Working paper Open Access
Thomas Röblitz
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.823031</identifier> <creators> <creator> <creatorName>Thomas Röblitz</creatorName> <affiliation>Department for Research Computing, University Center for Information Technology (USIT), University of Oslo, P.O. Box 1059, Blindern, 0316 Oslo, Norway</affiliation> </creator> </creators> <titles> <title>Scaling of Biological Data Work ows to Large HPC Systems - A Case Study in Marine Genomics -</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2014</publicationYear> <subjects> <subject>workflows, magnitude scaling</subject> </subjects> <contributors> <contributor contributorType="Other"> <contributorName>Ole W. Saastad</contributorName> <affiliation>Department for Research Computing, University Center for Information Technology (USIT), University of Oslo, P.O. Box 1059, Blindern, 0316 Oslo, Norway</affiliation> </contributor> <contributor contributorType="Other"> <contributorName>Hans A. Eide</contributorName> <affiliation>Department for Research Computing, University Center for Information Technology (USIT), University of Oslo, P.O. Box 1059, Blindern, 0316 Oslo, Norway</affiliation> </contributor> <contributor contributorType="Other"> <contributorName>Katerina Michalickova</contributorName> <affiliation>Department for Research Computing, University Center for Information Technology (USIT), University of Oslo, P.O. Box 1059, Blindern, 0316 Oslo, Norway</affiliation> </contributor> <contributor contributorType="Other"> <contributorName>Alexander Johan Nederbragt</contributorName> <affiliation>Center for Ecological and Evolutionary Synthesis, Department of Biosciences (CEES), University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway</affiliation> </contributor> <contributor contributorType="Other"> <contributorName>Bastiaan Star</contributorName> <affiliation>Center for Ecological and Evolutionary Synthesis, Department of Biosciences (CEES), University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2014-06-04</date> </dates> <resourceType resourceTypeGeneral="Text">Working paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/823031</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.823030</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/prace</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Sequencing projects, like the Aqua Genome project, generate vast amounts of data which is processed through dif-<br> ferent work ows composed of several steps linked together. Currently, such workflows are often run manually on<br> large servers. With the increasing amount of raw data that approach is no longer feasible. The successful imple-<br> mentation of the project's goals requires 2-3 orders of magnitude scaling of computing, while achieving high reli-<br> ability on and supporting ease-of-use of super computing resources at the same time. We describe two example<br> use cases, the implementation challenges and constraints, the actual application enabling and report our ndings.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100011102</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/312763/">312763</awardNumber> <awardTitle>PRACE - Third Implementation Phase Project</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 40 | 40 |
Downloads | 20 | 20 |
Data volume | 10.1 MB | 10.1 MB |
Unique views | 39 | 39 |
Unique downloads | 19 | 19 |