Journal article Open Access

Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

Gobron, O.; Jung, K.; Galland, N.; Predehl, K.; Le Targat, R.; Ferrier, A.; Goldner, P.; Seidelin, S.; Le Coq, Y.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/823058</identifier>
  <creators>
    <creator>
      <creatorName>Gobron, O.</creatorName>
      <givenName>O.</givenName>
      <familyName>Gobron</familyName>
      <affiliation>LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Jung, K.</creatorName>
      <givenName>K.</givenName>
      <familyName>Jung</familyName>
      <affiliation>LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Galland, N.</creatorName>
      <givenName>N.</givenName>
      <familyName>Galland</familyName>
      <affiliation>Univ. Grenoble Alpes and CNRS, Inst. NEEL, F-38042 Grenoble, France</affiliation>
    </creator>
    <creator>
      <creatorName>Predehl, K.</creatorName>
      <givenName>K.</givenName>
      <familyName>Predehl</familyName>
      <affiliation>LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Le Targat, R.</creatorName>
      <givenName>R.</givenName>
      <familyName>Le Targat</familyName>
      <affiliation>LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Ferrier, A.</creatorName>
      <givenName>A.</givenName>
      <familyName>Ferrier</familyName>
      <affiliation>PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Goldner, P.</creatorName>
      <givenName>P.</givenName>
      <familyName>Goldner</familyName>
      <affiliation>PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Seidelin, S.</creatorName>
      <givenName>S.</givenName>
      <familyName>Seidelin</familyName>
      <affiliation>Univ. Grenoble Alpes and CNRS, Inst. NEEL, F-38042 Grenoble, France</affiliation>
    </creator>
    <creator>
      <creatorName>Le Coq, Y.</creatorName>
      <givenName>Y.</givenName>
      <familyName>Le Coq</familyName>
      <affiliation>LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>nanoqtech</subject>
    <subject>metrology</subject>
    <subject>rare earth</subject>
    <subject>laser stabilization</subject>
    <subject>quantum technologies</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-07-05</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/823058</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1364/OE.25.015539</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nanoqtech-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from the center of the inhomogeneous absorption profile, and therefore exhibits only limited interaction with the crystal despite a potentially high optical power. The demodulation and frequency corrections are generated digitally with a hardware and software implementation based on a field-programmable gate array and a Software Defined Radio platform, making it straightforward to address several frequency channels (spectral holes) in parallel. &lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/712721/">712721</awardNumber>
      <awardTitle>Nanoscale Systems for Optical Quantum Technologies</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
69
63
views
downloads
Views 69
Downloads 63
Data volume 155.8 MB
Unique views 67
Unique downloads 60

Share

Cite as