM can
only determine the maximum acceptable level of risk without
considering associated costs. Consequently, this limitation may
result in the implementation of costly solutions to meet the
risk threshold. In this case, DM D contracts more flexibility
to solve the technical problems (higher rate-of-occurrence in
Cell B “action taken, event did not occur”) compared to DM
B and C, which have lower risk thresholds than DM A. DM
E has higher trade-off value then DM D for each stakes level,
which means that it is willing to pay more to decrease the
risk. For instance, for DM E, this leads to a higher total cost
in Cell B “action taken, event did not occur”, but also to a
lower rate-of-occurrence than DM D.

The performance indicator γ was computed for each strat-
egy, and results are presented in Table IX. These results
show that the D1 strategy that “reserves” flexibility in the
moment with lower flexibility price, but higher uncertainty
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(which leads to higher “reserved” flexibility), has 3.69% better
performance than D2 strategy. The DN strategy has 80.61%,
76.12%, 74.53% , 81.09% and 81.73 improvement over the D1
strategy. The performance of the T2D strategy was evaluated
concerning the DN strategy in each DM strategy, where
an improvement of 21.08%, 20.72%, 20.45%, 12.78%, and
21.74% was obtained by DM A, DM B, DM C, DM D,
and DM E, respectively. These results show the advantage of
the proposed T2D strategy. Moreover, the benchmark model
from [15] outperforms the T2D strategy in all DM A-E. Lastly,
it is important to acknowledge that distinct risk profiles of DM
can result in different performances. Consequently, an area of
future research lies in integrating DM preferences into the
cost-loss matrix and corresponding performance metric. This
would enable direct comparisons between decision paradigms
(e.g., risk-threshold vs trade-off) or DM.

The performance of the proposed T2D strategy for different
flexibility price increment percentages as a function of the
notification time. The previous results assumed increments
of 40% and 90%. The evaluation was conducted through
a sensitivity analysis in Table X. In all cases, the T2D
strategy consistently outperformed the DN strategy, showing
an average improvement of 20.75%. Furthermore, the minor
variations observed in the performance indicator γ indicate the
robustness of the T2D strategy to changes in flexibility prices
with the notification time.

TABLE X: Sensitivity analysis for different flexibility price incre-
ments (in %) as a function of the notification time

Strategy booking 12 hours later 2 hours before delivery γ [Me]

DN - - 5.048
T2D 40% 90% 3.984
T2D 40% 110% 4.000
T2D 40% 70% 3.979
T2D 20% 70% 4.015
T2D 70% 110% 4.023

VI. CONCLUSIONS

This paper describes a predictive methodology for flexibility
procurement to manage technical constraints under forecast
uncertainty and consider the different flexible resources. The
main contribution is a complete methodology to guide the
human operator along a) the flexibility options available in
each hour, ranking them according to their effectiveness in
an uncertain context, and b) multiple forecast updates. This
methodology was tested in a public MV network, and the
results showed that: a) a methodology based on uncertainty
forecasts can lead to cost savings when managing grid tech-
nical constraints, and b) choosing the best moment to reserve
flexibility also leads to cost savings in comparison to a strategy
that reserves flexibility when it is cheaper. It is essential to
note that short-term market-based flexibility procurement still
has some challenges at the distribution grid level, namely: a)
dealing with the radial topology in MV and LV grids, and
geographical restrictions, b) lack of a mature regulatory frame-
work for new DSO roles and coordination across different

markets, and c) upward/downward flexibility price asymmetry.
Moreover, the use of DSO’s resources (e.g., OLTC, network
topology reconfiguration) should be coordinated with local
flexibility markets operation, notably in areas with limited (ra-
dial) geographical coverage, fewer FSPs, and lower liquidity.
Uncoordinated use of such resources may deter participation,
or lead to bid and/or settlement distortions.

Topics for future work are: include the look-ahead impact
(i.e., > t+ k of activating flexibility in lead-time t+ k in the
flexibility options ranking; develop new metrics to evaluate
decision quality under uncertainty since, in this work, the used
cost-loss matrix does not integrate the operator attitude to-
wards risk; integrate low-probability and high-impact weather-
related events forecasted with NWP ensembles and develop
appropriate decision-aid strategies tailored for managing such
events. Moreover, the original concept of second-level fore-
casting has room for further improvement by exploring other
statistical learning models and additional features; it can also
be applied to different use cases like deciding to offer all RES
in the day-ahead market or wait for the intraday sessions.

APPENDIX A
FLEXIBILITY COST

The cost of system operator flexibility assets is computed
per switching action as follows [38]:

Cs/b =
1

TT
(Fs/b +

FOT · a′

T

tOT
) (17)

where TT , a
′

T and tOT are the total allowable adjustment
times, lifetime after step changed TT times, and maintenance
period, respectively. The maintenance cost and capital cost
of the element (e.g., OLTC, power line, capacitor bank) is
denoted by FOT and Fs/b. Note that for the OLTC, the Fs/b

is equal to FTOLTC
·(aT −a

′

T )/aT , where aT is lifetime when
the tap is never adjusted and FTOLTC

is the capital cost of the
transformer with OLTC. Table XI presents the parameters of
the flexibility cost formula per each element.

TABLE XI: Parameters for calculating flexibility cost of SO assets

Parameter Shunt (CB/RS) OLTC Power lines

aT (year) - 45 -
a
′
T (year) 20 35 20

TT (times) 14600 89425 7300
tOT (year) 4 17.5 2
FOT (C/times) 600 300 60
Fs/b (C/MVar) 7500 11250 15300

REFERENCES

[1] H. Holttinen, A. Groom, E. Kennedy, D. Woodfin, L. Barroso, A. Orths,
and et al., “Variable renewable energy integration: Status around the
world,” IEEE Pow. and Ener. Mag., vol. 16, no. 9, pp. 86–96, Nov. 2021.

[2] G. Doorman, G. Thorpe, C. Dornellas, C. Correa, M. Laasri, J. Rich-
stein, and et al., “Short-term flexibility in power systems: drivers and
solutions,” Cigre, WG C5.27, Tech. Rep. TB 808, 2020.

[3] F. Genoese, R. Kielak, G. Trienekens, K. Poncelet, O. A. Garcia,
K. Kukk, and et al., “Roadmap on the evolution of the regulatory frame-
work for distributed flexibility,” ENTSO-E, CEDEC, E.DSO, Eurelectric,
GEODE, Tech. Rep., 2021.



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 14
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MV network operational planning in an industrial environment,” CIRED
- Open Access Proc. J., vol. 1, pp. 1554–1557, Oct. 2017.

[15] E. Memmel, S. Schluters, R. Volker, F. Schuldt, K. V. Maydell, and
C. Agert, “Forecast of renewable curtailment in distribution grids con-
sidering uncertainties,” IEEE Access, vol. 9, pp. 60 828–60 840, 2021.

[16] A. H. Murphy and Q. Ye, “Optimal decision making and the value of
information in a time-dependent version of the cost-loss ratio situation,”
Monthly Weather Rev., vol. 118, no. 4, pp. 939–949, Apr. 1990.

[17] C. Wanke and D. Greenbaum, “Sequential congestion management
with weather forecast uncertainty,” in AIAA Guidance, Navigation and
Control Conference and Exhibit, jun 2008.

[18] S. Jewson, S. Scher, and G. Messori, “Decide now or wait for the
next forecast? testing a decision framework using real forecasts and
observations,” Mont. Weat. Rev., mar 2021.

[19] ——, “Communicating properties of changes in lagged weather fore-
casts,” Weath. and Forec., vol. 37, no. 1, pp. 125–142, jan 2022.

[20] P. Tankov and L. Tinsi, “Stochastic optimization with dynamic proba-
bilistic forecasts,” Ann. of Oper. Res., aug 2022.

[21] J. Bellenbaum and J. C. Weber, “Designing flexibility procurement mar-
kets for congestion management – investigating two-stage procurement
auctions,” Ener. Econ., vol. 106, p. 105775, Feb. 2022.

[22] T. Muhlpfordt, V. Hagenmeyer, and T. Faulwasser, “The price of
uncertainty: Chance-constrained OPF vs. in-hindsight OPF,” in PSCC
2018, Dublin, Ireland, Jun. 2018.

[23] S. Chondrogiannis, J.Vasiljevska, A. Marinopoulos, I. Papaioannou, and
G. Flego, “Local electricity flexibility markets in europe,” Joint Research
Centre, Tech. Rep. JRC130070, Oct. 2022.

[24] I.-I. Avramidis, F. Capitanescu, and G. Deconinck, “Thoughts on con-
ceiving a “fair” value for flexibility,” Int. J. of Elect. Pow. & Ener. Sys.,
vol. 147, p. 108893, May 2023.

[25] Y. Ruwaida, J. P. Chaves-Avila, N. Etherden, I. Gomez-Arriola,
G. Gürses-Tran, K. Kessels, and et al., “TSO-DSO-customer coordina-
tion for purchasing flexibility system services: Challenges and lessons
learned from a demonstration in Sweden,” IEEE Trans. on Power Sys.,
In Press, 2022.

[26] P. Girvan, A. Stolte, and M. Mann, “Conceptualising different ap-
proaches to the new redispatch procedure in germany with special regard
to the distribution of competences among the grid operators,” in IEEE
Pow. and Ener. Student Summit, 2020.

[27] C.-L. Hwang and K. Yoon, Methods for Multiple Attribute Decision
Making. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp.
58–191.

[28] B. Hill, “Confidence and decision,” Games and Econ. Beha., vol. 82, pp.
675–692, 2013.

[29] K. Christakou, J.-Y. LeBoudec, M. Paolone, and D.-C. Tomozei, “Effi-
cient computation of sensitivity coefficients of node voltages and line
currents in unbalanced radial electrical distribution networks,” IEEE
Trans. on Smart Grid, vol. 4, no. 2, pp. 741–750, 2013.

[30] J. Grainger and W. Stevenson, Power System Analysis, ser. Electrical
engineering series. McGraw-Hill, 1994.

[31] G. Papaefthymiou and D. Kurowicka, “Using copulas for modeling
stochastic dependence in power system uncertainty analysis,” IEEE
Trans. on Power Sys., vol. 24, no. 1, pp. 40–49, Feb. 2009.

[32] J. Naughton, H. Wang, M. Cantoni, and P. Mancarella, “Co-optimizing
virtual power plant services under uncertainty: A robust scheduling and
receding horizon dispatch approach,” IEEE Trans. on Power Sys., vol. 36,
no. 5, pp. 3960–3972, Sep. 2021.

[33] J. B. and, “Market-based redispatch in the distribution grid. why it
works.” DNV GL Energy, Tech. Rep. 2020-0977, Sep. 2020.

[34] J. R. Andrade and R. J. Bessa, “Improving renewable energy forecasting
with a grid of numerical weather predictions,” IEEE Trans. on Sust.
Ener., vol. 8, no. 4, pp. 1571–1580, 2017.
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