Dataset Open Access

Multilingual bottle-neck feature learning from untranscribed speech for track 1 in zerospeech2017 (system 2 -- with VTLN)

Hongjie Chen Chen; Cheung-Chi Leung; Lei Xie; Bin Ma; Haizhou Li


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/44b6cd5a-ff2b-4e99-954f-eee8e2d57d95/10_5281_zenodo_822737.tar.gz"
      }, 
      "checksum": "md5:aec84d688de278e3ed8df99fc536db68", 
      "bucket": "44b6cd5a-ff2b-4e99-954f-eee8e2d57d95", 
      "key": "10_5281_zenodo_822737.tar.gz", 
      "type": "gz", 
      "size": 8036448633
    }
  ], 
  "owners": [
    32731
  ], 
  "doi": "10.5281/zenodo.822737", 
  "stats": {
    "version_unique_downloads": 24.0, 
    "unique_views": 83.0, 
    "views": 86.0, 
    "downloads": 29.0, 
    "unique_downloads": 24.0, 
    "version_unique_views": 83.0, 
    "volume": 233057010357.0, 
    "version_downloads": 29.0, 
    "version_views": 86.0, 
    "version_volume": 233057010357.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.822737", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.822736", 
    "bucket": "https://zenodo.org/api/files/44b6cd5a-ff2b-4e99-954f-eee8e2d57d95", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.822736.svg", 
    "html": "https://zenodo.org/record/822737", 
    "latest_html": "https://zenodo.org/record/822737", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.822737.svg", 
    "latest": "https://zenodo.org/api/records/822737"
  }, 
  "conceptdoi": "10.5281/zenodo.822736", 
  "created": "2017-07-05T02:47:00.599065+00:00", 
  "updated": "2019-04-10T04:15:19.378583+00:00", 
  "conceptrecid": "822736", 
  "revision": 9, 
  "id": 822737, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.822737", 
    "description": "<p>We investigate the extraction of bottle-neck features (BNFs) for multiple languages without access to manual transcription.\u00a0Multilingual BNFs are derived from a multi-task learning deep neural network which is trained with unsupervised phoneme-like labels. The unsupervised phoneme-like labels are obtained from language-dependent Dirichlet process Gaussian mixture models separately trained on untranscribed speech of multiple languages.</p>\n\n<blockquote>\n<p>In this version, the input MFCC for DPGMM is processed with VTLN.</p>\n</blockquote>\n\n<p>\u00a0</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Multilingual bottle-neck feature learning from untranscribed speech for track 1 in zerospeech2017 (system 2 -- with VTLN)", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "822736"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "822737"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "zerospeech2017"
      }
    ], 
    "publication_date": "2017-07-04", 
    "creators": [
      {
        "affiliation": "Northwestern Polytechnical University", 
        "name": "Hongjie Chen Chen"
      }, 
      {
        "affiliation": "Institute for Infocomm Research, A*STAR", 
        "name": "Cheung-Chi Leung"
      }, 
      {
        "affiliation": "Northwestern Polytechnical University", 
        "name": "Lei Xie"
      }, 
      {
        "affiliation": "Institute for Infocomm Research, A*STAR", 
        "name": "Bin Ma"
      }, 
      {
        "affiliation": "National University of Singapore", 
        "name": "Haizhou Li"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "relation": "isVersionOf", 
        "identifier": "10.5281/zenodo.822736"
      }
    ]
  }
}
86
29
views
downloads
All versions This version
Views 8686
Downloads 2929
Data volume 233.1 GB233.1 GB
Unique views 8383
Unique downloads 2424

Share

Cite as