Working paper Open Access

Scaling of Biological Data Work ows to Large HPC Systems - A Case Study in Marine Genomics -

Thomas Röblitz


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:contributor>Ole W. Saastad</dc:contributor>
  <dc:contributor>Hans A. Eide</dc:contributor>
  <dc:contributor>Katerina Michalickova</dc:contributor>
  <dc:contributor>Alexander Johan Nederbragt</dc:contributor>
  <dc:contributor>Bastiaan Star</dc:contributor>
  <dc:creator>Thomas Röblitz</dc:creator>
  <dc:date>2014-06-04</dc:date>
  <dc:description>Sequencing projects, like the Aqua Genome project, generate vast amounts of data which is processed through dif-
ferent work ows composed of several steps linked together. Currently, such workflows are often run manually on
large servers. With the increasing amount of raw data that approach is no longer feasible. The successful imple-
mentation of the project's goals requires 2-3 orders of magnitude scaling of computing, while achieving high reli-
ability on and supporting ease-of-use of super computing resources at the same time. We describe two example
use cases, the implementation challenges and constraints, the actual application enabling and report our ndings.</dc:description>
  <dc:identifier>https://zenodo.org/record/823031</dc:identifier>
  <dc:identifier>10.5281/zenodo.823031</dc:identifier>
  <dc:identifier>oai:zenodo.org:823031</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/FP7/312763/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.823030</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/prace</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>workflows, magnitude scaling</dc:subject>
  <dc:title>Scaling of Biological Data Work ows to Large HPC Systems - A Case Study in Marine Genomics -</dc:title>
  <dc:type>info:eu-repo/semantics/workingPaper</dc:type>
  <dc:type>publication-workingpaper</dc:type>
</oai_dc:dc>
40
20
views
downloads
All versions This version
Views 4040
Downloads 2020
Data volume 10.1 MB10.1 MB
Unique views 3939
Unique downloads 1919

Share

Cite as