

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Reducing Synchronization Overheads in CG-type Parallel
Iterative Solvers by Embedding Point-to-point Communications

into Reduction Operations

R. Oguz Selvitopia, Cevdet Aykanata*
 aBilkent University, Computer Engineering Department, 06800 Ankara, TURKEY

Abstract

Parallel iterative solvers are widely used in solving large sparse linear systems of equations on large-scale
parallel architectures. These solvers generally contain two different types of communication operations: point-to-
point (P2P) and global collective communications. In this work, we present a computational reorganization
method to exploit a property that is commonly found in Krylov subspace methods. This reorganization allows
P2P and collective communications to be performed simultaneously. We realize this opportunity to embed the
content of the messages of P2P communications into the messages exchanged in the collective communications
in order to reduce the latency overhead of the solver. Experiments on two different supercomputers up to 2048
processors show that the proposed latency-avoiding method exhibits superior scalability, especially with
increasing number of processors.

1. Introduction

Iterative solvers [1] are widely used and adopted to solve sparse linear systems of equations on modern large-
scale parallel systems. In these systems, the communication requirements of the solver generally become the
main bottleneck for obtaining a good scalable performance. For this reason, the coefficient matrix is usually
processed in a pre-processing phase, which involves partitioning of this matrix to reduce the communication
requirements. In the literature, the most often used and optimized communication matrix is the communication
volume [2] [3] [4] [5].

In iterative solvers, there are two types of communication that are repeated through all iterations:

 Collective communication operations: This type of communication is used to gather the results of the
inner product computations at all processors and requires all processors to join the communication. The
MPI equivalent of this operation is the MPI_Allreduce (hereafter referred to as ALL-REDUCE) with the
summation being the reduction operator. There are various algorithms that can be used to implement
ALL-REDUCE [6]. In this work, we focus on the bidirectional exchange algorithm as it incurs the least
communication overhead. This algorithm completes the reduction operation in logଶ ܲ steps where ܲ is
the number of processors in the system, and it is a power of 2.

 Irregular point-to-point (P2P) communication operations: This type of operation is used to
communicate the entries of the input and/or output vector of the sparse-matrix vector multiplication

* Corresponding author. E-mail address: aykanat@cs.bilkent.edu.tr

2

(SpMV). The irregular sparsity pattern of the coefficient matrix causes irregular task-to-task
interactions between parallel processes. They are generally performed by simple MPI primitives, e.g.,
MPI_Send , MPI_Recv, and their variants. The P2P communications often constitute the most time-
consuming communication phase as they are dependent on the sparsity pattern of the coefficient matrix
and are not very suitable for optimization, as opposed to collective operators which generally involve
all processors. Due to the irregular sparsity pattern, P2P operators usually do not require all processors
to involve in communication.

These two types of communication operations introduce separate synchronization points to the solver, which
hinders the solver's scalability. The existing pre-processing matrix decomposition tools generally aim at reducing
the total communication volume. Our analysis at current supercomputers indicates that message latency is
another important parameter that affects the communication performance of the solver, especially with
increasing numbers of processors. For example, our experiments on IBM BlueGene/Q and Cray XE6 machines
showed that a single message latency (transmission of a single message, startup time) can be as high as
transmitting 2-4 KB of data between two processors.

In this work, we devise a computational reorganization method to perform P2P and collective communication
operations simultaneously. This allows the number of synchronization points in a single iteration of the solver to
drop from two to one for a single pair of SpMV and its follow-up inner product(s). Our observation relies on the
fact that SpMV operations are generally followed by the inner product computations that involve the output
vector of the SpMV computations. This observation is valid for almost all Krylov subspace methods. We realize
this opportunity by embedding P2P communication operations into the collective communication operations.
This enables us to provide an upper bound (and an exact value) on the number of messages being communicated,
hence providing an upper bound on the latency cost of the solver which should have been dependent on the
coefficient matrix. More specifically, the proposed approach completely eliminates the message latency costs
due to the SpMV operations and reduces the average and maximum number of messages handled by a single
processor (send/recv) to logଶ ܲ for a system with ܲ processors. On the other hand, it increases the total volume
of communication since the embedding method requires a store-and-forward scheme. To address the increase in
the communication volume, we propose two heuristics whose main motivation is to keep the processors that
communicate high volumes of data close to each other.

We use a modified Conjugate Gradient (CG) iterative solver to show the validity of the proposed methods. We
use 1D partitioning of the matrix and test the solver on a BlueGene/Q and an XE6 up to 2048 cores with the
matrices selected from UFL sparse-matrix collection [7].

2. Computational Reorganization

The variant of the CG we use is introduced in [8]. This version is more amenable to parallelization since,
compared to basic textbook CG, the results of two inner products can be performed in a single reduction
operation, allowing to avoid the overhead of a single reduction operation.

In common parallelizations of CG, the coefficient matrix is row-wise decomposed and distributed to ܲ
processors. Figure 1 illustrates this version without computational reorganization, for processor ௞ܲ. As seen,
there are two separate communication phases highlighted as the shaded regions: (i) one of them is the P2P
communications prior to SpMV computations (lines 2-5) and (ii) the other one is the collective communication
after the local inner products (line 9). This common parallel algorithm has two synchronization points due to
these P2P and collective communication phases.

3

 Figure 1: Common parallelization Figure 2: Alternative parallelization

Figure 2 presents the alternative parallelization with computational reorganization. In this parallelization, the
input vector of the SpMV computations is not formed with the P2P communications but it is formed with the
help of the other vectors. Instead of communicating this input vector, the output vector is communicated and it is
augmented with the entries that are received from other processors. This augmented output vector is then
subjected to the same linear vector operations as the augmented input vector of the SpMV, requiring no further
communication. This reorganization enables P2P communications to be performed right after collective
communication operations, reducing two separate communication phases into one. The single and trivial
drawback of this reorganization is the redundant computation performed by each processor in linear vector
operations on augmented vectors instead of local vectors. This is not of prime concern since the main
computational burden of the solver lies in SpMV operations.

3. Embedding of Communication Operators

We realize the opportunity provided by the computational reorganization by performing these two types of
communication phases in a single one. The P2P and collective communications are performed simultaneously by
embedding messages of P2P communications into the communication pattern of the algorithm used for the ALL-
REDUCE algorithm. In other words, the latency overhead due to the P2P communications is completely
eliminated by using the messages that are already transmitted for ALL-REDUCE.

Figure 3: Steps of bidirectional exchange algorithm for 8 processors.

4

For ALL-REDUCE, we use the bidirectional exchange algorithm presented in [6]. In a ܲ-processor parallel
system, the collective communication for ALL-REDUCE can be completed in only logଶ ܲ steps. This algorithm
works in successive steps by simultaneous exchange of data between processors where in step ݀, each processor
exchanges a message with the processor in its 2ௗିଵ distance and updates its local buffer with the received
elements by using an associative operator (MPI_SUM operator in the solver). The steps of this algorithm are
depicted in Figure 3.

Figure 4: Embedding example for processor ଵܲ that needs to send messages to ଴ܲ, ଶܲ, ସܲ	and ଺ܲ.

Since processor ௞ܲ does not directly communicate with all processors in the ALL-REDUCE algorithm, a store-
and-foward scheme is needed to work out the path of the messages for P2P communication operations. The
critical observation here is that if ௞ܲ were to communicate with processor ௟ܲ, it is actually certain that a message
from ௞ܲ will reach ௟ܲ, though it may be direct or indirect (thus requiring store). If these two processors do not
communicate directly, then ௞ܲ can use other processors it directly communicates with to send the messages that
are meant for ௟ܲ by embedding necessary vector elements into these messages. These other processors then
simply forward them to ௟ܲ through a pre-determined path. An example of the store-and-forward scheme is
illustrated in Figure 4, where in an 8 processor system, ௟ܲ is to send P2P messages to ଴ܲ, ଶܲ, ସܲ, and ଺ܲ. Observe
that since ௟ܲ directly communicates with ଴ܲ, there is no need for store-and-forward for the messages that will be
communicated between these two processors. However, for ଵܲ to send messages to ଺ܲ, ଵܲ needs to embed the
contents of the messages it will send to ଺ܲ in Step 1 to send them ଴ܲ, which will in turn forward them to ଶܲ in
Step 2, and then in the final Step 3, ଶܲwill forward them to ଺ܲ.

Embedding messages of P2P communications into collective communications have the following implications:

 Startup costs of all messages due to P2P communications are completely avoided.

 An exact bound on the maximum and average number of messages is provided, which is logଶ ܲ for a
parallel system with ܲ processors. This is a significant advantage and is actually the key factor in
obtaining a good scalable performance at large processor counts.

 Communication volume increases due to the store-and-forward scheme required by the embedding.

 Embedding scheme requires buffering due to the store-and-forward scheme.

 There is a trade-off between avoiding latency costs and increasing communication volume. Here, the
former is favoured, because, as will be shown with the experiments, message latency becomes the
dominating factor in determining the communication costs with increasing number of processors.

5

4. Mapping Algorithms

The store-and-forward scheme used in embedding contents of P2P messages into the messages of collective
communication operations may increase communication volume. If the total number of P2P messages is low,
this can be a bottleneck in obtaining a good scalable performance. We present two heuristics to further reduce
this increased communication volume. The objective of both mapping heuristics is to keep the pairs of
processors that communicate a large volume of data close to each other. The closeness notion here refers to the
communication pattern used for the ALL-REDUCE algorithm. Both of the heuristics are Kernighan-Lin (KL) [9]
type of algorithms which try to find a good mapping by a number of successive swap operations:

 KLF: Use full neighbourhood information with ܲሺܲ െ 1ሻ possible swaps.

 KLR: Restrict the search space to the processors that directly communicate, thus reducing the number of
possible swaps to ܲlogܲ/2.

For more detail on these heuristics, refer to [10].

5. Experiments

We compare four schemes in our experiments:

 CONV: Common parallelization of conjugate gradient solver.

 EMB: Alternative parallelization with computational reorganization.

 EMB-KLF: Alternative parallelization with computational reorganization and mapping algorithm KLF.

 EMB-KLR: Alternative parallelization with computational reorganization and mapping algorithm KLR.

We used PaToH [11] to partition all matrices prior to execution. Two parallel systems are used in the
experiments: Cray XE6 (XE6) and IBM Blue Gene/Q (BG/Q). A node on XE6 consists of 32 cores (two 16-core
AMD processors) with 2.3 GHz clock frequency and 32 GB memory. The nodes are connected with a high speed
3D torus network called CRAY Gemini. A node on BG/Q consists of 16 cores (single PowerPC A2 processor)
with 1.6 GHz clock frequency and 16 GB memory. The nodes are connected with 5D torus chip-to-chip network.

We have tested these four schemes with 8 matrices selected from UFL [7]. The properties of these matrices are
given in Table 1.

 Number of Nonzeros per row/col
Matrix rows/cols nonzeros avg min max

144 144649 2148786 14.86 4 26
bcsstk36 23052 1143140 49.59 8 178

crystm03 24696 583770 23.64 8 27
helm3d01 32226 428444 13.29 3 37

olesnik0 88263 744216 8.43 1 11
onera_dual 85567 419201 4.90 3 5

pcrystk02 13965 968583 69.36 24 81
t3dl 20360 509866 25.04 8 27

Table 1: Test matrices and their properties.

6

7

Figure 5: Speedup results for 8 matrices on Cray XE6 and BlueGene/Q

8

The obtained speedup values are illustrated in Figure 5. As seen from these figures, with increasing number of
processors, the proposed three schemes usually scale better compared to the common parallelization. The effect
of message latency is more prominent on the XE6. The poor performance of CONV schemes is due to its high
latency overhead, which becomes the determining factor in communication costs and affects the overall
performance of the solver negatively with increasing numbers of processors. The embedded schemes have better
scalability characteristics due to their modest latency overheads.

Embedded schemes increase both total and maximum communication volume values compared to CONV.
However, this increase remains relatively low compared to the increase in latency overhead of CONV. This is
especially true for the embedded schemes EMB-KLF and EMB-KLR that further utilize mapping heuristics to
further reduce the volume.

These speedup values validate that startup costs become more important with increasing numbers of processors
and to obtain a good scalability, it is paramount that latency should be considered as a separate optimization
objective.

6. Summary and Conclusions

We have presented a novel computational reorganization method that enables point-to-point communications to
be performed simultaneously with the collective communications. We realized this by embedding the contents of
the point-to-point messages into the messages exchanged in collective communications. This reduces the
synchronization overhead of the iterative solver as well as providing an exact value on the number of messages
being communicated in the solver. Using Conjugate Gradient to realize our methods, we obtained superior
scalability on Cray XE6 and BlueGene/Q up to 1024 and 2048 processors, respectively. The obtained results
show that latency is an important metric that determines the parallel running time and scalability of the solver
with increasing number of processors.

References

[1] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003.

[2] Cevdet Aykanat, Ali Pinar, and Umit V. Catalyurek. Permuting sparse rectangular matrices into block-
diagonal form. SIAM J. Sci. Comput., 25:1860–1879, June 2004.

[3] Bruce Hendrickson and Tamara G. Kolda. Partitioning rectangular and structurally unsymmetric sparse
matrices for parallel processing. SIAM J. Sci. Comput., 21(6):2048–2072, December 1999.

[4] Bora Ucar and Cevdet Aykanat. Partitioning sparse matrices for parallel preconditioned iterative methods.
SIAM J. Sci. Comput., 29(4):1683–1709, June 2007.

[5] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data distribution method for parallel sparse
matrix-vector multiplication. SIAM Rev., 47:67–95, January 2005.

[6] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective communication:
theory, practice, and experience: Research articles. Concurr. Comput. : Pract. Exper., 19(13):1749–1783,
September 2007.

[7] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25, December 2011.

[8] Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient method. SIAM Journal on
Scientific and Statistical Computing, 6(4):865–881, 1985.

[9] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Tech. J.,
49:291–307, 1970.

[10] O. Selvitopi, M. Ozdal, C. Aykanat, A novel method for scaling iterative solvers: Avoiding latency
overhead of parallel sparse-matrix vector multiplies, Parallel and Distributed Systems, IEEE Transactions on
PP (99) (2014) 1-1. doi:http://dx.doi.org/10.1109/TPDS.2014.2311804.

[11] Umit Catalyurek and Cevdet Aykanat. Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst., 10:673–693, July 1999

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. PRACE-2IP: 283 493.

