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Abstract 
Agricultural intensification, an increase in per-area productivity, may spare forests otherwise 
lost to agricultural expansion. Yet which conditions enable such sparing or whether 
intensification amplifies deforestation through rebound effects remains hotly debated. Using a 
multilevel Bayesian regression framework, we analyse the effects of agricultural intensification 
on deforestation in the world’s understudied and threatened tropical dry forests. We find that, 
overall, intensification has not lowered deforestation in tropical dry forests, particularly in 
countries where commodity crop production dominates—a situation typical for many areas 
where agriculture is expanding. However, country-level intensification reduced deforestation 
in areas where Indigenous land stewardship is widespread. More appropriately acknowledging 
the critical role of Indigenous peoples in preventing rebound effects, either on their lands or on 
the wider surrounding area, as well as recognizing and enforcing their rights, could thus 
translate into major opportunities for agricultural intensification to deliver positive outcomes 
for people and nature. 
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MAIN 
Agricultural expansion into natural ecosystems is widely recognized as a major driver of the 
deeply intertwined climate and biodiversity crises1,2,3. Environmental impacts are particularly 
strong where modern agriculture expands into tropical and subtropical forests4,5, often 
additionally eroding the livelihoods and cultures of millions of forest-dependent peoples6,7. Yet, 
global demand for agricultural products continues to grow7,8,9, and agricultural expansion in the 
tropics and subtropics continues unabated5,10. Identifying land-use pathways that avoid the stark 
and often irreversible social–ecological impacts of converting natural ecosystems to agriculture 
has therefore become a central research issue in sustainability science11,12. 
Agricultural intensification may spare land13 and hence could serve as a mechanism to lessen 
expansion pressure on the world’s remaining forests14, but how intensification influences 
deforestation remains insufficiently understood and, as a result, hotly debated13,15,16. On one 
hand, the ‘land sparing’ hypothesis postulates that intensification releases land for other uses, 
including for conservation purposes, as intensification increases production output on a given 
piece of land. As a result, deforestation is expected to decline where such a sparing effect 
materializes. On the other hand, the ‘rebound effect’ hypothesis postulates that intensification 
increases profitability, which then incentivizes further expansion of agriculture into 
forests13,14,17. Many factors have been shown to determine whether land sparing or a rebound 
effect dominates in a given context, including crop types, the response of prices to demand, the 
degree of market integration of regions where intensification takes place, the type of 
intensification, constraints on production factors (that is, labour, capital, land), the time horizon 
considered (that is, short- versus long-term effects) or governance and policy incentives for or 
against agricultural expansion13,16,18. 
However, two major gaps in the literature have so far prevented a more general, systemic 
understanding of how intensification relates to deforestation. First, most existing work has 
focused on either the very local or the global scales, neither of which correspond well with 
scales relevant to broad-scale policy decisions. Insights from local case studies are often very 
context-specific and cannot easily be transferred to other social–ecological systems19,20. In 
contrast, aggregate global scale studies typically characterize net forest change in larger regions, 
and are thus unable to account for the fact that net land savings at a broad scale can co-exist 
with major forest loss at regional to local levels15,21. Recognizing this is crucial because 
identifying a land sparing effect at an aggregate scale does not necessarily indicate that 
expansion into natural forests has been avoided, because agricultural expansion in some 
places19 can be coincident with agricultural abandonment and reforestation15 or an increase in 
plantation forestry10, in other places. Such outcomes are less desirable from a conservation point 
of view than halting reductions of natural forest cover21,22. A focus on intermediate scales across 
biomes of high conservation interest could provide useful middle ground between exploring 
patterns in units large enough to internalize some of the spillover effects, while not erasing 
regional dynamics entirely and thus still capturing gross changes18. 
Second, although intensification outcomes can be expected, and have been shown, to differ 
between social–ecological settings18,23,24, two contexts especially relevant for conservation 
have so far been inadequately characterized in empirical studies across regions. First, global 
market integration potentially increases the possibility of rebound effects25,26. Most 
contemporary agricultural expansion frontiers are driven by agribusiness corporations, 
producing commodities for international markets27,28,29. For a given region, this undermines the 
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fundamental assumption of the land sparing hypothesis (that is, an inelastic demand for 
agricultural products, and thus declining expansion pressure once this demand is met30). 
Second, the roles and perspectives of Indigenous peoples have largely been neglected in 
previous research on the topic, although they manage or have tenure rights over at least 28% of 
the world’s terrestrial surface31. This is a major shortcoming, given that the principles and 
values underpinning Indigenous land stewardship and governance are often strikingly different 
from the neoclassical economic framing of human decision-making that is assumed by the land 
sparing hypothesis32,33,34. The institutional arrangements, governance approaches and 
management systems of Indigenous peoples have been shown to slow down forest loss and 
degradation substantially35,36, but their moderating effect on the relationship between 
agricultural intensification and deforestation remains unstudied. 
Understanding how intensification relates to deforestation across these social–ecological 
contexts is critical because misdirected or ineffective policies that support intensification risk 
translation into deforestation, biodiversity loss and carbon emissions37. Addressing this 
research challenge is particularly relevant for the world’s under-researched, yet important, 
tropical dry forests (TDF)38,39,40. TDF harbour exceptional biodiversity and sustain the 
livelihoods of hundreds of millions of people, but have often been overlooked in science and 
policy circles39,40,41. This is even more worrisome given that many TDF remain weakly 
protected and currently face high and rising human pressure40. Many expanding agricultural 
frontiers and global hotspots of deforestation are found in TDF42,43,44. Hence, both the stakes 
and the potential opportunities associated with intensification are high. Against this 
background, we aimed to explore how different social–ecological conditions affect the 
relationships of intensification and forest loss in the world’s TDF. Specifically, we asked: 

1. Does the degree of market orientation of agriculture influence the relationship between 
agricultural intensification and deforestation? 

2. Does the presence of Indigenous lands influence that same relationship between 
intensification and deforestation? 

3. How does the association of deforestation and intensification vary across continents? 
We applied a Bayesian multilevel regression framework to investigate the causal link between 
agricultural intensification, measured as country-level yield change, and deforestation, 
measured as percentage forest loss within 3-km grid cells, for the period 2000 to 2020 (Fig. 1). 
We used this framework to explore how intensification outcomes on deforestation are 
influenced by (1) the degree of market orientation of agriculture, proxied using the country-
level production share of non-staple crops, and (2) the presence of land managed or owned by 
Indigenous peoples. We furthermore controlled for local demand changes through rural 
population density, for fine-scale variations in agricultural suitability and for remoteness of 
forest areas. For a detailed description of our modelling strategy, input data and variables used, 
we refer to Methods and Supplementary Notes 1 and 6. 
 
RESULTS AND DISCUSSION 
Higher yields fail to spare land in TDF 
Our models revealed that agricultural intensification between 2000 and 2020 was generally 
associated with increasing, not decreasing, forest loss in the world’s TDF. Globally, a doubling 
in yield (that is, a 100% increase) was associated with an average increase in forest loss of 3.8% 
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(Table 1). These findings support the view that the most common pattern for tropical or low- to 
middle-income countries achieving growth in agricultural productivity has been to expand their 
agricultural footprint18,23,45. We caution that, as we focus on forest loss in TDF regions only, 
we cannot examine whether the locally identified rebound effects were accompanied by land 
sparing beyond our study area, for example, the extent to which it has been facilitated through 
global trade46. However, even if there was a net increase in land sparing globally, there would 
still be an increase in deforestation in the forests of the very threatened tropics and subtropics, 
thus representing an environmentally costly process of displacing forest loss15. 
Our model results explicitly demonstrate the variability of intensification outcomes. By 
predicting the effect of yield change on the precision of forest loss (see Methods), we show that 
higher yield increases are associated with lower precision—and thus higher dispersion—of 
forest loss outcomes (Table 1). This suggests that heterogenous social–ecological conditions 
diversify the forest loss outcome of yield change. Moreover, our results support the expectation 
that the divergent outcomes of agricultural intensification (that is, a land sparing effect versus 
a rebound effect) are likely to be context dependent. Specifically, with stronger intensification, 
contextual factors are more important for shaping the overall outcome, thus highlighting the 
need to improve understanding of how different social–ecological settings foster or inhibit these 
outcomes18,24,47. A corollary to this is that policies that lead to a desired outcome in one social–
ecological context can be ineffective or detrimental in others37. 
 
Commodity agriculture reinforces the rebound effect 
A central finding from our work is that the rebound effect was stronger for situations where 
agricultural production is predominantly for commodity markets, as evidenced through the 
positive interaction effect of our measure of market orientation (that is, share of non-staple 
crops, correlated with the share of exported production) on the intensification–deforestation 
relationship (Fig. 3 and Table 1). The role of market integration in strengthening the rebound 
effect confirms model simulations26, and is also in line with previous findings on the influence 
of crop type on the magnitude of rebound effects, such as land sparing being more likely for 
staple crops versus non-staple crops18, or land sparing effects of staple crops being 
counteracted by the effect of expanding non-staple crops45. 
Our results add to a growing body of evidence that land sparing is more likely to materialize 
when agricultural demand is inelastic to price13,17,26, in other words, when decreasing prices that 
can derive from increasing productivity and efficiency gains do not lead to an additional 
demand for a commodity. Such price inelasticity is typical for staple crops for direct human 
consumption, or in closed markets where crops are mostly sold locally, so that surplus 
production reached through higher yields renders agriculture unprofitable on marginal lands26. 
In contrast, prices of commodities produced for global markets are often insensitive to local or 
regional increases in production and demand is relatively elastic, so that efficiency gains from 
intensification are likely to translate into more profitable agriculture. Because agricultural 
expansion is particularly responsive to commodity prices14, high profitability of cultivation acts 
as an incentive to expand the crop frontier, thereby stimulating a rebound effect. 
Taken together, these results highlight that the form of intensification strongly mediates its 
impact on forest cover. In particular, the intensification of commodity crops produced for 
rapidly expanding global markets, so-called ‘commodity booms’, risks stimulating major forest 
loss through rebound effects48,49. Such commodity booms drive much contemporary cropland 
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expansion into tropical forests and other natural areas27,28,50, where staple production in closed 
local markets is increasingly supplemented and replaced by non-staple production for distant 
or globalized markets27,50,51, as even the remotest areas can rapidly be integrated into global 
supply chains52,53. Our estimates of yield change, outranking the traditionally strong effect of 
rural population on forest loss in all continents (Table 1), suggest that contemporary 
deforestation frontiers are better explained by distant demand from urban areas and other 
domestic markets, and international markets, than by local demand28,51. Clearly, this finding 
poses a major challenge to leveraging land sparing under current trends in global agriculture 
and highlights the importance of considering market dynamics when designing policy 
interventions aimed at fostering sustainable outcomes from intensification. 
Among continents, the finding that market-oriented agriculture reinforced a rebound effect was 
strongest for Asia. This probably reflects the growing importance of agricultural commodities 
often destined for export, such as palm oil, rubber, tea, pepper and coffee50, yet especially also 
the role of rice, which is increasingly exported to international markets54. Although much of 
the marketed rice is wet rice, contributing relatively little to deforestation directly, rice 
intensification could have major indirect effects at the scale of countries. For example, rice 
intensification can promote the expansion of other crops that are more likely to promote 
deforestation by freeing up labour, capital or land45. Interestingly, testing our models with rice 
classified as a staple crop, we found a trend reversal (Extended Data Fig. 2), supporting the role 
of rice intensification as an indirect driver of forest loss. 
As in Asia, we found market-oriented agriculture to reinforce a rebound effect for South 
America (Fig. 3). This is not surprising, given the recent wave of expansion of export-oriented 
agribusiness that has triggered rampant deforestation, including in the Cerrado55, the Gran 
Chaco51 and the Chiquitano Forest56. These market-oriented, highly capitalized actors, often 
operating with little direct government intervention51, are likely to re-invest revenues from 
agriculture to increase profitability and thus to lead to persistent or increasing deforestation 
pressure without policy interventions43,57. Thus, our findings do not support the notion that 
agribusiness agriculture facilitates land sparing because of higher land-use efficiency58, 
generally, and particularly not for South American TDF (Fig. 4). 
In contrast, in Africa, where smallholders producing for themselves or local markets 
dominate59,60 (Fig. 4), farmers are likely to be much less responsive to changes in global 
commodity markets, explaining why we found that the effect of market orientation on the 
intensification–deforestation relationship was small. In line with our results, African 
deforestation frontiers are largely associated with smallholder agriculture43,60,61. However, 
Africa is now attracting increasing interest from agribusiness investors53, increasing domestic 
demand for commodity crops43 and expanding export-oriented farming of crops such as soy 
and oil palm in sub-Saharan Africa43 or maize in Madagascar62. These expanding African 
frontiers have similarities, and sometimes connections, to early South American frontiers63. 
This signals increasing pressure on African dry forests and savannas43,50, especially as our 
results suggest that this pressure is likely to be reinforced by rebound effects, in line with prior 
work26. 
 
Land sparing effects are more likely in Indigenous lands 
Intensification of agriculture at the country level was more likely to be associated with lower 
forest loss in areas owned and/or managed by Indigenous peoples (Table 1). This finding can 
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be explained by two underlying mechanisms. First, lower forest loss in lands under Indigenous 
stewardship can indicate land sparing as a direct effect of agricultural intensification on 
Indigenous lands. Such a conclusion is plausible as Indigenous land uses are generally based 
on collective ownership and conditions that, having coevolved with the local ecologies, often 
translate into sustainable use of common-pool resources32. Further, agricultural production in 
Indigenous land systems is often small-scale, subsistence-oriented and based on traditional 
agroecological practices64,65, making these systems less prone to the drive to increase 
profitability, and thus be subject to rebound effects from agricultural intensification. 
Smallholders might refrain from intensification due to increased labour intensity and/or 
ecological concerns66,67. However, it is important to highlight that intensification has frequently 
occurred in smallholder communities, including in Indigenous communities68,69,70. 
Second, lower forest loss in areas where Indigenous stewardship is widespread can indicate 
forest conservation amid intensification outside mapped Indigenous lands (yet within the same 
country, the scale at which our intensification measure was calculated). This outcome can either 
be interpreted as forests spared by intensification outside Indigenous lands (that is, a spillover 
effect), or as forests conserved inside Indigenous lands alongside intensification and rebound 
effects outside these lands. Such positive effects of Indigenous land-based stewardship on 
nature conservation and ecosystem service provisioning has recently been identified by several 
scientific studies31,32,36, in addition to Indigenous scholars and knowledge holders who have 
long provided rich contextual evidence of the innumerable ecological values of their 
territories71,72,73. Indeed, forests on lands owned or managed by Indigenous peoples often form 
the very foundation of livelihoods and cultural identities6,74. Indigenous land-based stewardship 
is often compatible with, and frequently actively supports, forest conservation and restoration, 
and this recognition has spawned innovative ways to design multi-functional reserves, policy 
instruments and management programmes31. 
We stress that, while both explanations highlight the potential importance of Indigenous 
peoples in enabling land sparing and conserving forests, our data do not allow us to distinguish 
clearly between the two explanations. More fine-scale data on intensification, which to our 
knowledge are not available across the extent of all TDF we assess here, would be needed to 
quantify whether the positive net effect of intensification on forests in Indigenous lands results 
from intensification on Indigenous agricultural areas themselves, or from interactions between 
intensification in the wider landscape and land sparing on Indigenous lands. While future, field-
based efforts to measure agricultural intensification on and in the areas surrounding mapped 
Indigenous lands will be valuable, we stress that this would require a long-term study, as yield 
change data are required to disentangle the mechanisms behind the positive net effect of 
Indigenous peoples’ presence on reducing forest loss we find here. Such data cannot be gathered 
retrospectively for regions that have undergone forest loss. Finally, and more generally, it is 
important to note that, by capturing relative land sparing, we here only refer to reducing forest 
loss, not halting or reversing it. 
The influence of Indigenous land stewardship on deforestation varied among continents. The 
dampening effect of Indigenous influence on forest loss and the magnitude of the rebound effect 
was particularly strong for South America, but was still evident in Africa and Asia. In South 
America, we found a trend reversal, with land sparing as the most probable outcome of 
intensification on lands owned or managed by Indigenous peoples, yet the opposite for other 
lands (Fig. 3 and Table 1). Importantly, we stress that the ‘sparing effect’ we identify refers to 
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the maintenance of forest cover, but does not imply that these forests are, or should be, 
uninhabited or unused. On the contrary, we recognize that this reduction in forest loss is most 
often due to the leadership and agency of Indigenous communities in keeping these forests free 
from industrial development pressures75,76. The stronger effect we reveal for South America 
might be attributable to the relatively higher tenure security of many Indigenous peoples there, 
with land titling programmes being generally more formalized and enforced than in large 
swathes of Africa and Asia77,78. Although Indigenous peoples in South America also suffer from 
land tenure insecurity and encroachment79, they generally have a stronger ability to engage in 
land-use planning and decision-making, when compared with other regions in the Global 
South78. Tenure insecurity and overlapping tenure affects land management decisions and tends 
to undermine any conservation impacts that might be associated with Indigenous land 
stewardship32,80. Furthermore, in many places, and particularly large parts of Africa and 
Southeast Asia, multiple layers of settlement and colonization have made definitions of 
Indigeneity contentious and difficult to apply31. Consequently, there are local communities that 
share many characteristics with Indigenous peoples (for example, long histories of place-based 
living, semi-subsistence economies, distinct cultural practices), but do not meet the definition 
of Indigenous peoples that was applied in the dataset we used for our analysis (see Methods and 
Supplementary Note 5). We believe it is valuable to maintain a consistent definition of 
Indigenous peoples across studies, but highlight that we may miss some effects associated with 
other local communities. 
Overall, our results highlight the key role of Indigenous communities as land stewards. 
However, and despite their importance, Indigenous peoples’ perspectives and views are so far 
only marginally considered in scientific and policy debates about intensification, land sparing 
or conservation strategies. In fact, the overall framing of the debate around the land sparing 
effect versus rebound effect does not tally with Indigenous ways of knowing and relating with 
their lands81. Instead, in much of this literature, spared lands are commonly understood as 
‘wilderness’ areas where human interventions should be at least minimized13—a 
conceptualization that fails to recognize the crucial material and non-material needs these lands 
fulfil to Indigenous communities, and overlooks the crucial stewardship contributions of 
Indigenous peoples82. 
Predicting potential future forest loss associated with extrapolating yield increases based on our 
modelling results illustrates how rebound effects could translate into alarming deforestation, 
particularly in some frontier hotspot regions (Fig. 5). While this prediction represents a 
hypothetical simulation and is by no means a forecast into the future, such a visualization 
highlights the heterogeneity of potential intensification outcomes, diversified by varying 
social–ecological conditions. At least 21% of the world’s TDF are owned or managed by 
Indigenous peoples (Fig. 4). This provides numerous opportunities for delivering more positive 
outcomes of agriculture for both people and nature, as we highlight with our modelling results, 
but urgently requires Indigenous peoples’ perspectives and management approaches to be 
considered more deeply in the design and implementation of sustainable land-use strategies. 
 
Implications for leveraging sustainable land use 
Given current trends and the anticipated strong growth of demand for agricultural products, the 
world still seems far from ‘peak cropland’14. Agriculture continues to expand rapidly, 
particularly into natural areas in the Global South, where it leads to stark environmental and 
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social trade-offs5. Given that much of the world’s remaining lands that could be used for 
agriculture are found in the world’s TDF and savannas83, land-use pressure on these ecosystems 
will probably continue to rise. These regions already harbour many global deforestation 
hotspots, particularly in South America and Asia, and new ones are emerging rapidly, 
particularly in Africa44. Forward-looking sustainability planning is urgently needed for these 
regions. 
Much hope is placed on sustainable agricultural intensification to lessen pressure on the 
remaining tropical and subtropical forests9. In assessing past forest loss and yield changes in 
the world’s TDF, we here provide a cautionary note to such expectations. Increasing 
productivity and land-use efficiency by itself are unlikely to lower deforestation pressure, 
particularly where market-oriented agribusinesses dominate—a situation emblematic for many 
expanding commodity frontiers in the Global South. As such, intensification is likely to lead to 
more, not less, deforestation through rebound effects, and additional policy measures such as 
land-use zoning, land protection, or supply-chain mechanisms are needed to halt forest loss84,85. 
Importantly though, we find agricultural intensification, measured at the country level, is much 
more likely to be associated with lower local forest loss where Indigenous land stewardship is 
widespread, adding to the many well-documented local-to-global benefits of Indigenous land-
based stewardship72,73,76. Ensuring the participation of Indigenous peoples in policy and 
planning for their lands, as well as recognizing their inherent rights on their traditional 
territories, can thus provide major opportunities for leveraging sustainable intensification. 
Furthermore, our results have relevance for the long-lasting scientific debate on whether land 
sparing or land sharing strategies are the best means to minimize the trade-offs between 
agricultural production and biodiversity conservation. Land sparing seeks to use less land by 
intensifying agricultural production, resulting in a spatial segregation of production and 
conservation areas. In contrast, land sharing assumes that production and conservation goals 
can be achieved on the same lands, particularly if production takes place in biodiversity-friendly 
ways86. Given that we found widespread rebound effects in the world’s TDF, our study 
corroborates views that intensification by itself is unlikely to spare land for nature without 
additional policy interventions at multiple levels and scales58,84. More generally, our work 
highlights how scientific and policy debates too often seek universal, silver-bullet solutions that 
are unlikely to meet complex social–ecological challenges, such as ensuring sustainable land 
use37. Considering the diverse social–ecological contexts that are found locally, and therefore a 
diversity of solutions, is urgent if pathways to sustainable land use are to be identified. In the 
context of the land sparing debate, ignoring social–ecological context risks overestimating the 
potential for market mechanisms to promote sustainability, and does not do justice to the 
leadership and agency of Indigenous peoples in curbing deforestation on their territories. 
 
METHODS 
TDF 
To define our study region, we followed previous work on TDF globally44,87,88 and used an 
inclusive TDF definition. Specifically, we focused on all forests and woodlands falling into two 
biomes according to the updated version of Olson et al.’s categorization89,90: (1) tropical and 
subtropical dry broad-leaved forests; and (2) tropical and subtropical grasslands, savannas and 
shrublands. Accordingly, TDF regions are distributed through South and Central America, 
Africa, Southeast Asia and Australia, covering about 20% of the global terrestrial surface87. All 
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these ecosystems harbour large numbers of endemic species38,91, are major carbon stores and 
provide important ecosystem services92. Moreover, TDFs are culturally rich and have been 
inhabited for millennia93, causing widespread transformations in these ecosystems94. While in 
some TDF regions, forests have been substantially reduced by historical deforestation, such as 
in India95 and Indochina96, many regions, such as Madagascar62 and the South American Chaco, 
Chiquitano56,97 and Cerrado42, have only recently turned into global deforestation hotspots. 
There are also many regions where deforestation frontiers are currently activated, such as the 
African Miombo43,59,63. 
 
Data sources and processing 
To analyse the causal link between agricultural intensification and deforestation in the world’s 
TDF, we assembled a multilevel dataset for the period 2001 to 2020, consisting of country-level 
variables and pixel-level information at a 3 × 3 km2 grid. Specifically, we included all grid cells 
that had at least 10% TDF cover in the year 2000 according to the Global Forest Watch 
dataset10. Although forest data derived from satellite images entail some weaknesses in the 
forest–grassland transition areas where tree cover is on the margin of the remote sensing 
definition of forest, these data still have an overall accuracy of more than 80%, which is further 
increased through aggregating onto a coarser grid. We systematically sampled every third grid 
cell in x- and y-direction to minimize effects of spatial autocorrelation, resulting in a total of 
154,979 cells that we retained. Because, in the tropics, most new cropland comes at the expense 
of forests30,98, we used forest loss as our dependent variable. The Global Forest Watch captures 
all forest loss, but in TDF regions, most forest loss is either due to agricultural expansion or 
management (for example, shifting cultivation)99. This is particularly true for forest loss 
associated with fire, which has historically been an intrinsic part of the ecology of many TDF 
regions but, in many parts of the world today, often signals clearance for agriculture39 or, to a 
lesser extent, shifting cultivation100 (see Supplementary Note 4 and Supplementary Fig. 2). We 
did not separate different forms of agriculture, which would be challenging empirically due to 
lack of fine-scale data, as well as conceptually due to links between different forms of 
agriculture. For example, cattle ranching is a main proximate cause of deforestation in South 
America50,101, yet often connected to cropland expansion102 and indirectly driven by cropping 
expanding over pasture areas103,104. Consequently, we used proportional forest loss as our 
measure of agricultural expansion, calculated as the accumulated forest loss from 2001 to 2020 
as percentage of forest cover in 2000 per 3-km cell. A sensitivity analysis based on a differently 
scaled forest change measure (that is, absolute forest loss as the dependent variable and initial 
forest cover as an independent variable) led to qualitatively identical results, suggesting 
robustness of our analytical setup and findings (see Supplementary Note 3 and Supplementary 
Table 1). Importantly, by measuring forest loss instead of forest area, our analyses addressed 
relative land sparing13, that is, the rate of agricultural expansion compared with a counterfactual 
scenario without intensification, and did not directly indicate absolute cropland contraction. 
As a measure of intensification, we used country-level yield change over the period 2000–2019 
(see Supplementary Note 1 for a detailed description). We retrieved yield and production 
statistics from the FAOSTAT database, the only long-term, global scale, cross-country dataset 
available. Using yield growth as a measure of intensification implies a simplified representation 
of land-use intensity because it does not distinguish among the practices behind increased 
output per land unit (technological improvements, higher inputs per land unit or higher 
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frequency of land use)105,106, and thus does not consider potential impacts on biodiversity and 
ecosystem properties107. Some authors have suggested consideration of technological progress 
in agriculture using total factor productivity (that is, the efficiency of the overall mix of 
production factors due to improved technologies, farmers’ skills and knowledge)18,108. Yet, due 
to our study design based on using forest loss as the dependent variable, we could only capture 
cropland expansion but no reduction, so that output per unit of land (that is, yield) was a more 
appropriate measure. As our yield data have a country-level resolution, we here explicitly focus 
on intensification–deforestation links within country borders. We note that land sparing and 
rebound effects can theoretically also occur across country boundaries13, but we want to 
capture dynamics in TDF explicitly, and thus disregarded potential displacements to other 
regions. Applying such a resolution provides a sensible middle ground to explore broad patterns 
across different regions by internalizing some of the local spillover effects, while remaining 
close to gross changes in our biome of interest. 
To represent the degree of market orientation of a country’s agricultural sector, we calculated 
country-level mean shares of non-staple crop production and shares of exports for 2000 to 2019 
based on FAOSTAT data109. Both variables were highly correlated, but the mean shares of non-
staple crop production resulted in better models, and we therefore chose it to capture market 
orientation. Non-staple (or commodity) crops are primarily grown to be sold on international 
markets, including many crops related to deforestation risk such as soybean, sugar cane, cocoa, 
coffee, tea, rubber, palm oil or cotton43,110. Because of the growing importance of rice as a 
commodity and export crop, we also included rice in the list of non-staples54.To capture the 
presence of Indigenous land stewardship in our grid cells, we used a recent dataset compiled by 
(ref. 31) to yield a binary variable (that is, presence/absence of Indigenous lands). We adopted 
the definition of Indigenous peoples from (ref. 31) as those who identify as having “descended 
from populations which inhabited a country before the time of conquest or colonization [and] 
who retain at least some or all of their own social, economic, cultural and political 
institutions”31. While this dataset represents the most comprehensive assessment of lands where 
Indigenous peoples have customary ownership, management or governance arrangements in 
place, regardless of legal recognition, it still underestimates Indigenous lands in some countries 
or does not cover certain regions where local communities do not self-identify as Indigenous 
(for example, several southern African countries) or do not adhere to the applied working 
definitions of Indigenous peoples for other reasons (many Pacific island nations; see 
Supplementary Note 5). We therefore caution that absences in our data do not necessarily imply 
an absence of Indigenous peoples or their lands31. 
As control variables potentially affecting the yield change–deforestation relationship, we 
included accessibility as travel time to the nearest city of population >50,000111, agroecological 
suitability112 and change in rural population density from 2000 to 2020, calculated in a 9 km2 
buffer around the given grid cell based on the Gridded Population of the World data113. All data 
processing was carried out in R114. 
The temporal design of our study constitutes one timestep encompassing 20 years (2001–2020) 
and thus relies on temporally aggregating both forest loss and yield change (see Supplementary 
Note 2 where we explain and discuss the implications of such approach). While the use of 
aggregated information entails the risk of missing dynamics occurring at finer scales, it also 
provides the opportunity to internalize confounding effects such as short-term time lags. 
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Further, we performed robustness checks on the temporal study design that supported the 
assumed constancy of modelled effects (Extended Data Fig. 3 and Supplementary Note 2). 
 
Modelling framework 
Drawing valid causal inference on the basis of complex, heterogeneous social–ecological data 
requires adjusting for possible observation bias115,116. In contrast to controlled experiments, 
estimates based on observation data are typically biased by confounders, which are variables 
associated with both intervention and outcome117. Checking our data for imbalances with 
respect to measurable potential confounders (population density change, accessibility and 
agroecological suitability) across the range of yield change revealed dissimilar exposure 
regarding accessibility and agroecological suitability. To adjust for this imbalance, we weighted 
data points based on the generalized propensity score for continuous treatment by (ref. 118) 
using the R package WeightIt119. 
We applied a multilevel Bayesian regression framework to investigate the causal relation of 
agricultural intensification and deforestation in different social–ecological contexts (that is, 
lands dominated by agribusiness agriculture or Indigenous communities). Our varying-effects 
regression framework included continents as a level, thus allowing us to estimate the average 
global effect as well as continent-specific variations of this effect. As likelihood function for 
the outcome, we specified a zero-inflated beta distribution, as our response variable was 
continuously distributed between 0 and 1, as well as zero-inflated120. The resulting mixed model 
had two components. First, a Bernoulli distribution predicted the binary zero-forest-loss 
responses. To estimate this zero-inflation probability, we defined a linear model including 
accessibility as a predictor based on the expectation that remotely located, poorly accessible 
data points have a higher probability of the outcome of zero forest loss, independent of effects 
of intensification. The second, and major, part of our model consisted of a beta distribution for 
all non-zero responses in the open (0,1) interval. Here, we wanted to identify the effect of yield 
change in different social–ecological contexts on mean forest loss, so that we included those 
variables in a linear model predicting mean forest loss. Furthermore, we wanted to explore the 
heterogeneity of potential effects of yield change on forest loss, so that we also included yield 
change in a linear model predicting the precision of forest loss. 
We specified the mixed varying-effects model as follows (see Supplementary Note 6 for 
information on the choice of priors): 
FLi∼ZIBeta(pi,μi,ϕi)  (1) 
logit(pi)=αp+βAAi  (2) 
logit(μi)=αμ,cont[i]+βPD,cont[i]PDi+ΔYi×(βΔYμ,cont[i]+βNSt,cont[i]NSti+βS,cont[i]Si+βI
PL,cont[i]IPLi)  (3) 
log(ϕi)=αϕ+βΔYϕΔYi (4) 
where FLi indicates proportional forest loss predicted for every data point i by the zero-inflated 
beta model ZIBeta, pi the zero-inflation probability, predicted by accessibility Ai, μi mean 
forest loss, predicted in a multilevel model by population density PDi, and yield change ∆Yi in 
interaction with share of non-staple crops production NSti, agricultural suitability Si and 
Indigenous land management IPLi with continent-level varying effects and ϕi forest loss 
dispersion, predicted by yield change ∆Yi. 
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We sampled 4,000 realizations of the posterior distribution using Markov chain Monte Carlo 
with four sampling chains running for 2,000 iterations and a warm-up period of 1,000 iterations 
each. Convergence was verified using the Rhat statistic and examination of trace plots. We 
evaluated model fit based on posterior predictive checks, that is, predicting new hypothetical 
data sampled from the posterior predictive distribution and comparing it to a random draw of 
observed data (see Extended Data Fig. 4). Further, we determined out-of-sample predictive 
accuracy using leave-one-out expected log predictive density using the R package loo121. We 
performed all modelling through the brms package120 in R114 as an interface to the Bayesian 
inference engine Stan122. 
Once our models were specified, we projected yield-change-related forest loss another timestep 
of 20 years into the future (that is, 2021–2040) under a future scenario that is based on 
extrapolating the yield change patterns from 2011 to 2020. Assuming rural population density 
to stay constant, and leaving all other conditions unchanged, we calculated the mean posterior 
estimate as well as the posterior standard error comprising both parameter uncertainty and 
predictive uncertainty, and mapped the outcome spatially. While this scenario is hypothetical 
and explorative by nature, and not meant to reproduce realistic trajectories, it is useful to 
identify the potential of future forest loss associated with rebound effects of intensification. 
 
DATA AVAILABILITY 
Datasets used in this analysis are publicly available. Forest cover and loss data are available at 
https://data.globalforestwatch.org/; agricultural production statistics are available at 
https://www.fao.org/faostat/en/#data; population density data are available at 
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11; accessibility data 
are available at 
https://figshare.com/articles/dataset/Travel_time_to_cities_and_ports_in_the_year_2015/7638
134; agricultural suitability data are available at https://www.gaez.iiasa.ac.at/. Indigenous 
peoples’ lands data were derived from the spatial layer created in 
https://doi.org/10.1038/s41893-018-0100-6, but restrictions apply to the availability of these 
data. However, data are available from the corresponding author S.T.G. of the original paper 
upon reasonable request. 
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EXTENDED DATA FIG. 1: CONDITIONAL EFFECTS OF MARKET ORIENTATION 
AND INDIGENOUS LAND STEWARDSHIP ACROSS CONTINENTS. 

 
Curves show the mean effect and shadows the 95% credible interval of the posterior distribution 
when all model predictors, besides the one of interest, are set to their mean value or reference 
category. Green curves represent the average continent-level effect of yield change on forest 
loss on lands without Indigenous land stewardship. Red and blue curves show how the 
relationships between yield change and forest loss is affected by high (1 standard deviation 
above mean) or low (1 standard deviation below mean) values of market orientation, or 
presence of Indigenous lands. 
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EXTENDED DATA FIG. 2: HIGH INFLUENCE OF RICE CLASSIFICATION ON 
MODELLED EFFECT OF SHARE OF NON-STAPLE CROPS (APPROXIMATING 
MARKET ORIENTATION) IN ASIA. 

 
a, With rice classified as non-staple crop, interaction effect of share of non-staples reinforces 
positive relationship of yield change and forest loss in Asia. b, With rice classified as staple 
crop, share of non-staples has a dampening effect on the positive relationship of yield change 
and forest loss in Asia. 
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EXTENDED DATA FIG. 3: MODELLED EFFECT OF YIELD CHANGE FROM 
EARLIER TIME PERIODS ON FOREST LOSS IN THE STUDY PERIOD. 

 
The modelled effect of yield change on past time periods showed the same trend and was of 
comparable magnitude as the effect of yield change in the study period, thus strengthening the 
assumption that the temporal design of our analysis did not miss significant time lag effects of 
intensification on deforestation. 
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EXTENDED DATA FIG. 4: PREDICTIVE CHECKS. 

 
a–b, Comparing observations to a sample of 100 a, prior model predictions generated according 
to our final prior specifications, and b, posterior model predictions based on priors and data, 
provided insights about the plausibility of model assumptions and the reliability of model 
results. 
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SUPPLEMENTARY INFORMATION 
 
Supplementary Notes 
 
Supplementary Note 1: Intensification measure 
We operationalized agricultural intensification as country-level yield change, calculated in a 
three-step procedure. First, annual yield changes of different crop groups were calculated 
separately compared to the mean of the two previous years. To measure the outcome of 
intensification, the period of interest was shifted one year ahead (2000-2019) compared to forest 
loss (2001-2020). The smoothing step of referring change to the two preceding years instead of 
one was applied to mitigate the impact of inconsistencies that can likely occur in the FAO 
database, e.g., through countries irregularly reporting production statistics. 

 
Second, annual yield change at country level was compiled by averaging the crop groupspecific 
yield changes weighted by the respective proportion of harvested area in 2000 (𝐻𝐻A𝑐𝑐). This 
procedure allowed to aggregate yield changes of different crop categories in one number 
without risking biases due to variations in harvest weight among different crop groups. 

 
The resulting yield trajectories revealed that most countries experienced relatively steady yield 
dynamics over the entire study period, thus justifying our summation of yield over time without 
neglecting crucial patterns. Accordingly, as a last step, we aggregated study-level country 
yield change as the product of annual yield change from 2001-2019. 

 
In most countries, yield increases were of moderate or high magnitude while some countries 
experienced an overall decline in yield. 
 
Supplementary Note 2: Robustness checks of temporal aggregation 
The presented approach relying on temporally aggregating both forest loss and yield change 
provides the opportunity to internalize confounding effects such as short-term time lags, but 
simultaneously bears the risk of neglecting the chronology of events. If both aggregated yield 
change and forest loss were attributable to short periods of only a few years, and the forest loss 
event occurred earlier in time than the one causing yield change, our data structure would not 
allow accounting for this order, and thus risk wrongly identifying the given forest loss as 
following yield change. However, such potentially misleading chronology could be ruled out 
after inspecting the country-level yield trajectories, which revealed that the large majority of 
countries experienced relatively steady yield dynamics. To maximize robustness, we checked 
whether different assumptions regarding time lags of intensification spillovers affected the 
results. To this end, we calculated yield change in the periods 1981-2020 and 1991-2010 to 
check whether conditioning present forest loss on earlier yield change time spans would yield 
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essentially different results compared to the analysis based on the original yield change variable 
in the study period (2000-2020). The resulting model estimates demonstrated that conditioning 
present forest loss on past yield change generated similar relationships (Extended Data Fig. 3). 
This strengthens our assumption that the temporal study design did not miss significant time 
lag effects of intensification on deforestation. 
 
Supplementary Note 3: Sensitivity analysis of forest loss variable 
In our model, we used grid-level proportional forest loss relative to the initial forest cover in 
000 as the dependent variable. Measuring relative instead of absolute forest loss allowed us to  
compare across landscapes with varying baseline forest-cover densities, which is an important 
advantage in the diverse tropical dry forest ecosystems. However, this also implies that the 
forest loss effects directly depend on initial forest cover. To check whether our results are robust 
towards the measure of forest loss (i.e., relative vs. absolute forest loss), we performed a 
sensitivity analysis using absolute forest loss as the dependent variable and adding initial forest 
loss as an independent variable. The resulting model estimates supported the positive effect of 
yield change on forest loss between 2000 and 2020 globally, as well as at continent level. 
Further, the sensitivity analysis supported the effects of market orientation and Indigenous land 
stewardship on the intensification-deforestation relationship indicating a positive interaction 
effect of share of non-staple production and negative interaction effects of Indigenous land 
management. While the magnitude of the modelled parameter coefficients varied between the 
model runs based on the two different dependent variables, all results were thus qualitatively 
identical, both at the global level and continent level. 
 

 
 
Supplementary Fig. 1: Conditional interaction effects of sensitivity analysis based on absolute 
forest loss as the dependent variable. Both market orientation (proxied by the share of non-
staple crops) and Indigenous land stewardship (proxied by the presence of Indigenous Peoples) 
influence the relationship of yield change and forest loss markedly. Curves show the mean 
effect and 95% credible interval of the posterior distribution when all model predictors, besides 
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the one of interest, are set to their mean value or reference category. Green curves represent the 
average continent-level effect of yield change on forest loss on lands without Indigenous land 
stewardship. Red and blue curves show how the relationships between yield change and forest 
loss are affected by high (1 SD above mean) or low (1 SD below mean) values of market 
orientation, or presence of Indigenous lands. 
 
Supplementary Table 1: Regression results with absolute forest loss as the dependent variable. 
Global mean and continent-level model estimations for the effects of initial forest cover (𝜷𝜷FC), 
yield change (β∆Yμ) and population density change (βPD) on forest loss, and the effects of share 
of non-staple crops (βNSt) and Indigenous Peoples’ land management (βIPL) on the relationship 
of yield change and forest loss. Posterior means and the standard error (SE) are shown. All 
parameters are re-transformed to the probability scale to make the results more intuitive to 
interpret (see Table 1 for untransformed values and model statistics). 

 
Supplementary Note 4: Shifting cultivation and fire as a management practice in TDF 
When utilizing remotely-sensed forest loss data, there is a risk of mischaracterizing Indigenous 
fire regimes that are part of management practices leading to temporary forest loss but not 
necessarily to environmental degradation1. For instance, in Australian savannas, where fire is a 
common annual feature intrinsic to savanna ecosystems, burning has become an important 
source of income for Indigenous communities. Since early dry season fire both produces less 
greenhouse gas than late dry season fire, and prevents the spread of late dry season fire, 
landowners are paid for the area not burnt in the late dry season compared to a baseline2. 
Although the arrangement has generated significant emission reductions3, burnt areas might 
appear as forest loss in our data and thus distort regional model results. This might explain the 
rebound-reinforcing pattern we found for Indigenous land management in Australia (Fig. 5, 
Extended Data Fig. 1, Table 1). 
However, globally, areas where recorded forest loss might be attributable to shifting cultivation 
are limited in number and extent. Visual interpretation of overlaying our forest loss data4 with 
recent estimations of the global extent of shifting cultivation suggests that a very small amount 
of forest loss occurred in landscapes indicating moderate or high occurrence of shifting 
cultivation according to Heinimann et al.5, with the exception of parts of Central and 
southeastern Africa (e.g., north of Zambia, south of the Democratic Republic of the Congo, 
Mozambique) (Supplementary Fig. 2). The very low occurrence of shifting cultivation within 
the majority of TDF regions points towards shifting cultivation being either a form of 
management practiced in landscapes dominated by land uses other than agriculture, or a residual 
form of cultivation in landscapes that have mostly been transformed to other management 
practices. These findings strengthen the assumption that derived forest loss caused by fire as a 
management practice integral to shifting cultivation does not bias our findings on a global level. 
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Supplementary Fig. 2: Comparison of a, utilized forest loss data from Hansen et al.4 and b, 
recent estimations of landscapes showing signs of shifting cultivation from 30˚S and 30˚N by 
Heinimann et al.5 suggests that those forest loss signals caused by fire as a management practice 
integral to shifting cultivation are limited in number and extent. 
 
Supplementary Note 5: Definition of Indigeneity 
The principles of Indigeneity adopted in this article align with those of the Article 1 of the 
International Labor Organization Indigenous and Tribal Peoples Convention 1989 (No. 169), 
which describes Indigenous Peoples as: “peoples in independent countries who are regarded as 
indigenous on account of their descent from the populations which inhabited the country, or a 
geographical region to which the country belongs, at the time of conquest or colonization or the 
stablishment of present state boundaries and who, irrespective of their legal status, retain some 
or all of their own social, economic, cultural and political institutions”6. This definition is itself 
broadly consistent with descriptions adopted by other international agencies and forums7–9.  
Yet, several studies note that the definitions of Indigeneity are often context-specific and vary 
within and across regions10,11. For example, in large parts of Africa and Southeast Asia, multiple 
layers of settlement and colonization have made definitions of Indigeneity particularly 
contentious and difficult to apply12. In many places, the historical movement of people across 
millennia renders a strict definition of “Indigenous” as first Peoples or non-settler difficult13. In 
others, certain Governments refuse to recognize certain ethnic groups as “Indigenous”, given 
that Indigenous Peoples’ rights are protected by international law14. The United Nations State 
of Indigenous Peoples, states that “the prevailing view today is that no formal universal 
definition of the term is necessary, given that a single definition will inevitably be either over- 
or underinclusive, making sense in some societies but not in others”15. 
Any definition of Indigeneity is particularly difficult to apply in the African context. With the 
backdrop of historical European colonialism, all ethnic groups in Africa could describe 
themselves as being “Indigenous” (as stated by ACHPR 200316). In view of this, we here 
followed the recommendations made by the African Commission’s Working Group of Experts 
on Indigenous Populations/Communities, under the African Commission on Human and People 
Rights (ACHPR). As such, we do recognize that all people in Africa can describe themselves 
as Indigenous, but note that our use of the term specifically refers to those groups who “identify 
themselves as indigenous and who experience particular forms of systematic discrimination, 
subordination and marginalization”18. All groups identified by the African Commission on 
Human and Peoples’ Rights as being Indigenous (e.g., Amazigh, Baka, Khwe San, Maasai) 
were considered as such (see ACHPR 2006 for further details18), as well as those that have been 
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identified as being Indigenous in landmark court rulings and litigation processes both nationally 
and internationally (e.g., Endorois, Ogiek, Ogoni14,19). 
 
Supplementary Note 6: Specifying prior distributions 
We used a zero-inflated Beta distribution to model proportional forest loss (𝐹𝐹Li) using a 
parameterization with mean 𝜇𝜇𝑖𝑖 and precision parameter 𝜙𝜙𝑖𝑖 for non-zero forest loss predicted by 
the Beta distribution, and probability 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 for zero-responses predicted by a Bernoulli 
distribution (line I). As 𝜇𝜇𝑖𝑖 and 𝑝𝑝𝑖𝑖 must be (0, 1), we used a logit link function to transform the 
results of the linear models for 𝜇𝜇𝑖𝑖 and 𝑝𝑝𝑖𝑖 to the (0, 1) interval (line II, III). Similarly, we used a 
log link function to ensure that 𝜙𝜙𝑖𝑖 was positive (line IV). To estimate 𝑝𝑝𝑖𝑖, we defined a linear 
model with a global intercept 𝛼𝛼𝑝𝑝 and slope 𝛽𝛽𝐴𝐴 for accessibility (𝐴𝐴) (line II). To estimate the 
mean magnitude of forest loss (𝜇𝜇𝑖𝑖), we specified a multilevel model (line III). Here, 𝜇𝜇𝑖𝑖 is 
predicted by population density (𝑃𝑃D), and yield change (∆𝑌𝑌) in interaction with the shaping 
factors production share of non-staple crops (NSt), agro-ecological suitability (𝑆𝑆), and 
Indigenous Peoples’ land management (IPL). All coefficients were modeled to vary across 
continents, thus exploring global average patterns as well as variation among continents, 
providing insights about generalizability. We defined a linear model of 𝜙𝜙𝑖𝑖 with a global 
intercept 𝛼𝛼𝜙𝜙 and slope 𝛽𝛽∆𝑌𝑌𝜙𝜙 for ∆𝑌𝑌(line IV). 
 

 
The prior distributions for the unknown coefficients (lines V-X) were optimized in an iterative 
process of prior predictive checks, i.e., predicting the data only based on the chosen priors, and 
subsequently adjusting those prior distributions to yield physically realistic predictions based 
on information obtained from sampling diagnostics and predictive checks. In this way, we 
derived weakly informed priors that were on one hand regularizing enough to facilitate model 
convergence, and on the other hand resulted in plausible predictive simulations while not 
restricting the outcome distribution in a biasing way (Extended Data Fig. 4). Consequentially, 
priors for 𝛼𝛼𝑝𝑝 , and 𝛽𝛽𝐴𝐴 were chosen as normally distributed centered on 0 resulting in regularizing 
Gaussian priors on the (0,1) interval once transformed to the outcome scale by the 
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corresponding link function. For 𝜇𝜇𝑖𝑖, each continent was given a unique intercept (𝛼𝛼𝜇𝜇,𝑐𝑐ont[𝑖𝑖]) 
issued from a  Gaussian distribution centered on 0, meaning that there might be different mean 
scores for each continent. The prior intercept for 𝜙𝜙𝑖𝑖 was defined by a log-normal distribution 
with mean 0 and standard deviation 1 which limits values to the positive response space, thus 
avoiding values <1 on the outcome scale after log-transformation which prevents U-shaped beta 
distributions. Varying effect parameters (𝛽𝛽…,conti[𝑖𝑖]) were assigned weakly informative 
Gaussian priors centered on 0. The distributions of varying intercepts and slopes had 
exponentially distributed prior standard deviations (𝜎𝜎𝛼𝛼, 𝜎𝜎𝛽𝛽), thus restricting the range of 
possible values to positive ones. Internally, the covariance, i.e., correlation between varying 
intercepts and slopes was modelled by a multivariate normal distribution with an uninformative 
correlation prior of 𝐿𝐿KJcorr(2) representing flat covariance assumptions. 
 
Supplementary Note 7: Untransformed model coefficients 
All model parts of the zero-inflated beta model have restricted outcome ranges. Therefore, the 
model by design used (log-/logit-) link functions internally to map the result of the linear model 
o the appropriate outcome scales. In the main text, we retransformed all parameters to the 
probability scale, to make the results more intuitive to interpret. See Supplementary Table 2 for 
untransformed parameter values and regression statistics in internal model scale. 
 
Supplementary Table 2: Model summary statistics. Parameters are summarized using mean 
(estimate) and standard error (SE) of the posterior distribution as well as central 95% credible 
intervals. Bulk and tail ESS are diagnostics of the sampling efficiency, estimating the effective 
sample size that the bulk and tail of the posterior distribution are informed by. Note that all 
numbers are given in model scale (untransformed logit/log scale).  
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