Published July 31, 2021
| Version v1
Journal article
Restricted
21-Hydroxypregnane 21-O-malonylation, a crucial step in cardenolide biosynthesis, can be achieved by substrate-promiscuous BAHD-type phenolic glucoside malonyltransferases from Arabidopsis thaliana and homolog proteins from Digitalis lanata
Creators
- 1. * & Lehrstuhl für Pharmazeutische Biologie, Department Biologie, Friedrich-Alexander-Universitat¨Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
Description
Tropper, Marina, H, Stephanie, ohn, Wolf, Laura-Sophie, Fritsch, Julia, Kastner-Detter, Nina, Rieck, Christoph, Munkert, Jennifer, Meitinger, Nadine, Lanig, Harald, Kreis, Wolfgang (2021): 21-Hydroxypregnane 21-O-malonylation, a crucial step in cardenolide biosynthesis, can be achieved by substrate-promiscuous BAHD-type phenolic glucoside malonyltransferases from Arabidopsis thaliana and homolog proteins from Digitalis lanata. Phytochemistry (112710) 187: 1-10, DOI: 10.1016/j.phytochem.2021.112710, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112710
Files
Linked records
Additional details
Identifiers
- URL
- https://www.checklistbank.org/dataset/264222
- LSID
- urn:lsid:plazi.org:pub:CC2138329E02FFBE8009FFF64229EC69
- URL
- http://publication.plazi.org/id/CC2138329E02FFBE8009FFF64229EC69
References
- Almagro Armenteros, J.J., Sonderby, C.K., Sonderby, S.K., Nielsen, H., Winther, O., 2017. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387-3395. https://doi.org/10.1093/bioinformatics/btx431.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022- 2836(05)80360-2.
- Berman, H., Henrick, K., Nakamura, H., 2003. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 10, 980. https://doi.org/10.1038/nsb1203-980.
- Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235.
- Bertol, J.W., Rigotto, C., P´adua, R.M. de, Kreis, W., Barardi, C.R.M., Braga, F.C., Simtoes, C.M.O., 2011. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antivir. Res. 92, 73-80. https:// doi.org/10.1016/j.antiviral.2011.06.015.
- Bond, S.R., Naus, C.C., 2012. RF-Cloning.org: an online tool for the design of restriction-free cloning projects. Nucleic Acids Res. 40, W209-W213. https://doi.org/10.1093/ nar/gks396.
- Bontpart, T., Cheynier, V., Ageorges, A., Terrier, N., 2015. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol. 208, 695-707. https://doi.org/10.1111/nph.13498.
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal. Biochem. 72, 248-254. https://doi.org/10.1006/abio.1976.9999.
- Chen, Y.-C., 2015. Beware of docking! Trends Pharmacol. Sci. 36, 78-95. https://doi. org/10.1016/j.tips.2014.12.001.
- D' Auria, J.C., 2006. Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9, 331-340. https://doi.org/10.1016/j.pbi.2006.03.016.
- Diederich, M., Muller, F., Cerella, C., 2017. Cardiac glycosides: from molecular targets to immunogenic cell death. Biochem. Pharmacol. 125, 1-11. https://doi.org/10.1016/ j.bcp.2016.08.017.
- Elbaz, H.A., Stueckle, T.A., Tse, W., Rojanasakul, Y., Dinu, C.Z., 2012. Digitoxin and its analogs as novel cancer therapeutics. Exp. Hematol. Oncol. 1, 4. https://doi.org/ 10.1186/2162-3619-1-4.
- Euw, J.v., Reichstein, T., 1964. Die Biosynthese des Digitoxigenins, Herkunft des C-20. Glykoside und Aglykone, 253. Mitteilung. Helv. Chim. Acta 47, 711-724. https:// doi.org/10.1002/hlca.19640470305.
- Finsterbusch, A., Lindemann, P., Grimm, R., Eckerskorn, C., Luckner, M., 1999. Δ 5-3β-Hydroxysteroid dehydrogenase from Digitalis lanata Ehrh.-a multifunctional enzyme in steroid metabolism? Planta 209, 478-486. https://doi.org/10.1007/ s004250050751.
- Galaz, S., Morales-Quintana, L., Moya-Le´on, M.A., Herrera, R., 2013. Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS J. 280, 1344-1357. https:// doi.org/10.1111/febs.12127.
- Gartner ¨, D.E., Wendroth, S., Seitz, H.U., 1990. A stereospecific enzyme of the putative biosynthetic pathway of cardenolides. FEBS Lett. 271, 239-242. https://doi.org/ 10.1016/0014-5793(90)80415-F.
- Haussmann, W., Kreis, W., Stuhlemmer, U., Reinhard, E., 1997. Effects of various pregnanes and two 23-nor-5-cholenic acids on cardenolide accumulation in cell and organ cultures of Digitalis lanata. Planta Med. 63, 446-453. https://doi.org/10.1055/ s-2006-957562.
- Herl, V., Fischer, G., Muller-Uri, F., Kreis, W., 2006. Molecular cloning and heterologous expression of progesterone 5β- reductase from Digitalis lanata Ehrh. Phytochemistry 67, 225-231. https://doi.org/10.1016/j.phytochem.2005.11.013.
- Herl, V., Fischer, G., Reva, V.A., Stiebritz, M., Muller, Y.A., Muller-Uri, F., Kreis, W., 2009. The VEP1 gene (At4g24220) encodes a short-chain dehydrogenase/reductase with 3-oxo-Δ4,5-steroid 5β- reductase activity in Arabidopsis thaliana L. Biochimie 91, 517-525. https://doi.org/10.1016/j.biochi.2008.12.005.
- Herl, V., Frankenstein, J., Meitinger, N., Mueller-Uri, F., Kreis, W., 2007. Δ5-3β-Hydroxysteroid dehydrogenase (3βHSD) from Digitalis lanata. Heterologous expression and characterisation of the recombinant enzyme. Planta Med. 73, 704-710. https://doi.org/10.1055/s-2007-981537.
- Khan, B.R., Wherritt, D.J., Huhman, D., Sumner, L.W., Chapman, K.D., Blancaflor, E.B., 2016. Malonylation of glucosylated N-lauroylethanolamine a new pathway that determines N-acylethanolamine metabolic fate in plants. J. Biol. Chem. 291, 27112-27121. https://doi.org/10.1074/jbc.M116.751065.
- Kreis, W., Munkert, J., 2019. Exploiting enzyme promiscuity to shape plant specialized metabolism. J. Exp. Bot. 70, 1435-1445. https://doi.org/10.1093/jxb/erz025.
- Kruse, L.H., Weigle, A.T., Martinez-Gomez ´, J., Chobirko, J.D., Schaffer, J.E., Bennett, A. A., Specht, C.D., Jez, J.M., Shukla, D., Moghe, G.D., 2020. Ancestral classpromiscuity as a driver of functional diversity in the BAHD acyltransferase family in plants. bioRvix. https://doi.org/10.1101/2020.11.18.385815.
- Kuate, S.P., Padua ´, R.M., Eisenbeiss, W.F., Kreis, W., 2008. Purification and characterization of malonyl-coenzyme A: 21-hydroxypregnane 21-O - malonyltransferase (Dp21MaT) from leaves of Digitalis purpurea L. Phytochemistry 69, 619-626. https://doi.org/10.1016/j.phytochem.2007.08.025.
- Leinonen, R., Sugawara, H., Shumway, M., 2011. International nucleotide sequence database collaboration. The sequence read archive. Nucleic Acids Res. 39, D19-D21. https://doi.org/10.1093/nar/gkq1019.
- Leong, B.J., Last, R.L., 2017. Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. Curr. Opin. Struct. Biol. 47, 105-112. https://doi. org/10.1016/j.sbi.2017.07.005.
- Liu, Y., Wang, X., Mo, T., Yan, Y., Song, Y., Zhao, Y., Li, J., Shi, S., Liu, X., Tu, P., 2017. Identification and functional application of a new malonyltransferase NbMaT1 towards diverse aromatic glycosides from Nicotiana benthamiana. RSC Adv. 7, 21028-21035. https://doi.org/10.1039/c7ra01940h.
- Luber, E., 2002. Reinigung der Malonyl-coenzym A: 21-Hydroxypregnan 21- malonyltransferase und Versuche zur Isolierung einer Steroid-21-hydroxylase aus Digitalis lanata Ehrh. PhD Thesis. FAU Erlangen-Nuremberg. PhD thesis.
- Ma, X., Koepke, J., Panjikar, S., Fritzsch, G., St¨ockigt, J., 2005. Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J. Biol. Chem. 280, 13576-13583. https://doi.org/10.1074/jbc.M414508200.
- Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., Lopez, R., 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47 (W1), W636-W641. https://doi.org/10.1093/nar/gkz268.
- Manjasetty, B.A., Yu, X.-H., Panjikar, S., Taguchi, G., Chance, M.R., Liu, C.-J., 2012. Structural basis for modification of flavonol and naphthol glucoconjugates by Nicotiana tabacum malonyltransferase (NtMaT1). Planta 236, 781-793. https://doi. org/10.1007/s00425-012-1660-8.
- Meitinger, N., Geiger, D., Augusto, T.W., P´adua, R.M. de, Kreis, W., 2015. Purification of Δ5-3-ketosteroid isomerase from Digitalis lanata. Phytochemistry 109, 6-13. https:// doi.org/10.1016/j.phytochem.2014.10.025.
- Morales-Quintana, L., Moya-Le´on, M.A., Herrera, R., 2012. Molecular docking simulation analysis of alcohol acyltransferases from two related fruit species explains their different substrate selectivities. Mol. Simulat. 38, 912-921. https://doi.org/ 10.1080/08927022.2012.672738.
- Morales-Quintana, L., Moya-Leon ´, M.A., Herrera, R., 2015. Computational study enlightens the structural role of the alcohol acyltransferase DFGWG motif. J. Mol. Model. 21, 216. https://doi.org/10.1007/s00894-015-2762-6.
- Munkert, J., Franco, M.S., Nolte, E., Silva, I.T., Castilho, R.O., Ottoni, F.M., Schneider, N. F.Z., Oliveira, M.C., Taubert, H., Bauer, W., 2017. Production of the cytotoxic cardenolide glucoevatromonoside by semisynthesis and biotransformation of evatromonoside by a Digitalis lanata cell culture. Planta Med. 83, 1035-1043. https://doi.org/10.1055/s-0043-109557.
- Naqvi, A.A.T., Mohammad, T., Hasan, G.M., Hassan, M.I., 2018. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 18, 1755-1768. https:// doi.org/10.2174/1568026618666181025114157.
- Newman, R.A., Yang, P., Pawlus, A.D., Block, K.I., 2008. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv. 8, 36-49. https://doi.org/10.1124/mi.8.1.8.
- Nielsen, H., 2017. Predicting secretory proteins with SignalP. Methods Mol. Biol. 1611, 59-73. https://doi.org/10.1007/978-1-4939-7015-5_6.
- Noda-Garcia, L., Liebermeister, W., Tawfik, D.-S., 2018. Metabolite-enzyme coevolution: from single enzymes to metabolic pathways and networks. Annu. Rev. Biochem. 87, 187-216. https://doi.org/10.1146/annurev-biochem-062917-012023.
- P´adua, R.M., Meitinger, N., Hennemann, M., Schebitz, P., Waibel, R., L¨ober, S., Gmeiner, P., Clark, T., Kreis, W., 2016. Spontaneous butenolide ring formation of pregnane-21-O -malonyl hemiesters under mild reaction conditions is facilitated by the 14β- hydroxy group present in all natural cardenolides. Tetrahedron 72, 4556-4563. https://doi.org/10.1016/j.tet.2016.06.024.
- P´adua, R.M., Waibel, R., Kuate, S.P., Schebitz, P.K., Hahn, S., Gmeiner, P., Kreis, W., 2008. A simple chemical method for synthesizing malonyl hemiesters of 21- hydroxypregnanes, potential intermediates in cardenolide biosynthesis. Steroids 73, 458-465. https://doi.org/10.1016/j.steroids.2007.12.012.
- Petersen, J., Lanig, H., Munkert, J., Bauer, P., Muller-Uri, F., Kreis, W., 2016. Progesterone 5β- reductases/iridoid synthases (PRISE): gatekeeper role of highly conserved phenylalanines in substrate preference and trapping is supported by molecular dynamics simulations. J. Biomol. Struct. Dyn. 34, 1667-1680. https://doi. org/10.1080/07391102.2015.1088797.
- Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084.
- Pilgrim, H., 1972. 'Cholesterol side-chain cleaving enzyme' aktivit¨at in keimlingen und in vitro kultivierten geweben von Digitalis purpurea. Phytochemistry 11, 1725-1728. https://doi.org/10.1016/0031-9422(72)85026-X.
- Rabitzsch, G., 1971. Ozone-pyridine degradation of cardenolidetrigiditoxoside digitoxin and digoxin to isopregnanolontridigitoxosides. Pharmazie 26, 592-597. PMID: 5149122.
- Sales, E., Muller-Uri, F., Nebauer, S.G., Segura, J., Kreis, W., Arrillaga, I., 2011. Digitalis. In: Kole, C. (Ed.), Wild Crop Relatives: Genomic and Breedings Resources, Plantation and Ornamental Crops. Springer-Verlag, Berlin Heidelberg. https://doi.org/ 10.1007/978-3-642-21201-7_1.
- Schaller, F., Kreis, W., 2006. Cardenolide genin pattern in Isoplexis plants and shoot cultures. Planta Med. 72, 1149-1156. https://doi.org/10.1055/S-2006-947194.
- Schatzmann, H.J., 1953. Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane. Helv. Physiol. Pharmacol. Acta 11, 346-354. PMID: 13142506.
- Seidel, S., Kreis, W., Reinhard, E., 1990. Δ5-3β- Hydroxysteroid dehydrogenase/Δ5-Δ4- ketosteroid isomerase (3β- HSD), a possible enzyme of cardiac glycoside biosynthesis, in cell cultures and plants of Digitalis lanata Ehrh. Plant Cell Rep. 8, 621-624. https://doi.org/10.1007/BF00270068.
- Slingerland, M., Cerella, C., Guchelaar, H.-J., Diederich, M., Gelderblom, H., 2013. Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest. N. Drugs 31, 1087-1094. https://doi.org/10.1007/s10637-013-9984- 1.
- Srivastava, M., Eidelman, O., Zhang, J., Paweletz, C., Caohuy, H., Yang, Q., Jacobson, K. A., Heldman, E., Huang, W., Jozwik, C., Pollard, B.S., Pollard, H.B., 2004. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc. Natl. Acad. Sci. Unit. States Am. 101, 7693-7698. https://doi.org/10.1073/pnas.0402030101.
- St-Pierre, B., Luca, V. de, 2000. Origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv. Phytochem. 34, 285-315. https://doi.org/10.1016/S0079-9920(00)80010-6.
- Stuhlemmer, U., Kreis, W., 1996. Does the malonyl-coenzyme A: 21-hydroxypregnane 21-hydroxymalonyltransferase catalyze the first step in the formation of the butenolide ring of cardenolides? Tetrahedron Lett. 37, 2221-2224. https://doi.org/ 10.1016/0040-4039(96)00276-6.
- Sullivan, M.L., Bonawitz, N.D., 2018. Spectrophotometric determination of reaction rates and kinetic parameters of a BAHD acyltransferase using DTNB (5, 5'-dithio-bis-[2- nitrobenzoic acid]). Plant Sci. 269, 148-152. https://doi.org/10.1016/j. plantsci.2018.01.012.
- Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Yamaguchi, M.-a., Tanaka, Y., Kusumi, T., Nishino, T., 2002. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A: anthocyanidin 3-O -glucoside-6"-O -malonyltransferase from dahlia flowers. Plant Physiol. 130, 2142-2151. https://doi.org/10.1104/pp.010447.
- Taguchi, G., Shitchi, Y., Shirasawa, S., Yamamoto, H., Hayashida, N., 2005. Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells. Plant J. 42, 481-491. https://doi.org/10.1111/j.1365-313X.2005.02387.x.
- Taguchi, G., Ubukata, T., Nozue, H., Kobayashi, Y., Takahi, M., Yamamoto, H., Hayashida, N., 2010. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J. 63, 1031-1041. https://doi. org/10.1111/j.1365-313X.2010.04298.x.
- Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334.
- Tuominen, L.K., Johnson, V.E., Tsai, C.-J., 2011. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genom. 12, 1-17. https://doi.org/ 10.1186/1471-2164-12-236.
- Unno, H., Ichimaida, F., Suzuki, H., Takahashi, S., Tanaka, Y., Saito, A., Nishino, T., Kusunoki, M., Nakayama, T., 2007. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J. Biol. Chem. 282, 15812-15822. https://doi.org/10.1074/jbc.M700638200.
- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, Tjaart, A.P., Rempfer, C., Bordoli, L., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. https://doi.org/10.1093/nar/gky427.
- Withering, W., 1785. An Account of the Floxglove and Some of its Medical Uses with Practical Remarks on Dropsy and Other Diseases. M. Swinney, Birmingham, UK.
- Yu, X.-H., Gou, J.-Y., Liu, C.-J., 2009. BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol. Biol. 70, 421-442. https://doi.org/10.1007/s11103-009-9482-1.
- Zingg, M., Meyer, K., 1960. Ozonolyse von Diacetylgitoxigenin Untersuchung des Verlaufs der alkalischen Hydrolyse bei einigen 14β- Hydroxy¨atians¨auren und ihren Methylestern I. Helv. Chim. Acta 43, 145-161. https://doi.org/10.1002/ hlca.19600430121.