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ABSTRACT 
 

Heavy metals (HMs) toxicity has an unavoidable threat to environment and public health due to 
their increasing contamination and accumulation in atmosphere which ultimately passes to the 
living beings by the route of food chain. Heavy metals are increasing rapidly in soil and water by 
weathering of rocks and anthropogenic activities and are now emerging as a major health hazard to 
humans and plants. Among them Nickel (Ni

2+
) is a controversial element because of debate on its 

essentiality or non-essentiality in plants. Ni
2+

 is an important constituent (micronutrient) of many 
metallo-enzymes including urease, Ni-Fe hydrogenase, Ni-superoxide dismutase etc. while at 
higher level it affects all cellular and metabolic processes and causes retardation of germination, 
competition with other essential metal ions, osmotic imbalance, alteration of many enzymatic 
activities, disruption of cell structure and wilting, reduced photosynthetic activity, oxidative stress 
etc. Plants also possess some natural and stress-induced strategies to cope up with Ni

2+
 

excess/toxicity. These strategies include growth regulators, antioxidative enzymes, amino acids as 
osmoprotectant, and chelation of Ni

2+
 with metalloproteins and metallothionins. This review focuses 

on researches done on the morpho-biochemical alterations induced by elevated Ni
2+

 concentration 
in plants and as well as the strategies adapted by plants to survive and neutralize the effects of 
these alterations. 
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1. INTRODUCTION 
 
Heavy metals (HMs) are present naturally 
throughout the world at different background 
states, due to their variable concentrations in the 
bedrock. Some HMs are used as essential 
micronutrients by the plants for the completion of 
their life cycle (respiration, photosynthesis, N2 
metabolism etc.), while others have neutral, 
deterring and toxic effects on floral visitor 
communities, pathogens and insect-pests even 
at trace/smaller (micro molar) concentrations [1]. 
Toxicity posed by HMs is potentially dangerous 
to health of biotic and abiotic components of the 
environment and has become a major concern 
due to their translocation and bioaccumulation in 
food chain (including plant products) used for 
human consumption [2]. The phytotoxicity of 
various HMs differs and the order of toxicity in 
plants reveals As

5+ 
< As

3+
 < Cr

6+
 < Co

2+
 < Ni

2+
 < 

Cu
2+ 

< Ti
+
 < Hg

2+
 < Cd

2+ 
< Ag

+
 [3]. The higher 

concentrations of these metals in plant cells 
results in alterations at the physiological, 
biochemical and cellular levels leading to the 
severe damage to plants [2,3,4]. 
 
Nickel (Ni

2+
), is one of 23 metals that are of a 

concern to environmental and human health. 
Ni

2+
, first discovered by Swedish chemist A.F. 

Cronstedt (1751), as a 24
th
 most abundant 

element (hard, ductile and silver white) forming 
about 0.008% of the earth’s crust. It has several 
oxidation states ranging from -1 to +4, but its 
bivalent (Ni

2+
) form is the most common in 

biological systems. Ni
2+

 occurs either as a free 
metal in igneous rocks or in combination with 
irons. The major Ni

2+
 ores are garnierite 

[(Ni,Mg)3Si2O5(OH)4] and pentlandite [(Ni,Fe)9S8]. 
Ni

2+ 
is ubiquitously present heavy metal emitted 

to the environment from both natural and 
anthropogenic sources. Natural sources include 
weathering of rocks whereas metal mining, 
smelting, vehicle emissions, fossil fuel burning, 
municipal and industrial waste, electrical 
batteries, metallurgical and electroplating 
industries are anthropogenic sources.  
 
Generally, Ni

2+
 is uniformly distributed through 

the soil profile but typically accumulates at the 
surface from deposition by industrial and 
improper agricultural practices. Ni

2+
 deposition 

may represent a major problem in land near 
towns, industrial areas and agricultural lands 
receiving wastes such as sewage sludge. Ni

2+
 

content in soil varies in a wide range from 3 to 
1000 mg.kg

-1
 [5,6]. Naturally, it is present in soil 

in the range of 3 to 100 ppm and in water 0.0 to 
0.005 ppm, respectively. However, Ni

2+ 
polluted 

soils may exhibit Ni
2+ 

concentrations in the range 
of 200 to 26,000 mg.kg

−1
 (20 to 30 fold higher 

than the natural range, i.e., 10-1000 mg.kg
−1

) [5]. 
Considering elevated Ni

2+
 deposition in 

atmosphere, efforts should be made to 
systematically estimate/predict sustainable 
concentration of Ni

2+ 
in plants and unravel the 

mechanism of interaction between plant and 
various biological compounds that help in 
combating Ni

2+
 induced stresses in plants.  

 
The most common symptoms of Ni

2+
 toxicity in 

plants are inhibition of growth, seed germination, 
photosynthesis, sugar transport [7] and induction 
of chlorosis, necrosis and wilting [8]. Keeping in 
view the increasing Ni

2+
 toxicity to crop plants 

and significant importance of cereals, oilseeds, 
grain legumes and vegetables as source of low 
cost food, the present article discusses various 
aspects of stress measurements of Ni

2+
 toxicity 

to plants and their adaptation strategies to cope 
with these stresses. 
 

2. NI2+ IN PLANTS 
 
In plants, Ni

2+
 is naturally present as an 

important constituent of some metalloenzymes 
including ureases, glyoxalases (family I), peptide 
deformylases, methyl Co-M reductases, 
hydrogenases and a few superoxide dismutases 
[9]. It plays important role in various metabolic 
processes including ureolysis, hydrogen 
metabolism, methane biogenesis and 
acetogenesis [10]. In small amounts, Ni

2+
 

enhances the growth and yield of plants and is 
also essential for the biosynthesis of 
anthocyanins [11,12]. Ni

2+
 deficiency in soybean 

(Glycine max L.) leads to accumulation of toxic 
level of urea in their leaflet tips because of 
decrease in urease activity in the leaves [13]. 
Ni

2+
 deficiency is also found associated with the 

reduced symbiotic hydrogenase activity in 
Rhizobium leguminosarum that may directly 
affect the symbiotic N2 fixation [14,15]. Thus, Ni

2+
 

is an essential micronutrient for N2 metabolism   
in plants. Excess nickel adversely affects 
germination process and seedling growth traits of 
plants by hampering the activity of the enzymes 
such as amylase and protease as well as 
disrupting the hydrolyzation of storage food in 
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germinating seeds [16,17]. Several studies in 
plants including maize [18] and cowpea [19]

    

have confirmed that Ni toxicity can result in 
inhibited lateral root formation and subsequent 
development. Khan and Khan [20]

 
investigating 

the toxic effect of nickel and cobalt on chickpea 
(Cicer arietinum L.) showed that toxicity of Ni on 
the biomass production was more pronounced 
than Co and both metals led to poor germination, 
growth and biomass production, chlorophyll 
content and resulted in the reduced yield. Root 
nodulation was suppressed and number of 
functional nodules appreciably decreased at 100 
ppm and higher levels of Ni

+2
. Al-Qurainy [21] 

also demonstrated that Ni at the concentration 
150 µg·g

−1
 of soil severely reduced biomass, root 

and shoot length, plant height and leaf area in 
Phaseolus vulgaris.   
 

The uptake of Ni
2+

 in plants is carried out mainly 
by root system via passive diffusion and as well 
as active transport [22]. However, the relative 
uptake mechanisms of Ni

2+
 through active or 

passive transport differ with plant species, soil 
acidity, oxidation state, presence of other metals 
and availability (concentration) of Ni

2+
 in the soil 

or nutrient medium [23,24]. Ni
2+

 may be delivered 
to roots by basipetal transport (primarily via 
epidermal and cortical cell layers) in the phloem 
[25] and is then further translocated into 
expanding leaves and root parts behind the 
meristem (growing tip) [26]. Ni

2+
 is rapidly 

redistributed to the youngest (expanding) plant 
parts throughout vegetative growth and the 
reproductive phase [27]. Furthermore, the micro 
flora of soil may also enhance Ni

2+
 uptake by 

plants. In a study by Ma et al. [28], Ni-resistant 
plant growth promoting bacteria (PGPB) 
Psychrobacter species have been reported to 
promote the plant growth and Ni

2+
 uptake by B. 

juncea (Indian mustard) and B. oxyrrhina 
(Smooth-stem turnip) in soil contaminated with 
450 mg.kg

-1
 Ni

2+
. The accessibility of Ni

2+
 to the 

plants usually declines at high pH values of the 
soil due to formation of less soluble complexes. 
For example, in a study with Lathyrus sativus, 
Ni

2+
 uptake was reported to increase up to pH 

5.0 and then progressively decrease as pH 
reached up to 8.0 [29]. Nickel readily forms 
complexes with organic acids and other 
dissolved organic matters which enhance Ni

2+
 

solubility in soil.  
 

Ni
2+

 uptake is competitively inhibited by Copper 
(Cu

2+
) and Zinc (Zn

2+
), because these three 

soluble metal ions seem to be absorbed by the 
same cation transporters. Soluble forms of Ni

2+
 

complexes could be also intaken competitively by 
Mg

2+
 ion transporter in many plants that have 

ultimate adverse effects on photosynthetic 
activity [8]. At high concentrations, Ni

2+
 can 

readily transport through phloem (vascular tissue 
conducting sugar and metabolic products 
downwards) and Xylem (vascular tissue 
conducting water and dissolved nutrients 
upwards), therefore simply translocate to the 
upper part of plants from the root. Over 50% of 
the Ni

2+
 absorbed by the plant is retained in the 

roots due to sequestration in the cation exchange 
site of walls of xylem parenchyma cells and 
immobilization in the vacuoles of roots [22]. 
Eighty % of root Ni

2+
 is present in the vascular 

cylinder, while less than 20% in the cortex, which 
shows a high mobilization of Ni

2+
 in the xylem 

and phloem [25]. In addition to absorption via 
roots, Ni

2+
 can also enter the plants via the 

leaves. Nickel in stem and leaves is mainly 
located in the vacuoles, cell wall and epidermal 
trichomes associated with citrate, malate and 
malonate accumulation. Ni at excess competes 
with several cations, in particular, Fe

2+
 and Zn

2+
, 

preventing them from being absorbed by plants, 
which ultimately causes deficiency of Fe

2+
 or 

Zn
2+

 and results in chlorosis expression in plants 
[20]. 

 
3. NI2+ TOXICITY IN PLANTS 
 
At higher concentrations, Ni

2+
 is reported to have 

deleterious effects on plant growth and 
metabolism and produces visible signs of toxicity. 
High nickel concentration in plants accounts for 
retardation of germination, competition with other 
essential metal ions, alteration of many 
enzymatic activities, disruption of cell structure 
and dehydration/wilting, oxidative stress etc. Ni

+2
 

stress reduces germination, shoot and root 
growth, biomass production, development of 
branching system and induces abnormal flower 
shape, mitotic root tip disturbance, leaf spotting 
and foliar necrosis [30]. Excess Ni

2+
 also affects 

nutrient absorption by roots [31]
 
and inhibits 

photosynthesis, transpiration and transport of 
photo assimilates from leaves [22,32]. An 
overview of various Nickel-induced alterations in 
plant growth and key metabolic functions are 
shown in Fig. 1. Decrease in all the key 
metabolic processes coupled with oxidative 
stress ultimately leads to reduction in growth and 
yield of crop plants. Various visual/morphological 
and metabolic effects of Ni

2+
 deficiency and 

excess/toxicity in different crop plants are 
presented in Table 1. 



 
 
 
 

Fig. 1. Ni
2+ 

induced alteration

4. MORPHO-BIOCHEMICAL EFFECTS
 
High doses of Ni

2+
 negatively affect plant growth 

and physiological processes and also induce 
visible toxicity symptoms. Most of the 
morphological characters such as root and shoot 
length, root nodules, leaf area, fresh weight and 
dry weight, chlorophylls, carotenoids, total sugar, 
amino acid, proline and protein contents 
decrease with increasing nickel chloride 
concentration [33]. The reason for decrease in all 
these parameters could also be the reduction in 
cell division in meristematic cells present in t
region and activity of certain enzymes of 
cotyledon and endosperm. In Ni

2+ 
treated plants, 

leaf size and leaf area are found to decrease 
which is also related to the accumulation of 
nickel in leaves. Accumulation of excess Ni
plant tissues has been reported to cause leaf 
necrosis and chlorosis of plants [34]. Chlorosis 
and vein necrosis appeared in newly developed 
leaves of water spinach after plants were treated 
with 0.085 to 0.255 mM (5–15 ppm) Ni for a 
week [35]. Ni

2+
 at a concentration of 0.5 m

produced dark brown necrotic spots along the 
leaf margins resulting in wilting of outer leaves 
and necrosis of inner leaves in cabbage [8]. 
Similarly, Barley grown in presence of 0.1 mM 
Ni

2+
 for 14 days also showed chlorosis and 

necrosis of leaves [36]. Such chlorosis of leaves 

Disruption of cell 

structure and wilting 

Necrosis and 

chlorosis 

Inhibition of 

photosynthesis 
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CAL EFFECTS 

negatively affect plant growth 
and physiological processes and also induce 
visible toxicity symptoms. Most of the 
morphological characters such as root and shoot 
length, root nodules, leaf area, fresh weight and 

carotenoids, total sugar, 
amino acid, proline and protein contents 
decrease with increasing nickel chloride 
concentration [33]. The reason for decrease in all 
these parameters could also be the reduction in 
cell division in meristematic cells present in this 
region and activity of certain enzymes of 

treated plants, 
leaf size and leaf area are found to decrease 
which is also related to the accumulation of 
nickel in leaves. Accumulation of excess Ni

2+
 in 

n reported to cause leaf 
necrosis and chlorosis of plants [34]. Chlorosis 
and vein necrosis appeared in newly developed 
leaves of water spinach after plants were treated 

15 ppm) Ni for a 
at a concentration of 0.5 mM 

produced dark brown necrotic spots along the 
leaf margins resulting in wilting of outer leaves 
and necrosis of inner leaves in cabbage [8]. 
Similarly, Barley grown in presence of 0.1 mM 

for 14 days also showed chlorosis and 
Such chlorosis of leaves 

results from decreased synthesis of chlorophyll 
due to deficiency of Fe

2+
 and Mg

2+ 

plants [22]. 
 

4.1 Inhibition of Growth 
 
The toxic effects of Ni

2+
 and other heavy metals 

are primarily manifested by the inhibition of plant 
growth and germination [37] and this inhibition 
gains strength at higher metal concentrations.
Singh et al. [38] and Talukdar [39] 
presence of excess Ni

2+
 shows alter

all energy driven cellular processes during 
germination thus, slows down emergence of 
radicles and plumules (embryonic shoots). 
Scot Pine seedlings exposed to Ni
root sink activity was observed with reduced 
starch hydrolysis and sucrose transport may 
result in the accumulation of photo assimilate in 
leaves [40]. In Ni

2+ 
excluder species, root growth 

is inhibited more strongly than the growth of 
shoots because Ni

2+ 
mostly accumulates in their 

root cells [41,42]. Ni
2+

 stress has be
associated with a substantial decrease in all 
macro and micronutrients in leaves and achenes 
of sunflower (Helianthus annuus
marked reduction in root and shoot fresh 
biomass and a consistent decrease in the 
contents of N, Fe, K, Zn, Mn, Ca and Cu with 
increasing level of Nickel [43]. Rahman 

Ni
2+

 Ni
2+

Ni
2+

 
Ni

2+
 

Ni
2+

 

Retardation in 

germination 

Alterations of enzymes 

activities 

Early leaf 

abscission 

Induction of 

oxidative stress 
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results from decreased synthesis of chlorophyll 
2+ 

 in Ni
2+

-treated 

and other heavy metals 
are primarily manifested by the inhibition of plant 
growth and germination [37] and this inhibition 
gains strength at higher metal concentrations. 

[39] reported that 
shows alterations in     

all energy driven cellular processes during 
germination thus, slows down emergence of 
radicles and plumules (embryonic shoots). In 
Scot Pine seedlings exposed to Ni

2+
, reduced 

root sink activity was observed with reduced 
sucrose transport may 

result in the accumulation of photo assimilate in 
excluder species, root growth 

is inhibited more strongly than the growth of 
mostly accumulates in their 
stress has been also found 

associated with a substantial decrease in all 
macro and micronutrients in leaves and achenes 

Helianthus annuus L.) with a 
marked reduction in root and shoot fresh 
biomass and a consistent decrease in the 
contents of N, Fe, K, Zn, Mn, Ca and Cu with 
increasing level of Nickel [43]. Rahman et al. [36] 
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reported decrease in uptake of Zn, Cu, Fe, and 
Mn in barley shoots with increasing Ni

2+
 

concentration in nutrient solution from 1 to 100 

mM. This reduction in uptake of Zn, Cu, Fe, and 
Mn was observed due to Ni

2+
 accumulation in 

roots. 
 

Table 1. Visual and metabolic symptoms of Ni
2+

 deficiency and excess in plants 
 

Ni
2+

 level Plant system Visual and metabolic symptoms References 

Deficiency Glycine max L. Accumulation of toxic levels of urea in leaflet 
tips,  leaf tip necrosis 

[11] 

Legumes and 
higher plants 

Early senescence, reduced Fe uptake, delayed 
nodulation and reduced efficiency of N fixation 

[82,83] 

Cereals Poor grain-filling and maturation process [84] 

Carya illinoinensis Development of "mouse-ear" leaves, bronzing, 
chlorosis, rosetting, and tip necrosis 

[85] 

Triticum aestivum Diminished plant resistance to leaf and stem 
rust 

[86] 

 Excess Vigna cylindrica, V. 
mungo and V. 

Radiate 

Reduced seed germination and seedling 
emergence 

[87] 

Brassica oleracea 
and Triticum 
aestivum 

Inhibition of growth, chlorosis, necrosis, and 
wilting 

[8] 

Cicer arietinum L. Poor germination, growth and biomass 
production and chlorophyll content, Reduced 
yield. suppressed Root nodulation and number 
of functional nodules 

[20] 

Triticum aestivum Reduction in size of vascular bundle, width of 
epidermal cells and mesophyll thickness 

[88] 

Vigna mungo (L.) 
Hepper 

Reduction in photosynthetic pigments 
(chlorophyll and carotenoids) 

[89] 

Cajanus cajan L. Induction of oxidative stress (reactive oxygen 
species) 

Decreases chlorophyll content, stomatal 
conductance and CO2 fixation 

[50,90] 

Brassica napus L. Reduction in antioxidant enzymes activity [9] 

Helianthus annuus 
L. 

Decrease in the concentration of other 
micro/macro nutrients (N, K, Zn, Mn, Cu)  

[43] 

Ipomoea aquatica Chlorosis and along-vein necrosis in newly 
developed leaves 

[35] 

Brassica oleracea Dark brown necrotic spots along the leaf 
margins 

[8] 

Hordeum vulgare L Chlorosis and necrosis of leaves [36] 

Lolium perenne Reduction in plant nutrient acquisition, 
decrease in shoot yield, chlorosis 

[92] 

Phaseolus vulgaris 
L. 

Chlorotic leaves with gray spots that coalesce 
and become necrotic 

Reduced biomass, root and shoot length, plant 
height and leaf area 

[21,93] 

Soanum nigrum L. Membrane damage and Ni
+2

 accumulation in 
root cells 

[74] 

Various wild and 
cultivated plant 
species 

neutral, deterring and toxic effects on floral 
visitor communities, pathogens and insect-
pests 

[99,100,101] 
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4.2 Inhibition of Photosynthesis 
 
Heavy metals are directly related to the inhibition 
of photosynthesis, by several direct/indirect ways 
i.e. disorganized chloroplast structure, blocked 
chlorophyll biosynthesis, disordered electron 
transport, inhibited activities of the Calvin cycle 
enzymes, and CO2 deficiency caused by 
stomatal closure [41]. The adverse impact of 
toxic levels of Ni on the photosynthetic apparatus 
and performance is conspicuous. At the 
biochemical level, Ni

2+
 affects light-harvesting 

complex II (LHCII) and the amounts of 
xanthophylls and carotenoids [44]. Nickel 
induced photosynthetic alterations include 
reduction in chloroplast size and numbers; 
disorganized chloroplast ultrastructure with the 
abated numbers of grana and thylakoids and 
altered membrane lipid composition have been 
confirmed in Brassica oleracea plants grown on 
agar media in the presence of NiSO4.7H2O (10–
20 g.m

-3
). These changes in chloroplast result 

from the Ni
2+

 induced oxidative stress which 
further causes peroxidation of membrane lipids 
[44]. A detailed study revealed Ni

2+
 to inhibit 

electron transport from pheophytin to 
plastoquinone (QA) and Fe to plastoquinone (QB) 
by disrupting the structure of carriers and 
reaction center proteins such as plastoquinone 
(QB) [45]. At the cellular level, Ni

2+
 also 

decreases the contents of cytochromes b6f     
and b559, as well as ferredoxin (Fd) and 
plastocyanin (PC) in the thylakoids which 
consequently further reduces the efficiency of 
electron transport chain [48]. Sreekanth et al. 
[46]

 
reported that Ni toxicity can lead to reduced 

chlorophyll content and interruption of electron 
transport. Ghasemi et al. [47]

 
in maize (Zea mays 

L.) showed that excess Ni perniciously influenced 
photosynthetic protein complexes and the rate    
of Hill reaction diminished by increasing Ni 
concentration. 
 

4.3 Induction of Oxidative Stress (ROS) 
 
Oxidative stress is a complex physiochemical 
phenomenon that causes overproduction and 
accumulation of reactive oxygen species (ROS) 
responsible for abiotic stresses in higher plants. 
At cellular and molecular levels, Ni

2+
 binds 

strongly to oxygen (O), nitrogen (N), and sulfur 
(S) atoms present in different parts of plants. Ni

2+
 

also shows high affinities towards sulfhydryl 
groups and disulfide bonds which cause damage 
to the secondary structure of proteins and also 
affect the activities of cellular enzymes, leading 

to the disturbance of various metabolic pathways 
[48,49]. Excessive amount of Ni

2+
 significantly 

accelerate the concentration of hydroxyl radicals, 
superoxide anions, nitric oxide and hydrogen 
peroxide [50,51]. Since Ni

2+
 is not a redox-active 

metal, it cannot directly generate these reactive 
oxygen species but interferes with a number of 
antioxidant enzymes [8] such as superoxide 
dismutase (SOD), catalase (CAT), glutathione 
peroxidase (GPOX), glutathione reductase (GR), 
peroxidase (POD), guaiacol peroxidase (GOPX), 
and Ascorbate peroxidase (APX). Exposure of 
plants to Ni

2+
 at low concentrations and/or for 

short times has been shown to increase the 
activities of SOD, POD, GR, and GOPX to 
enhance the activation of other antioxidant 
defense’s and finally leads to the removal (or 
scavenging) of ROS [52,53]. Lipid peroxidation 
may be a major contributing factor in Ni

2+
-

induced tissue oxidative stress. Ni
2+

-induced 
oxidative stress in plants may be also associated 
with the competition between Ni and Fe in 
biochemical and physiological processes and 
also due to Ni-mediated modulation of the 
activities of antioxidant Fe enzymes (e.g., Fe 
SOD and CAT) [22,8,54,55]. An increase in Ni

2+
 

concentration has been found to reduce the 
activity of many cellular antioxidant enzymes, 
both in vitro and in vivo, and plant’s capability to 
scavenge ROS, leading to ROS accumulation 
and finally oxidative stress in plants [45]. 
 

5. ADAPTATION STRATEGIES 
TOWARDS NI2+ TOXICITY IN PLANTS 

 
Plants possess a sophisticated and 
interconnected network of biochemical defense 
strategies to avoid/tolerate Nickel intoxication as 
presented in Fig. 2 and Table 2. Some of these 
defense mechanisms used by plants against 
Nickel and other HMs are being discussed 
categorically in next section. 
 

5.1 Physical Barriers 
 
Physical barriers are naturally occurring defense 
system of plants against heavy metals. 
Morphological structures like thick cuticle, 
biologically active tissues like trichomes, and cell 
walls as well as arbuscular mycorrhizal fungi 
symbiosis can act as barriers when plants face 
HM stress [56,57]. Trichomes are fine outgrowths 
on plants and can either serve as HM storage 
site for detoxification purposes or can secrete 
various secondary metabolites to neutralize 
hazardous effects of metals [58]. 
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     Cuticle                                         Proline            Abscisic acid                SOD                 Glutathione 
Trichomes etc.                               Arginine           Jasmonic acid            Catalase                   H2S 
                                                      Polyamines       Salysilic acid               APOX             S-rich proteins 
                                                                             24- Epibrassinolides     GPOX             Glucosinolates 
 

Fig. 2. Various biochemical adaptation and tolerance strategies to Ni
2+

 stress in plants 
 

5.2 Amino Acid Derivatives (as 
osmoprotectant) 

 
Plants often synthesize a set of diverse 
metabolites on exposure to metals. These 
metabolites accumulate in the range of milimolar 
concentrations and particularly include specific 
amino acids such as proline and histidine, 
peptides such as glutathione and the amines 
spermine (spm), spermidine (spd), putrescine 
(put), and nicotinamine. Thus, nitrogen 
metabolism is central to the response of plants to 
heavy metals. Proline has been considered as 
one of the important osmolytes as well as 
antioxidants found in the cellular system exposed 
to water stress, salinity stress, metal stress etc. 
In recent years, the role of proline has also been 
characterized as scavenger of ROS, generated 
during stress conditions [59]. Moreover, several 
studies report that under stress condition proline 
acts as an osmolyte and may increase the 
activity of antioxidant enzymes to minimize the 
adverse effect of oxidative stress caused by 
elevated Ni

2+
 [60].  

 
Nasibi et al.

 
[61] in their study on Hyocyamus 

niger found that Ni
2+

 showed decrease in 
chlorophyll a and total chlorophyll which was 
further maintained/recovered by Arginine pre-
treatment in Ni

2+
 stressed plants. Pietrini et al. 

[62] in a study on Amaranthus paniculatus L. 
reported that the exposure of plants to increasing 
Ni

2+
 in the growth solution caused a significant 

increase in free polyamine content in roots and 
leaves of test plant at 25 µM NiCl2, whereas a 
decrease in the PAs (Spermidine and Spermine) 
content of plants at higher Ni

2+
 concentrations. 

Shahid et al. [63] in a study on Pisum sativum 
reported that the exogenous application of Pro 
(pure synthetic proline or proline enriched with 
essential nutrients) on pea protected the plant 
against phytotoxic impacts of nickel by reducing 
lipid peroxidation and electrolyte leakage, 
increase in activities of polyamine biosynthetic 
enzymes and thus, improving leaf polyamines 
and increasing concentration of endogenous 
compatible solutes. It was also concluded that 
Pro enriched with nutrients was more effective 
than pure Pro in enhancing plant growth under 
metal stress. 
 

5.3 Organic Acids 
 
Organic acids are carboxylic group containing 
compounds that act not only as intermediates in 
carbon metabolism but also as key components 
in mechanisms that some plants use to cope with 
nutrient deficiencies, metal tolerance and plant-
microbe interactions operating at the root-soil 
interphase. Organic acids excreted from plant 
roots may form stable HM-ligand complexes with 
HM ions and change their mobility and 
bioavailability, thus preventing the HM ions from 
entering plants or avoiding their accumulation as 
well as translocation in the sensitive sites of 
shoots and roots. Yang et al. [64] examined the 
relationship of organic acid to Ni

2+
 accumulation 

in ryegrass (Lolium perenne L.) and maize (Zea 
mays L.) and reported 5 to 7 fold increased 
accumulation of Ni

2+
 in shoots of ryegrass than in 

maize grown at 20 to 80 µM Ni
2+

 whereas Ni
2+ 

concentration in roots of ryegrass was found only 
1 to 2 fold higher at 0.1 to 40 µM Ni

2+
 and 1.5 

fold lower at 80 µM than that of maize roots. 

Plants Adaptation Strategies to Ni
2+

 stress 

Physical 

barriers 

Phytochelatins 

& 

Metallothiones 

N-containing 

compounds 

Growth 

regulators 

Antioxidant 

enzymes 

S-containing 

compounds 
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Shoot concentrations of citric, malic, oxalic and 
cis-aconitic acids increased at 20 µM Ni

2+
 and 

were about 2 to 6 times higher in ryegrass than 
in maize. Whereas maize roots accumulated 
greater amount of malic, oxalic and cis-aconitic 
acids than ryegrass roots specially at Ni

2+
 levels 

of 40 to 80 µM. Research on several Ni
2+

 
hyperaccumulators had shown that Ni

2+
 is 

predominantly bound to citrate and that the 
amount of citrate produced is strongly correlated 
with the accumulated Ni

2+
 [65]. 

 

5.4 Antioxidants Defense System 
 

In plants, heavy metal toxicity frequently leads to 
the over production of ROS, resulting in 
peroxidation of many vital constituents of the cell. 
Plants develop a number of strategies to 
overcome with the adverse impacts imposed by 
heavy metals. To cope up with the situation, 
plants have an efficient defense system 
comprising of set(s) of enzymatic as well as non-
enzymatic antioxidants. A wide variety of

Table 2. Biomolecules/structures involved in nickel tolerance in various plant species 
 

Biomolecules/ 
structures 

Plant system Mechanism of tolerance References 

Trichomes Alyssum 
corsicum 

Accumulate excess amount of Ni
2+

 in root 
and shoot and also secrete secondary 
metabolites 

[94] 

Arbuscular 
mycorhizal fungi/ 
Glomalin 

Festuca 
arundinacea 

Alleviating Ni-induced stress by reducing 
Ni transport from roots to shoots 

[95] 

Phytochelatins and 
Metallothionines 

Thlaspi 
 
Solanum 
nigrum 

Binds to Ni
2+

 and sequesters  it into 
vacuoles 
Enhanced accumulation of Metallothionin 
related transcripts 

[52] 
 
[74] 

Proline Pisum sativum Suppresses lipid peroxidation; electrolyte 
leakage and accelerating the activities 
total free amino acids, total soluble 
sugars, total phenol and tocopherol 
content 

[63] 

Histidine and 
calcium 

Solanum 
lycopersicum 

Regulate shoot and root length,  pigment 
content of leafs and K

+
 content of root and 

shoot 

[96] 

Arginine Hyoscyamas 
niger 

Counterbalance peroxidase and 
lipoxigenase activity of oxidative stress 

[61] 

Polyamines Hydrocharis 
dubia 
Pisum sativum 

Prevent Ni
2+

-induced lipid peroxidation, 
electrolyte leakage and reduced Ni

2+
 

accumulation 

[97] 
[63] 

Jasmonic acid  Glycine max L. Significantly enhance  antioxidant activity, 
while tightly inhibit stress related 
parameters  responsible for lipid 
peroxidation 

[69] 

Salicylic acid Brassica napus  
 
Triticum 
aestivum 

Reduction in Ni
2+

 induced Chlorosis, 
necrosis of leaves and oxidative stress 
Induce the activities of enzymes (SOD, 
POD, CAT) 

[91]  
 
[98] 

Ethylene Brassica juncea  Protects photosynthetic potential by 
efficient PS II activity and increase the 
activity of ribulose-1,5-bisphosphate 
carboxylase  

[20] 

Citrate, malate and 
oxalic acid 

Lolium perenne, 
Zea mays 

Form stable HM-ligand complexes, 
preventing accumulation and translocation 
to sensitive sites (roots and shoots) 

[64] 

Epibrassinosteroids Brassica juncea Improve membrane stability index and 
RWC, and increase proline and anti-
oxidative enzymes  

[70] 
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enzymatic antioxidants consisting of superoxide 
dismutase (SOD), peroxidase (POD), catalase 
(CAT) and glutathione-s-transferase (GST) which 
may efficiently convert the superoxide radicals 
into hydrogen peroxide and subsequently water 
and oxygen whereas low molecular weight non-
enzymatic antioxidants consisting the proline, 
ascorbic acid and glutathione which may directly 
detoxify the ROS [66,67]. These two groups of 
antioxidants may successfully quench a wide 
range of toxic oxygen derivatives and prevent the 
cells from oxidative stress. Gajewska and 
Sklodowska [65] studied SOD, APOX, CAT and 
GST activity in leaves and roots of 14 days old 
pea plants treated with 10, 100, 200 µM NiSO4. 
Ni

2+
 caused decrease in total SOD activity in 

both leaves and roots. The activity of APOX in 
leaves treated with 100 and 200 µM Ni

2+
 

increased whereas in roots the enzymatic activity 
was reduced significantly. Catalase activity 
remained unaffected in both the organs in 
response to Ni

2+
. The activity of GST in Ni

2+
 

exposed plants increased in both the organs but 
markedly in roots. Gajewska and Sklodowska 
[68] concluded that stimulation of GST activity in 
tissue is mainly involved in response of pea 
plants under the Ni

2+ 
stress. 

 
5.5 Growth Regulators  
 
Plant hormones are essential components of 
regulation of growth and development in plants 
and also play a crucial role in defense strategies 
against environmental stress. Plants produce 
reactive oxygen species (ROS) in response to 
the heavy metal toxicity which further induce the 
synthesis of several plant hormones such as 
jasmonic acid (JA), salicylic acid (SA), ethylene, 
epibrassinosteroids, abscisic acid (ABA) etc. 
Sirhindi et al. [69] studied modulatory role of JA 
on photosynthetic pigments, antioxidants and 
stress markers in Glycine max L. seedlings using 
exogenous application of JA prior to Ni

+2
 

exposure. JA with or without Ni
+2

 stress caused 
amelioration of antioxidant enzyme system 
(SOD, POD, Catalase and APOX) and several-
fold enhancement in cellular Ascorbic acid 
content. JA made seedlings more tolerant to Ni

+2
 

stress as compared to control. Ali et al. [70] 
studied modulatory role of 24-epibrassinolide 
(EBL) in Brassica juncea exposed to NaCl and 
NiCl2 alone or in combination. EBL improved the 
membrane stability index and relative water 
content, but did not influence electrolyte leakage 
and lipid peroxidation. The level of proline and 
anti-oxidative enzymes exhibited significant 

increase in response to EBL in both, NaCl and 
NiCl2 stressed plant. 
 

5.6 Phytochelatins (PCs) 
 
Chelation and compartmentalization of heavy 
metals by Phytochelatins (PCs) is an ubiquitous 
detoxification phenomenon described in wide 
range of plant systems. Phytochelatins are low-
molecular weight short chain thiol-rich peptides 
[71], synthesized from S-rich glutathione (GSH) 
by the enzyme phytochelatin syntheses (PCS) 
that have a high affinity to bind to HMs [72]. PCs 
form complexes with toxic metal ions in the 
cytosol and subsequently transported them into 
the vacuole.  In transgenic Arabidopsis, GSH 
concentration has been found strongly correlated 
with increased resistance to Ni

2+
-induced growth 

inhibition and oxidative stress (ROS) which 
suggests that high levels of GSH conferred 
tolerance to Ni

2+
-induced oxidative stress in 

Thlaspi Ni
2+

 hyperaccumulators [52]. 
 

5.7 Metallothionins (MTs) 
 
Metallothioneins (MTs) belong to the group of 
intracellular cysteine-rich, metal-binding proteins 
that have been found in bacteria, plants, 
invertebrates and vertebrates. Metallothioneins 
(MT) are gene-encoded metal chelators 
synthesized as a result of mRNA translation 
process and participate in the transport, 
sequestration and storage of metals [73]. MTs 
are divided into class I (vertebrates), class II 
(plants and fungi), and class III (higher plants) on 
the basis of their cysteine content and structure. 
Ferraz et al. [74]

 
investigated the specific 

accumulation of MT-related transcripts in 
Solanum nigrum and observed that Ni

+2
 

enhanced the accumulation of MT2a and MT2d 
mRNA (expressed constitutively) as well as de 
novo accumulation of MT2c and MT3-related 
transcripts in shoots. MT1 gene transcription 
remained unaffected due to Ni

+2
 toxicity. Thus, 

the involvement of MT2a, MT2c, MT2d and MT3 
in Ni

+2
 homeostasis is evident from this study. 

 

5.8 Ni2+ Phytoremediation 
 
Phytoremediation of metal contaminated soil 
offers a low cost method for soil amendment. 
Several recent studies on Ni

2+
 hyperaccumulator 

plants have reflected their potential to sequester 
high levels of Ni

2+
 in their tissues (from several 

thousands of mg/ kg up to 5% of dry biomass) 
without exhibiting phytotoxicity [75]. More than 
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310 species of Ni
2+

 hyperaccumulators plants 
have been identified, including members of      
the Acanthaceae, Asteraceae, Brassicaceae, 
Caryophyllaceae, Fabaceae, Flacourtiaceae, 
Meliaceae, Myristicaceae, Ochnaceae, Poaceae, 
Rubiaceae, Sapotaceae and Stackhousiaceae 
[76,77]. These above said families have higher 
requirements for Ni

2+
 as micronutrient (e.g. up to 

500 mg Ni
2+

/kg) than normal plants. The family 
with the most Ni

2+
 hyperaccumulator species is 

the Brassicaceae, with more than 80 species 
which are capable of accumulating Ni

2+
 to 

concentrations as high as 3% of shoot dry 
biomass [78].  
 
In addition, it is notable that many aquatic plants 
such as Typha, Phragmites, Eichhornia, Azolla 
and Lemna also have the potential to remove 
heavy metals from aquatic ecosystems [79,80]. 
These species have efficient root absorption 
mechanisms which allow them to specifically 
accumulate metals from soils and/or water. After 
root absorption, Ni

2+
 can be transported quickly 

into shoots and leaves of hyperaccumulators and 
then sequestrated in the vacuole [81]. For these 
features, Ni

2+
 hyperaccumulators have been 

extensively used to remove Ni from polluted soils 
and/or water. 
  

6. CONCLUSIONS 
 
The present article provides an overview to 
aspects related to the essentiality of Ni

2+
 in a 

wide range of physiological processes, starting 
from seed germination to the productivity. 
Moreover, without adequate supply of Ni

2+
, plant 

life cycle can not be completed and proves it           
as an essential micronutrient. Elevated levels of 
Ni

2+
 alter almost all the metabolic activities of     

the plant and consequently minimize the 
photosynthetic rate, and biological yield of plants. 
Excess Ni-concentration also triggers oxidative 
damage in the plants. However, plants are well 
equipped with an organized constitutive/inducible 
defense system to counter the toxic effects that 
includes exclusion/restriction of entry of the metal 
into the cell through plasma membrane and 
chelation of the metal by phytochelatins, 
metallothionins and nicotianamide, followed by 
sequestration into the vacuole, making it less 
toxic for the plants. All these mechanisms are 
well understood and through integration of 
genetic engineering, it has been possible to 
manipulate expression of bacterial/higher plant 
genes involved in defense against nickel as well 
as to transfer them into susceptible genotypes 
leading their stable transformation into transgenic 

tolerant forms. Such transgenic plants hold great 
promise for cultivation of crops on contaminated 
croplands as well as for environmental clean-up 
and phytomining. 
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