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ABSTRACT

Zinc is plant micronutrient which is involved in many physiological functions its
inadequate supply will reduce crop yields. Zinc deficiency is the most wide spread
micronutrient deficiency problem, almost all crops and calcareous, sandy soils, peat
soils, and soils with high phosphorus and silicon are expected to be deficient. Zinc
deficiencies can affect plant by stunting its growth, decreasing number of tillers, chlorosis
and smaller leaves, increasing crop maturity period, spikelet sterility and inferior quality
of harvested products. Beside its role in crop production Zn plays a part in the basic roles
of cellular functions in all living organisms and is involved in improving the human
immune system, due to its insufficient intake, human body will suffer from hair and
memory loss, skin problems and weakness in body muscles.
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1. INTRODUCTION

Zinc is essential for the growth in animals, human beings, and plants it is vital to the crop
nutrition as required in various enzymatic reactions, metabolic processes, and oxidation-
reduction reactions. In addition, Zn is also essential for many enzymes which are needed for
nitrogen metabolism, energy transfer and protein synthesis. Zinc deficiency not only retards
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growth and yield of plants, but it also has effects on human beings. More than 3 billion
people worldwide are suffering from Fe and Zn deficiencies, and this condition is particularly
widespread in areas where population is heavily dependent on an unvaried diet of cereal-
based foods, in which Fe and Zn are stored almost exclusively in the husk, and are therefore
lost during milling and polishing [1,2].

1.1 Importance of Zn in Humans

Zinc deficiency is common in humans, animals and plants. More than 30% world’s
population suffers from Zn deficiency [3]. Zinc plays a part in the basic roles of cellular
functions in all living organisms and is also involved in improving the human immune system.
The optimum dietary intake for human adults is 15 mg Zn per day. Zinc acts as a catalytic or
structural component in various body enzymes.

Unsatisfactory intake and improper absorption of Zn in the body may cause deficiency of Zn.
Due to Zn deficiency; the human body will suffer from hair and memory loss, skin problems
and weakness in body muscles. Further insufficient intake of Zn during pregnancy also
causes stunted brain development of the fetus. Infertility has also been observed in Zn
deficient men. Zinc deficiency may cause congenital diseases like Acrodermatitis
enteropathica [4,5,6].

As per recommendations an average male need 11 mg of Zn daily while an average female
needs 9 mg of Zn. During pregnancy and lactation, the female needs 13 mg to 14 mg of Zn
daily. Infants from 7 months to 3 years need 3 mg, 4 to 8 years need 5 mg and children from
9 to 13 years need 8 mg of Zn daily [7,8] . Zinc is stored in the rice husks and grains and
with the consumption of this cereal human zinc deficiency can be decreased. The foods rich
in Zn are beef, pork, chicken, and breakfast cereals, nuts like roasted peanuts, almonds,
walnuts, oats and dairy products like yogurt, cheese and milk [9].

1.2 Role of Zinc in Plants

The Zn plays very important role in plant metabolism by influencing the activities of
hydrogenase and carbonic anhydrase, stabilization of ribosomal fractions and synthesis of
cytochrome [10]. Plant enzymes activated by Zn are involved in carbohydrate metabolism,
maintenance of the integrity of cellular membranes, protein synthesis, regulation of auxin
synthesis and pollen formation [11]. The regulation and maintenance of the gene expression
required for the tolerance of environmental stresses in plants are Zn dependent [12]. Its
deficiency results in the development of abnormalities in plants which become visible as
deficiency symptoms such as stunted growth, chlorosis and smaller leaves, spikelet sterility.
Micronutrient Zn deficiency can also adversely affect the quality of harvested products;
plants susceptibility to injury by high light or temperature intensity and to infection by fungal
diseases can also increase [11,12]. Zinc seems to affect the capacity for water uptake and
transport in plants and also reduce the adverse effects of short periods of heat and salt
stress [13,14,15,16]. As Zn is required for the synthesis of tryptophan which is a precursor of
IAA, it also has an active role in the production of an essential growth hormone auxin
[17,18]. The Zn is required for integrity of cellular membranes to preserve the structural
orientation of macromolecules and ion transport systems. Its interaction with phospholipids
and sulphydryl groups of membrane proteins contributes for the maintenance of membranes
[12,19,17,20,14].
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The Zn-finger transcription factors are involved in the development and function of floral
tissues such as anthers, tapetum, pollen and pistil secretory tissues in many plant species, it
is likely that VvZIP3 may play a key role in both flower and normal fruit development [21,22].
The alteration of VvZIP3 expression during flowering and fertilization can modify the
distribution and availability of Zn, hence affects normal reproductive development [23].

1.3 Zinc Deficiency in Soil

Zinc deficiency can be found in every part of the world and almost all crops respond
positively to application of Zn [3]. Normal soils inherit their trace elements which include Zn
primarily from the rocks through geochemical and pedochemical weathering processes.
Besides mineralogical composition of the parent material, the total amount of Zn present in
the soil is also dependent on the type, intensity of weathering, climate and numerous other
predominating factors during the process of soil formation [24]. Meanwhile, high pH and high
contents of CaCO3, organic matter, clay and phosphate can fix Zn in the soil and give rise to
the reduction of available Zn [25]. Soils derived from granite and gneiss can be low in total
Zn [26]. Similarly, total Zn is low in highly leached, acid, sandy soils such as the ones found
in many coastal areas. Quartz in the soil dilutes Zn from it because the reported
concentrations of Zn in quartz are very low, which ranged from 1.0 µg g-1 to < 5 to 8 µg g-1

[27,28]. According to the Food and Agriculture Organization (FAO), about 30% of the
cultivable soils of the world contain low levels of plant available Zn [29]. The lowest Zn
concentrations were always found in Spodosols (28 µg g-1) and luvisols (35 µg g-1), while
higher levels were found in fluvisols (60 µg g-1) and Histosols (58µg g-1) [30].

Generally, Zn deficiency is expected in calcareous soils, sandy soils, peat soils, and soils
with high phosphorus and silicon [31,17]. The submerged soils are well recognized for the
lack of Zn availability to the plants; particularly due to the reaction of Zn with free sulphide
[32]. Flooding and submergence bring about a decline in available Zn because of the
changes in pH value and the formation of insoluble Zn compounds. Meanwhile, the insoluble
Zn compounds formed are likely to be with Mn and Fe hydroxides from the breakdown of
oxides and adsorption on carbonates, specifically magnesium carbonate. Under the
submerged conditions for rice cultivation, Zn is transformed into amorphous sesquioxide
precipitates or franklinite; ZnFe2O4 [33]. Zinc deficiency causes multiple symptoms which
usually appear 2 to 3 weeks after transplanting of rice seedlings, with leaves developing
brown blotches and streaks that may fuse to entirely cover older leaves, and plants remain
stunted, whereas in severe cases, the plants may die, while those which recover will show
substantial delay in maturity and reduction in yield [34,35,36]

1.4 Zinc under Submerged Soil Conditions

Zn deficiency is very common under flooded soil conditions. In acidic soils, Zn is precipitated
as Zn (OH)2 and as ZnS in sulfur-rich and alkaline soils. The availability and solubility of Zn
decreases while pH increases. The oxides of Mn and Zn along with CaCO3 or MgCO3 are
strongly absorbed by Zn under submerged condition. Whereas in calcareous soils, HCO3

- is
the predominant anion, which mainly reduces Zn transport from root to shoot, but not so
much the Zn uptake by roots. Under anaerobic condition Zn forms an insoluble Zn-
phosphate. Under this condition plant roots will not take up the soluble Zn from the Zn
solution as required by the plant. Under submerged conditions, when organic acid
concentration increased, the Zn uptake is reduced and this effects the plant growth. The Zn
uptake is also reduced under acidic rhizosphere condition due to the release of H+ from the
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roots and the surplus intake of cat ions over anions. Under acidic rhizosphere conditions, Zn
is released from acid-soluble fractions (e.g., absorbed Zn, organic matter or Fe (OH) 3) and
is available for plant uptake. Generally, rice plants absorb most Zn from solubilization in the
rhizosphere because the available Zn in soil is very low in flooding condition [37].

1.5 Soil Factors Associated with Zn Deficiency

All types of soil may be affected by Zn including: loams, sands, clays ( with all classification),
loess, alluvium, and soils formed from basalt, sandstone, granite, volcanic ash and many
other rocks. In general, soils of arid and semi arid regions and the slightly acidic, leached
soils of warm and tropical climates are most inclined to Zn deficiency, however, crops are
not equally susceptible to Zn deficiency and at the same soil some crops may suffer from Zn
deficiency while others are not affected. Major Zn deficiency causes include: (i) Soils of low
Zn content (Parent material), (ii) soils with Restricted Zones, (iii) pH, (iv) soils low in organic
matter, (v) Microbially inactivated Zn, (vi) Cool soil temperature, (vii) Plant species and
genotypes (viii) High level of available phosphorus and (ix) Effects of nitrogen [38,39,40,31].
Zn deficiency problems may occurs in soils with the subsequent characters; (a) strongly
alkaline in reaction (b) high phosphorus status by application of phosphatic fertilizers may
reduce use of zinc (c) leached sandy soils (d) acid soils of low total Zn status developed on
highly weathered parent material (e) calcareous soil (f) peat and muck soils (g) permanently
wet (water logged) and (h) high bicarbonate and magnesium in soils or irrigated water
[17,41].

1.5.1 Parent material of soils and Zn content

The amounts of Zn in unpolluted soils typically are lower than 125 ppm [42,43]. The major
factors affecting the concentration of Zn in soils is the concentration of Zn in soil parent
material. The soils derived from gneisses and granites can be low in total Zn and also those
originating from sandstone and limestone had lower Zn contents [44,40]. Quartz (sand) in
the soils also dilutes soil Zn as concentrations of Zn in quartz are very low which range
between 1 - 8 µg g-1 [28]. Also total Zn is low (< 30 µg g-1) in highly leached acid sands. Zinc
deficiency may occur in such soils which are inherently low in Zn. The total Zn
concentrations in soils vary between 10 to 300 µg g-1 with an average of 50 µg g-1 [39]. But
the average available Zn varied from 1 to 3 µg g-1 (extracted by dithizone). The problem is
that only a small amount of soil Zn is available to the crop because of one or more adverse
factors. The remainder of the total Zn is fixed in the soil in an insoluble or unexchangeable
form and difficult to make available to crop [45].

1.5.2 Soil pH

Zinc availability is highly dependent on pH. When the pH is above 6, the availability of Zn is
usually very low. The availability of Zn in alkaline soils is reduced due to lower solubility of
the soil Zn. The concentration of Zn in the soil solution decreases from 10-4 (6.5 µg g-1) to 10-

10 M (0.007 µg L-1) with an increase from pH 5 to pH 8 [30]. Thus it is more probable that Zn
deficiency will occur in alkaline rather than acidic soils. The solubility constant values of
ZnCO3 and hydroxides suggest that a soil having high pH would usually contain a small
amount of available Zn. In the case of soils characterized by high contents of hydroxyl (OH-)
ions, it is difficult to get a crop response even to applied Zn. The lower availability of Zn
under alkaline conditions is attributed to the precipitation of Zn as Zn (OH)2 or ZnCO3
[46,24]. The higher carbonate contents in alkaline soils also absorb Zn and hold it in an
unexchangeable form [47]. All these factors contribute to the low availability of Zn at higher
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pH values. Liming of acidic soils increases pH and also the Zn fixing capacity, particularly in
soils with high P levels [17]. The movement of Zn in limed soils is considerably lower than in
acidic soils so that absorption of Zn by the crop may be low. Liming can thus reduce the Zn
uptake [48] and induce Zn deficiency [49].

1.5.3 Soil organic matter

Low organic matter contents in soils give rise to Zn deficiency as it is observed that available
Zn increases with increase in organic matter in soil. Soil organic matter is an important soil
constituent which originates from decomposition of animal and plant products. The most
stable organic compounds in soil are humic substances such as humic and fulvic acids. Both
of these substances contain a relatively large number of functional groups (OH, COOH, SH)
which have a great affinity for metal ions such as Zn2+. Fulvic acids mainly form chelates with
Zn over a wide pH range and increases the solubility and mobility of Zn [30]. Simple organic
compounds such as amino acids, hydroxy acids and also phosphoric acids are effective in
complexing Zn, thus increasing its mobility and solubility in soils [40]. An increase in the
organic matter contents of a soil will increase its Zn availability; however, if the organic
matter content in soil is too high, like in peat and muck soils, this can also contribute to Zn
deficiency due to the binding of Zn on solid state humic substances [50].

1.5.4 Soil texture

Lighter textured soils (sands) contain low levels of Zn. Finer texture soils like clay have
higher CEC values and therefore have highly reactive sites and can retain more Zn than
lighter textured soils [46]. Therefore heavier textured soils with larger CEC have higher
capacities for Zn adsorption than light textured soils [45]. Consequently, Zn deficiency is
more likely to occur in sandy than clayey soils. Clay soils adsorb Zn and this adsorption is
controlled by CEC and pH [51]. Reddy et al. [52] showed that a certain portion of the Zn
adsorbed on the clay was not exchangeable but was acid soluble. This portion of Zn was not
available to the plants. [53] found that kaolonite fixes less Zn than bentonite or illite. Thus
clays such as bentonite and illite with higher CECs contribute to the fixing of Zn more
strongly, thus making it unavailable to plants.

1.5.5 Phosphate fertilizers

Soils with higher phosphate levels, either from native P or due to application of phosphate
fertilizers, can cause Zn deficiency stress in crops [31]. Heavy application or prolonged use
of phosphatic fertilizers reduces Zn uptake by plants. This effect may be due to the
physiological imbalances within the plant [54]. Zinc deficiency due to phosphorus application
is termed “P-induced Zn deficiency” [55].

1.5.6 Soil flooding

Zinc deficiency is more often associated with flooded soil than dry soils. For example, rice
plants under submerged conditions suffer from Zn deficiency in calcareous soils. But wheat
grown in the same soil following rice grows normally [56]. Zinc deficiency due to flooding was
a result of Zn reaction with free sulphide [32]. Under the submerged conditions of rice
cultivation, Zn is changed into amorphous sesquioxide precipitates or franklinite; ZnFe2O4
[33,57]. Thus a delay in Zn application until after flooding for rice minimizes Zn fixation by
sesquioxides [58].
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1.5.7 Soil temperature

In warm and moist soils, Zn uptake was higher in rice than in maize (Zea mays L.) [59].
Temperatures below 16ºC during growth caused decreased Zn uptake in maize tops [60]. It
appears that Zn deficiency was associated with cool and wet seasons. Soil temperature
effects appear to be due to the rate of Zn mineralization [61]. Other factors which can cause
Zn deficiency in plants are high light intensity and long day-lengths [62]. Besides the natural
soil and environmental factors, soil management practices carried out by man often causes
Zn deficiency beside this plants can also suffer from Zn deficiency under adverse climatic
conditions such as drought or compaction [31].

1.6 Zinc Interaction with Other Nutrients

Interactions occur between the micronutrients and some macronutrients. ‘Interaction’ may be
defined as “an influence, a mutual or reciprocal action of one element upon another in
relation to plant growth” [54]. Another factor is the differential response of plants to one
element in combination with varying levels of a second element applied simultaneously i.e.
the two elements combine to produce an added effect not due to each of them acting alone
[54]. Such interactions may take place in the soil and within the plant. These interactions
should be taken into account when providing adequate micronutrient supply to plants. Other
nutrients may interact with Zn by affecting its availability from soils and its status in the plant
throughout the growth process, especially Zn absorption, distribution or utilization. These
interactions may enhance or reduce plant growth as a response to Zn. Where an interaction
does occur, it is necessary for the diagnosis and treatment of Zn deficiency to identify the
factors and its sites and modes of action [63]. Some important interactions of Zn with other
nutrients will be discussed below.

1.6.1 Phosphorus-Zn interactions

The study of the interaction between P and Zn started in1936 [64] and till now, this important
plant growth disorder is still under investigation. The interaction is usually termed ‘P-induced-
Zn deficiency’. This disorder in plant growth is associated with high levels of available P or
with application of P to soil. The Zn deficiency symptoms can be prevented by the
application of Zn fertilizers. The actual causal relationship and mechanisms are still not fully
understood. In general, four possible causes have been considered responsible for P-
induced-Zn deficiency. These include (i) a P-Zn interaction in soil; (ii) a slower rate of
translocation of Zn from the roots to shoot; (iii) a simple dilution effect on Zn concentration in
plant tops due to growth responses to P; (iv) a metabolic disorder within plant cells related to
an imbalance between P and Zn [54].

It was suspected that formation of an insoluble Zn3 (PO4)2 in the soil reduced the Zn
concentration in soil to deficient levels. But these suspicions were disproved and further
observed that Zn3 (PO4)2 was a good source of fertilizer for sorghum [65]. The investigation
of this precipitation as a mechanism that causes Zn deficiency continued till 1970. [66]
reported that maximal or near maximal yields were found with legumes at 0.05 µM Zn in
flowing culture and with cereals at 0.01 µM. This evidence indicates that precipitation of Zn3
(PO4)2 is not involved in P-induced -Zn deficiency. Many researchers have reported that
applied P accentuated Zn deficiency symptoms in plants [67,68]. The higher P levels in soil
reduced the Zn concentrations in the plant tops and also reduced total Zn contents [55,69].
These scientists suggested that P-Zn antagonism existed in the roots of the plants. Other
studies suggested that although P decreased the Zn concentrations in the tops, the total Zn
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contents either increased or remained the same [70,71]. The cause of this P-induced-Zn
deficiency has been suggested to be due to interference by P with the uptake, translocation,
or utilization of Zn [72].

1.6.2 Nitrogen-Zn interactions

Zinc deficiency can be increased or ameliorated in plants with the application of nitrogen
fertilizers. The interactions resulting from the effects of N application helps to promote plant
growth and, to a lesser extent, in changing the pH of the root environment since application
of N promotes the growth of plants, it is possible to find positive interactions between
increasing levels of Zn and N fertilizers [17]. It was reported that wheat grown on N deficient
soil with adequate levels of all nutrients except N and Zn, did not respond to Zn application
in the absence of NH4NO3 fertilizer, however, a strong response to Zn application was
observed in the presence of N fertilizer [73].

On the other hand, in soils low in Zn and high in fertility, N fertilizers have ameliorated (or
intensified) Zn deficiency by affecting Zn absorption through changing pH [74]. As
ammonium ions have an acidifying effect, ZnSO4 application with concurrent dressings of N
were very effective in controlling Zn deficiency where ZnSO4 alone had no effect [74]. It was
also observed that NH4

+ salts inhibited Zn absorption from low Zn2+ concentration, in a short
term study with wheat. Ammonium ions inhibited Zn2+ absorption more strongly than alkali
and alkaline earth anions, but were competitive with alkali and alkaline earth cat ions. So
NH4

+ effect would be diminished by relatively high concentrations of competing ions in soil.
Thus any direct effect of NH4

+ on Zn absorption would disappear [75].

1.6.3 Macronutrient cations-Zn interaction

Macronutrient cations such as Ca, Mg and K inhibit the absorption of Zn by plants from
solution. They need to be considered when interpreting the results of solution culture
experiments involving Zn nutrition, however, in soil they seem to be less effective in the
inhibition of Zn absorption compared to the effects of their salts on soil pH. Zinc
concentrations were highest in legumes grown in solution culture at constant pH with the
lowest Ca level at which the plants were not Ca deficient. Zinc concentrations progressively
decreased with increasing Ca concentrations in solutions [76]. This finding that Ca inhibits
Zn absorption was in accord with a short term study conducted by [75]. They found that
increasing concentrations of Ca (NO3)2 from 0 mM to 40 mM inhibited the rate of Zn
absorption by wheat seedlings in a non-competitive manner, however, higher Ca
concentrations (100mM) had no additional effect on Zn absorption. This inhibition was
attributed to Ca as varying the anions and had little effect on Zn absorption, whereas
substituting other cat ions for Ca had similarly negative effect.

In soils, the effects of Ca compounds on Zn nutrition are variable, due to the effects of its
salts on soil pH. Zinc concentrations in plants growing in soil treated with CaSO4 (which
decreased the soil pH from 5.6 to 4.8) increased slightly but decreased strongly when an
equivalent amount of CaCO3 was applied (which increases the soil pH from 5.7 to 6.6)
[77].The macronutrient cat ions K, NH4 and Mg all inhibited the rate of Zn absorption strongly
from solutions of low Ca concentrations; with increasing Ca concentrations, the inhibitory
effects weakened and in the case of two ions (K, Mg) tested at sufficiently high Ca
concentration (2.5-10 mM) eventually disappeared, suggesting that they operate through the
same mechanism as Ca [75].
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1.6.4 Copper-Zn interactions

It was reported that Cu and Zn may interact in several ways: Zn strongly depresses Cu
absorption, Cu competitively inhibits Zn absorption and Cu nutrition affects the redistribution
of Zn within plants [63]. A very strong Cu-Zn antagonism has been observed in wheat
growing on soils deficient in Cu and Zn [56]. In N-Cu-Zn experiment, [73] found that N
fertilizer increased grain yield in the absence of Zn and diluted Cu concentrations to
deficiency levels in plant. Addition to that, Zn along with N fertilizer intensified the Cu
deficiency so severely that grain yield was lower than in the control plants (without NH4NO3).
In this case, Zn intensified Cu deficiency in plants by depressing Cu uptake. This may be a
result from competitive inhibition of Zn on Cu absorption [78]. The competitive inhibition of
Cu2+ ion on Zn2+ absorption has been established in short term studies [79]. While Zn
severely depressed Cu uptake by wheat, Cu did not depress Zn absorption in the same
experiment. The reason for the difference in soil and solution culture results may be the form
of these ions present in the soil and solution. In solution studies, the Cu and Zn were present
as divalent ions whereas in most of the soils they are predominantly present as complex
forms and a much higher proportion of Cu is complexed compared to Zn [80]. So Zn2+

activity would be much higher than Cu2+ activity at the absorbing sites making it an effective
competitor in Cu absorption and making its absorption less sensitive to competition from Cu
[63].

1.6.5 Iron-Zn interaction

The interaction between Zn and Fe is also complex like P-Zn interaction. The increased
application of Zn had little effect or decreased Fe concentrations in the shoot [81,82]. In the
same way, higher levels of Fe generally have only a depressive effect on Zn concentration in
plant tissues [83], although it has been shown to increase have no effect on or to decrease
the rate of Zn absorption by plant roots. These conflicting reports are probably due to
differences in experimental details, especially in plant species and the concentration, ionic
state and complexation of Fe [79].

Iron (Fe2+) at low concentrations (10 µM) had no effect on the rate of Zn absorption by wheat
seedlings from solutions containing 1 or 10 µM Zn and 50 mM Ca(NO3)2 [72]. But at higher
concentrations (100 µM Fe2+), and at concentrations likely to occur in flooded rice soils, Fe
completely suppressed the Zn absorption by rice seedlings from a solution of 0.05 µM ZnCl2
with no Ca [79]. Iron deficiency increased Zn concentrations in shoots of plants [84] and also
the rate of Zn absorption in both dicotyledonous plants [85] and grasses [83]. In
dicotyledonous plants, the mechanism for increasing Zn absorption is probably the
acidification of the rhizosphere resulting from Fe deficiency [62]. For grasses, the release of
phytosiderophores under Zn deficiency is responsible for the higher Zn absorption rate as
phytosiderophores have enhanced the mobilization of Zn from calcareous soils [83, 86]. In a
similar way, under Zn deficient conditions, Fe accumulated in the shoots of Zn deficient navy
beans and corn plants are possibly due to the acidification of the rhizosphere and the
release of reductants and phytosiderophores [87,88].

1.7 Dilution Effect

When the rate of plant growth is faster than the rate of uptake of a particular nutrient, the
concentration of the nutrient is “diluted” in the plant [55,54]. These researchers also showed
that in wheat and bean the yield and total Zn content increased with P application while the
Zn concentrations in plants decreased. A response in yield was found for applied P, so a



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

382

dilution effect on Zn is largely accountable for this effect. In general, this interaction occurs
when the soil is deficient in P and/or slightly deficient in available Zn. The growth rate
increases due to applied P but the rate of Zn uptake does not increase fast enough to
maintain Zn concentration in plants. In some cases of P-induced-Zn deficiency the dilution
effect only partially explains the data. The applied P reduces the Zn concentration in the tops
of the plant while the yield response to P is minimal [55].

1.8 Distribution of Zn in Plant Roots and Tops

Zn is an essential micronutrient involved in a wide variety of physiological processes
[12,89,90,91,92,93]. Zn uptake varies among plant species and is determined by the
composition and concentration of the growth media. Zn uptake occur as divalent cation or as
complexes with organic ligands and display a linear pattern with its concentration in the
nutrient solution of soils [19], roots load it via xylem to the shoot tissues [93]. The Zn
translocation to roots xylem occurs via symplast and apoplast but its high levels have also
been detected in the phloem, denoting that this metal is translocated through both xylem and
phloem tissues [18,93,94].

2. ZINC EFFICIENCY

Zn efficiency can be defined as “the ability of plants to maintain high yields in soils with low
Zn availability”. Many mechanisms are perhaps involved in Zn efficiency [95]. Depending on
the nature of experiments and plant species, the most significant mechanisms may be Zn
utilization in tissues and Zn uptake [96,97]. Under Zn deficiency, Zn-efficient genotypes have
a high activity of Cu/Zn anhydrase [98,99,100] and carbonic anhydrase [101,102]. Zn
efficiency and Zn uptake are very susceptible for plant growth and its total content in soil is
influenced by several soil properties like pH, CaCO3, organic matter content, crop, as well as
cultivars and nutrient interactions in soil environment. There is no precise mechanism used
in determining Zn efficiency is available so far; however, several crops have been evaluated
for their Zn efficiency like: beans [87,103,96], wheat [104,100] and rice [105,106,107,108,
109].

2.1 Effect of Zn Deficiency on Plants and Its Correction

Zinc is an essential micronutrient for plant growth and plays an important role in the catalytic
part of several enzymes [110] its deficiency will result in stunted growth. Many researchers
observed that Zn is closely related to the nitrogen metabolism pathway of plants, thus
causing a reduction in protein synthesis for Zn deficient plants. Zinc deficiency significantly
affects the root system including root development [111]. Zinc deficiency affects the
absorption of water and nutrients from soil and thus resulting in growth and yield reduction in
the plant. [112] indicated that the flowering and fruiting process were greatly reduced under
severe Zn deficiency.

Zinc deficiency is one of the major constraints in world food production. Identification of Zn-
deficient areas, and causes would help in planning the appropriate strategies to correct
these Zn deficiencies. Although Zn is widely used as a fertilizer, but efficient and economical
methods to correct its deficiency on a long term basis and in a specific cropping system is
desirable. Zinc deficiency can be corrected through the application of Zn fertilizers, recycling
crop residues, natural organic manures and cultivation of Zn efficient genotypes [113]. Zinc
fertilizers are broadcast and sprayed onto topsoil, banded in the seedbed, applied as foliar
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sprays, used as seed treatment and in the case of transplanted rice seedlings, roots of these
seedlings are dipped into Zn before transplanting. Zinc sulphate is the commonly used
fertilizer compound (ZnSO4_7H2O containing 26% Zn, or ZnSO4-H2O containing 37% Zn).
Other Zn compounds are Zn chloride (ZnCl2), Zn nitrate (Zn (NO3)2), Zn oxide (ZnO), Zn
oxy-sulphate and Zn-coated urea [114].

2.2 Zinc Deficiency Symptoms in Plants

Visual symptoms of Zn deficiency in plants are fairly characteristic and are relatively easy to
identify. These distinctive symptoms are useful for recognizing acute Zn deficiency and for
indicating Zn responsive soils, but not the hidden or marginal deficiencies. The most
common symptoms of Zn deficiency include: stunted growth, shortened internodes and
petioles, and small malformed leaves (little leaf) which results in the “rosette” symptom in the
early growth stages of dicotyledons and “fan shaped” stems in monocotyledons [115]. The
deficiency symptoms first appear on young leaves as Zn is immobile under conditions of
deficiency. These leaves remain small, cup upward and develop interveinal chlorosis and
necrotic spots on the upper leaf surfaces which later join to each other to form brown
necrotic and brittle patches. The necrosis is often more noticeable on middle aged leaves
which eventually wilt, bend and collapse [116]. Zinc deficiency is typically patchy, even within
a single field and symptoms develop rapidly but depend greatly on the degree of stress
[117]. Enzyme activity, like ribonuclease activity or carbonic anhydrse activity can be used
as an index for precise information. This is particularly important in the initial stages of
growth when micronutrient requirements of plants are very low and the total contents of Zn
fail to provide precise information about the hidden deficiency. Zinc deficient plants are
unthrifty, lack vigor; give patchy appearance with short and thin stems. In young plants
interveinal areas are with dark brown necrotic lesions [41].

The visible symptoms in rice are: wilting due to loss of turgidity in the leaves, basal chlorosis
of the leaves, delayed development of the plants, “bronzing” of the leaves and in some
cases death of the rice seedling. The common symptoms of Zn deficiency in rice are:
chlorosis in the mid rib at the base of the youngest leaf within 2-4 weeks after sowing or
transplanting and the appearance of brown spots on the older leaves. The spots enlarge,
coalesce and give the leaves a brown color. Zinc deficient plants show stunted growth and
reduced tillering. If the deficiency is not too severe the plant may recover after 4-6 weeks but
maturity is delayed and yields of susceptible cultivars are reduced [118]. The most
noticeable symptom is the plant’s loss of turgidity, where plants fall over and float on the
surface of the water. The basal leaves become pale green and after 3-7 days the leaves
become chlorotic. It is important to note that visual symptoms of Zn deficiency in rice vary, to
a certain extent, with soil type, cultivar and growth stages. Symptoms can be mistaken for
those of N, Mg, Mn or Fe deficiencies which are often combined with Zn deficiency, making it
difficult to distinguish between the symptoms of the two. Therefore, plant analysis is required
for confirmation [37,17,31].

3. ZINC CRITICAL LEVELS IN PLANTS

Zinc deficiency is one of the major constraints in world food production. It is therefore
essential to identify the Zn-deficient areas, and the different causes of deficiency. It would
help in planning the appropriate strategies to correct these Zn deficiencies. Although Zn is
being used as a fertilizer, an understanding of efficient and economical methods to correct
Zn deficiency on a long term basis and in a specific cropping system is desirable. It was
reported by [50] that there is a strong relationship between Zn concentration in tissues with
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the growth and yield of crops. The critical limits of Zn in plants indicates deficiency as
suggested by [37] are :< 10 mg kg-1 definite Zn deficiency, 10–15 mg kg-1 very likely,15–20
mg kg-1 likely and >20 mg kg-1 unlikely (sufficient). In most crop species leaf sufficiency range
for Zn 15 to 50 ppm in the dry matter of mature plants and in most cases 15 ppm Zn is
considered as critical value [41].

4. ZINC TOXICITY

The threshold of Zn toxicity varies among plant species, time of exposure to Zn stress and
composition of the nutrient growth medium. Plant growth inhibition extends in E. maculata
and E. urophylla by five weeks after addition of 400-1600 mM ZnSO4, whereas Pisum
sativum became inhibited after 1000 μM Zn application [119,90]. Photosynthesis is strongly
affected in plants exposed to heavy metals excess. High Zn concentrations in plants can
cause phytotoxicity. The yield may be reduced when plant leaf Zn concentrations reaches
about 300 - 1000 µg Zn g-1.A typical phytotoxicity critical concentration is about 500 µg Zn g-1

[120]. The best way to identify Zn deficiency in crops is the determination of Zn
concentrations in tissues, however, the results should be interpreted in full recognition of the
interaction of Zn with other nutrients because the deficiency of one nutrient may result in
excess accumulation of other nutrients by a plant [50].

5. EFFECT OF ZN ON MICROBIAL ACTIVITY

Microorganism requires various nutrients for their growth and metabolism. Among the
nutrients, Zn is an element present in the enzyme system as co-factor and mental activator
of many enzymes [121]. Zinc might limit the growth of bacteria at higher levels (>13.60 mg
kg-1). Furthermore, cell growth as well as microbial populations and their activity in soil were
badly affected under high levels of Zn [122,123].

6. CONCLUSION

Our extensive review of literature has shown that Zn is very essential plant nutrient for all
types of crops. It is deficient in all parts of the globe with different types of soils. Under these
conditions application of Zn fertilizer is necessary for healthy crop growth and higher yields.
Soil and foliar applications of Zn fertilizer are recommended for correcting deficiencies. Soil
dressings of Zn chelates, sulfates and oxides should be broadcast and mixed in the soil. Soil
applied Zn had residual effects for subsequent crops but foliar sprays have no residual effect
and fresh applications must be made to each crop.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Cakmak, I. Plant nutrition research priorities to meet human needs for food in
sustainable ways. Plant Science. 2002a;247:3-24.

2. Graham RD, Welch RM, Bouis HE. Addressing micronutrients malnutrition through
enhancing the nutritional quality of staple foods principles, perspectives and
knowledge gaps. Advanced Agronomy. 2001;70:77-142.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

385

3. Welch RM. The impact of mineral nutrients in food crops on global human health.
Plant and Soil, 2002;247:83-90.

4. Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition.
2004;20:632–644.

5. Morley JE. The top 10 hot topics in aging. J Gerontol. 2004;59:24–33.
6. Zimmermann M. Micronutrients in Health and Disease. Georg Thieme Verlag,

Stuttgart. 2001.
7. FAO/WHO. Human vitamin and mineral requirements - Report of a joint FAO/WHO

expert consultation - Bangkok, Thailand, FAO, Rome. Chapter 16. Zinc. 2002;257-
270.

8. Hotz C, Brown KH. (eds) Assessment of the Risk of Zinc Deficiency in Populations
and Options for its Control.Food and Nutrition Bulletin, 2004;25 (Supplement 2):S91-
S204.

9. Cakmak I. Plant nutrition research priorities to meet human needs for food in
sustainable ways. Plant Science. 2002b;247:3-24.

10. Tisdale SL, Nelson WL, Beaten JD. Zinc In soil Fertility and Fertilizers. Fourthedition,
Macmillan Publishing Company, New York. 1984;382-391.

11. Marschner H. Mineral nutrition of higher plants (2nd ed.). London: Academic Press;
1995.

12. Cakmak I. Role of zinc in protecting plant cells from reactive oxygen species. New
Phytol. 2000;146:185–205.

13. Kasim WA. Physiological consequences of structural and ultra-structural change
sinduced by Zn stress in Phaseolus vulgaris.I. Growth and Photosynthetic apparatus.
Int. J. Bot. 2007;3(1):15-22.

14. Disante KB, Fuentes D, Cortina J. Response to drought of Zn-stressed Quercus suber
L. Seedlings. Env. Exp. Bot. 2010;70:96-103.

15. Peck AW, McDonald GK. Adequate zinc nutrition alleviates the adverse effects of heat
stress in bread wheat. Plant Soil. 2010;337:355-374.89.

16. Tavallali V, Rahemi M, Eshghi S, Kholdebarin B and Ramezanian A. Zinc alleviates
salt stress and increases antioxidant enzyme activity in the leaves of pistachio
(Pistacia vera L. 'Badami') seedlings, Turk. J. Agr. Forest. 2010;34(4):349-359.

17. Alloway BJ. In Zinc in Soil and Crop Nutrition. International Zinc Association. Brussels,
Belgium; 2004

18. Brennan RF. Zinc Application and Its Availability to Plants. Ph. D. dissertation, School
of Environmental Science, Division of Science and Engineering, Murdoch University;
2005.

19. Kabata-Pendias A, Pendias H. Trace elements in soils and plants, CRCPress, Boca
Raton - London - New York – Washington D.C; 2001.

20. Dang HR, Li Y, Sun X, Zhang, Y Li. Absorption, accumulation and distribution of zinc
in highly-yielding winter wheat. Agr. Sci. China. 2010; 9(7):965-973.

21. Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H. Seven zinc-finger
transcription factors are expressed sequentially during the development of anthers
in petunia. Plant J. 1998;13:571-576

22. Sharma PN, Chatterjee C, Sharma CP, Agarwala SC. Zinc deficiency and anther
development in maize. Plant Cell Physiol. 1987;28(1):11-18.

23. Kapoor S, Kobayashi A, Takatsuji H. Silencing of the Tapetum-Specific Zinc Finger
GeneTAZ1Causes Premature Degeneration of Tapetum and Pollen Abortion in
Petunia. Plant Cell Online. 2002;14(10):2353-2367.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

386

24. Saeed M, Fox RL. Relation between suspension pH and Zn solubility in acid and
calcareous soils. Soil Science. 1977;124:199-204.

25. Imtiaz, M. Zn deficiency in cereals. PhD Thesis Reading University, U.K; 1999.
26. Krauskopf KB. Geochemistry of Micronutrients. In Micronutrients in Agriculture. (Eds.)

Mortved J. J., Goirdano P. M. and Lindsay W. L. Soil Science Society America., Inc.
Madison, Wisconsin USA; 1972.

27. Helmke PA, Koons RD, Schomberg PJ, Iskandar IK. Determination of trace element
contamination of sediments by multielement analysis of the clay-size fraction.
Environmental. Science Technology. 1977;11:984-989.

28. Brehler B, Wedepohl KH. In K.H. Wedepohl (ed). Handbook of Geochemistry (p.125).
Vol. II/3. Springer-Verlag, Berlin; 1978

29. Sillanpaa M. Micronutrients Assessment at the Country Level. An international Study
FAO Soils Bulletin 63. 1990. Food and Agriculture Organization of the United Nations

30. Kiekens L. Zinc in Heavy Metals. In B.J. Alloway (Ed.). Soils. London: Blackie
Academic and Professional; 1995

31. Alloway BJ. Micronutrients and crop production. In Micronutrient Deficiencies in
Global Crop Production. pp. 1-39© Springer Science Business Media BV; 2008.

32. Mikkelsen DS, Shiou K. Zinc fertilization and behaviour in flooded soils. Spec.
Publ. No. 5 Comm. Agric. Bur., Farnham Royal. p. 59. Mineral Stresses. In A.R.
Yeo and T.J. Flowers (ed). Approaches to Crop Improvement. 175-200. Berlin:
Springer-Verlag; 1977.

33. Sajwan KS, Lindsay WL. Effect of redox, zinc fertilisation and incubation time on
DTPA-extractable zinc, iron and manganese. Commun. Soil Science and Plant
Analysis. 1988;19:1-11.

34. Yoshida S, Tanaka A. Zinc deficiency of the rice plant in calcareous soils. Soil Science
and Plant Nutrition, 1969;15:75–80.

35. Van Breemen N, Castro RU. Zinc deficiency in wetland rice along a toposequence of
hydromorphic soils in the Philippines. II. Cropping experiment. Plant and Soil.
1980;57:215–221.

36. Neue HU, Lantin RS. Micronutrient Toxicities and Deficiencies in Rice in Soil Mineral
Stresses. In A.R. Yeo and T.J. Flowers (ed). Approaches to Crop Improvement (pp.
175- 200). Berlin: Springer-Verlag; 1994

37. Dobermann A, Fairhurst T. Rice: Nutritional Disorders and Nutrient Management.
Potash and Phosphate Institute and Potash and Phosphate Institute of 12. References
145 Canada (PPI/PPIC) and International Rice Research Institute (IRRI), Singapore
and Makati City, the Philippines; 2000.

38. Takkar PN, Randhawa NS. Micronutrients in Indian Agriculture. Fertility News.
1978;23:3-26.

39. Lindsay WL. Zinc in soil and plant nutrition. Advance Agronomy. 1972;24:147-188.
40. Pendias AK, Pendias H. Trace Elements in Soil and Plants (2nd edition). Boca Raton,

Florida: CRC Press; 1992.
41. Benton JJ. Agronomic handbook; management of crops, soils and their fertility. CRC

press LLC. USA; 2003
42. Di Baccio DR, Tognetti L, Sebastiani C, Vitagliano. Responses of Populus deltoides x

Populus nigra (Populus x euramericana) clone I-214 to high zinc concentrations. New
Phytol. 2003;159:443-452.

43. Hussain S, Maqsood MA Rahmatullah. Increasing grain zinc and yield of wheat or
the developing world: A Review. Emir. J. Food Agric. 2010;22(5):326-339.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

387

44. Barak P, Helmke PA. The chemistry of Zinc. In Zinc in Soils and Plants. (ed.) A.D.
Robin. Dordecht: Kluwer Academic Publishers; 1993.

45. Stahl RS, James BR. Zinc sorption by B Horizons Soils as a function of pH. Journal of
Soil Science Society of America. 1991;55:1592-1597.

46. Shukla UC, Mittal SB. Characterization of zinc application in some soils of India.
Journal of Soil Science Society of America. 1979;43:905-908.

47. Udo EJ, Bhon LH, Tukker TC. Zinc adsorption by calcareous Journal of Soil Science
Society of America. Proc. 1970;34:405-407.

48. Shukla UC, Moris HD. Relative efficiency of several zinc sources for corn. Agronomy
Journal. 1967;59:200.

49. Viets FG. Zinc Deficiency in Soil Plant System. In A.S. Prasad, C. Charles, Thomas
Springfield II (ed). Zinc Metabolism; 1966.

50. Katyal JC, Randhawa NS. Micronutrients FAO Fertilizer and Plant Nutrition Bullet in 7.
Rome: Food and Agriculture Organization of the United Nations; 1983.

51. Ellis BG, Knezek BD. Adsorption Reactions of Micronutrients in Soils. In Mortvedt, J.,
Giordano J. and Lindsay W.L. (ed), Micronutrient in Agriculture (pp. 59-78). Soil
Science Society of America. Madison, Wis; 1972.

52. Nelson WL, Mehlic A, Winters E. The Development, Evaluation and use of Soil Tests
for Phosphorus Availability. In Pierr W.H. and A.G. Norman (Eds.) Soil and Fertilizer
Phosphorus in Crop Nutrition. (pp. 153-158). New York; Agrono. Monogr. Acad.
Press; 1953

53. Reddy MR, Perkin HF. Fixation of Zn by clay minerals. Soil Science of America.
Proc. 1974;38:229-230.

54. Olsen SR. Micronutrient Interactions. In J.M Mortved, J.J. Goirdano, and W.L. Lindsay
(eds). Micronutrients in Agriculture (pp. 243-264). Soil Science Society of America,
Madison, WI; 1972.

55. Singh JP, Karamonas RE, Stewart JWB. Phosphorus-induced zinc deficiency in wheat
on residual phosphorus plots. Agronomy Journal. 1986;78:668-675.

56. Kausar, MA, Chaudry FM, Rashid A, Latif A, Alam SM. Micronutrient availability to
cereals from calcareous soils. I. Comparative Zn and Cu deficiency and their mutual
interaction in rice and wheat. Plant and Soil. 1976;45:397-410.

57. Singh MV, Abrol IP. Transformation and movement of zinc in an alkali soil and their
influence on the yield and uptake of zinc by rice and wheat crops. Plant Soil.
1986;94:445-449.

58. Mandal LN, Mandal B. Zinc fraction in soils in relation to Zn nutrition of low land rice.
Soil Science. 1986;142:141-148.

59. Bauer A, Lindsay WL. The effect of soil temperature on the availability of indigenous
soil zinc. Soil Science Society of America. Proc. 1965;  29, 413-420.

60. Ellis BG, Davis JF, Judy WH. Effect of method of incorporation of Zn in fertilizer on
zinc uptake and yield of pea beans (Phaseolus vulgaris). Soil Science Society of
America. Proc. 1965;29:635-636.

61. Takkar PN, Walker C. The Distribution and Correction of Zinc Deficiency. In A.D.
Robson (ed). Zinc in Soils and Plants (pp. 51). London: Kluwar Academic publisher;
1993.

62. Marschner H, Cakmak I. High light intensity enhances chlorosis and necrosis in the
leaves of zinc, potassium and manganese deficient bean (Physeolus vulgaris L.)
plants. Plant Physiology. 1989;134:308-315.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

388

63. Loneragan JF, Webb MJ. Interactions between Zn and other Nutrients affecting the
Growth of Plants. In A.D. Robson (ed). Zinc in soils and plants (p.151). Kluwer
Academic Publisher, Dordecht; 1993.

64. Barnette RM, Camp JP, Warner JD, Gall JD. Use of zinc sulphate under corn and
other field crops. Fla. Agri. Exp. Sta. Bull. 1936;293:3.

65. Brown AL, Krantz BA, Edding JL. Zinc-phosphorus interaction as measured by plant
response and soil analysis. Soil Science. 1970;110:415-420.

66. Carrol MD, Loneraga JF. The relevance of solution cultural studies to the absorption
of Zn from soils. In transcation of 9th international congress of soil science.
1968;(2):191-202. International society of soil science and Angu and Robertson,
Sydney, 15th Federal Convention.vol.1. Australian water and wastewater Association,
Queensland, Australia.

67. Loneragan JF, Grove TS, Robson AD, Snowball K. Phosphorus toxicity as a factor in
zinc phosphorus interaction. Soil Science Society of America. J. 1979;43,966-972.

68. Sharma KC, Karantz BA, Brown AL, Quick J. Interaction of Zn and P in the tops and
roots of corn and tomatoes. Agronomy Journal. 1968;60:453-456.

69. Clark RB. Differential response of maize inbreeds to Zn. Agronomy Journal.
1978;70:1057-1060.

70. Boawn LC, Brown JC. Further evidence for a P/Zn imbalance in plants. Soil Science
Society of America. Proc. 1968a;32:94-97.

71. Boawn LC, Leggett GE. Phosphorus and zinc concentrations in Russett Burbank
potato tissue in relation to development of zinc deficiency symptoms. Soil Science
Society of America. Proc. 1968b;28:229-232.

72. Adriano DC, Paulson GM, Murphy LS. P-Fe and P-Zn relationship in corn seedlings as
affected by mineral nutrition. Agronomy Journal. 1971;63:36-39.

73. Chaudhry FM, Loneragan JF. Effect of nitrogen, copper and zinc fertilizers on the
copper and zinc nutrition of wheat plants. Australian Journal of Agriculture Res.
1970;21:865-879.

74. Viets FG, Boawn LC, Crawford CL. The effect of nitrogen and types of nitrogen carrier
on plant uptake indigenous and applied zinc. Journal of Soil Science Society of
America. 1957;21:197-201

75. Chaudhry FM, Loneragan JF. Zinc absorption by wheat seedlings. I. Inhibition by
hydrogen ions and micronutrient cat ions. Soil Science Society of America. Proc.
1972;36:327-331.

76. Bell RW, Kirk G, Plaskell D, Loneragan JF. Diagnosis of zinc deficiency in peanut by
plant analysis. Communication Soil Sci. Plant Analysis. 1990;21:273-285.

77. Wear JI, Evan CE. Relationship of zinc uptake by corn and sorghum to soil zinc
measured by three extractants. Journal of Soil Science Society of America. Proc.
1968;32:543-546.

78. Bowen JE. Physiology of genotypic differences in Zn and Cu uptake in rice and
tomato. Proceedings of 2nd International Symposium on Genetic Aspects of Plant
Mineral Nutrition; 1987.

79. Giordano M, Noggle JC, Mortvedt JJ. Zinc uptake by rice, as affected by metabolic
inhibitors and competing cat ions. Plant Soil. 1974;41:637-646.

80. Geering HR, Hodson JF. Micronutrient cation complexes in soil solution. Soil Science
Society of America. Proc. 1969;33:54-59.

81. Norvell WA, Welch RM. Growth and nutrient uptake by barley: Studies using an N(2-
Hydroxyethyle) ethylenedinitrilotriacetic acid buffered nutrient solution technique. I.
Zinc ion requirements. Plant Physiology, 1993;101:619-625.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

389

82. Safaya NM. Phosphorus-Zinc interaction in relation rate of phosphorus, zinc, copper,
manganese and iron in corn (Zea mays L.). Journal of Soil Science Society America.
1976;71:132-136.

83. Zhang F, Romheld V, Marschner H. Diurnal rhythm release of phytosiderophore and
uptake rate of zinc in Fe-efficient wheat. Soil Science and Plant Nutrition.
1991;37:671678.

84. Agarwala SC, Mehrotra SC, Bisht SS, Sharma CP. Mineral nutrient element
composition of three varieties of chickpea grown at normal and deficient levels of
iron. Journal of Indian Botanical Society. 1979;58:153-162.

85. Romheld V, Marschner H, Kramer D. Response to Fe deficiency in roots of “Fe-
efficient” plant. Journal of Plant Nutrition. 1982;5:489-498.

86. Treeby M, Marschner H, Romheld V. Mobilisation of iron and other micronutrients from
a calcareous soil by plant born microbial and synthetic metal chelator. Plant and Soil,
1989;114:217-226.

87. Ambler JE, Brown JC. Cause of differential susceptibility to Zn deficiency in two
varieties of navy beans. Agronomy journal. 1969;61:41-43.

88. Jackson ML. Soil Chemical Analysis. London: Constable and Company Ltd; 1962.
89. Reeves RD, Baker JM. Metalaccumulating plants. In: H. Raskin and B.D. Ensley

(Eds.) 193–230. Phytoremediation of Toxic Metals: Using Plants to Clean Up
the Environment. John Wiley & Sons Inc., London; 2000.

90. Doncheva SZ, Stoyanova V. Velikova. Influence of succinate on zinc toxicity of pea
plants. J. Plant Nutr. 2001;24(6):789-804.

91. Stoyanova Z, Doncheva S. The effect of zinc supply and succinate treatment on plant
growth and mineral uptake in pea plant. Bras. J. Plant Physiol. 2002;14(2):111-116

92. DiBaccio DS, Kopriva L, Sebastiani H, Rennenberg. Does glutathionemetabolism have
a role in the defence of poplar against zinc excess? New Phytol. 2005;167:73-80.

93. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol.
2007;173:677–702.

94. Haslett BS, Reid RJ, Rengel Z. Zinc mobility in wheat: uptake and distribution of zinc
applied to leaves or roots. Ann. Bot. 2001;87:379–386.

95. Rengel Z. genotypic differences in micronutrient use efficiency in crops. Comm. Soil
Science and Plant. Analysis. 2001;32:1163-1186.

96. Hacisalihoglu G, Hart JJ, Wang Y, Cakmak I, Kochian LB. Zinc efficiency is correlated
with enhanced expression and activity of Cu/ Zn superoxide dismutase and carbonic
anhydrase in wheat. Plant Physiology. 2003b;131:595-602.

97. Genc Y, McDonald GK, Graham RD. Contribution of different mechanisms to zinc
efficiency in bread wheat during early vegetative stage. Plant Soil. 2006;281:353-367.

98. Hacisalihoglu G, Kochian LV. How do some plants tolerate low levels of soil zinc?
Mechanisms of zinc efficiency in crop plants. New Phytologist. 2003a;159:341-350.

99. Yu Q, Worth C, Rengel Z. Using capillary electrophoresis to measure Cu/Zn
superoxide dismutase concentration in leaves of wheat genotypes differing in
tolerance to zinc deficiency. Plant Science, 1999; 143, 231-239.

100. Cakmak I, Ekiz H, Yilmaz A, Torun B, Koleli N, Gultekin I, Alkan A, Eker S. Differential
response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous
soils. Plant and Soil. 1997;188:1-10.

101. Hacisalihoglu G, Hart JJ, Vallejos CE, Kochian LV. The role of shootlocalized
processes in the mechanism of Zn efficiency in common bean. Planta, 2004;218:704-
711.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

390

102. Rengel Z. Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn
efficiency. Journal of Plant Physiology. 1995;147:251-256.

103. Hacisalihoglu G, Hart JJ, Kochian LV. High and low-effinity zinc transport systems and
their possible role in zinc efficiency in bread wheat. Plant Physiology. 2001;125:456-
463.

104. Graham RD, Rangel Z. Genotypic Variation in Zn uptake and Utilization by Plants. In
A.D. Robson (ed). Zn in soil and plants (pp. 107-114), Dordecht, the Netherlands;
1993.

105. Brown PK, Cakmak I, Zhang QL. Form and function of Znic plant. In Robson A D.
Kluwer (ed). Zinc in soil and plants. Dordrecht: Academic Publishers. 1993; 93-106.

106. Clark RB. Physiology of cereals for mineral nutrient uptake use and efficiency. In V.C.
Baligar and R.R. Duncan (Ed). Crops as enhancers of nutrient use. 1990; 131-209.
San Diego: Academic press.

107. De Datta SK, Neue HU. Success in rice improvement for poor soils. In: workshop on
adaptation of plants to soil stress, Lincoln. proceedings. Lincoln: University of
Nebraska. 1993;248-268.

108. Nand F. Screening method of low land rice genotypes for Zn uptake efficiency.
Scientia Agricola. 2002;58:623-626.

109. Gao XP. Bioavailability of Zinc to Aerobic Rice. PhD thesis, Wageningen University,
Wageningen, The Netherlands; 2007.

110. Fageria NK. Influence of micronutrients on dry matter yield and interaction with other
nutrients in annual crops. Pesq. Agropec. Bras. 2002;37:1765-1772.

111. Fageria NK. Dry matter yield and nutrient uptake by lowland rice at different growth
stages. Journal of Plant Nutrition. 2004;27(6):947–958.

112. Epstein and Bloom. Mineral Nutrition of Plants: Principles and Perspectives. Sinauer
Assoc; 2005.

113. Singh MV. Micronutrients Deficiencies in Crops and Soils in India. In B.J. Alloway (ed).
Micronutrient Deficiencies in Global Crop Production (p.93-125). Springer
Science+Business Media BV; 2008.

114. Mortvedt JJ, Gilkes RJ. Zinc fertilisers. In A. D. Robson (Ed.), Zinc in soils and plants
(pp. 33–44). Dordrecht: Kluwer Academic Publishers; 1993.

115. Snowball K, Robson AD. Symptoms of Nutrient Deficiencies: Lupins.University of
Western Australia Press, Nedlands Australia; 1986.

116. Brennan RF, Armour JD, Reuter JD. Diagnosis of Zinc Deficiency. In Robson, A. D.
Kluwer (ed). Zinc in soils and plants. (pp. 167-181). Dordecht: Academic Publisher;
1993

117. Kubota J, Allaway WH. In Micronutrients in Geographic Distribution of Trace Metal
Problems; 1972.

118. Neue HU, Quijano C, Senadhira D, Setter T. Strategies for dealing with micronutrient
disorders and salinity in lowland rice systems. Ield Crops Research. 1998;56:139-155.

119. Soares CRS, Grazziotti PH, Siqueira JO, De Carvalho JG, Moreira FMS, Toxidez de
zinco no crescimento e nutriçã o de Eucalyptus maculata e Eucalyptus urophylla em
solução nutritiva. Pesq. Agropec. Bras. 2001;36(2):33.348. French

120. Chaney. Risks associated with use of sewage sludge in Agriculture. In Proc. 15th

Federal Convention.vol.1. Australian water and wastewater Association, Queensland,
Australia; 1993.

121. Vankatakrishnan SS, Sudlayandy RS, Savariappan AR. Assessing in vitro
solubilization potential of different zinc solubilizing Bacteria (ZSB) isolates. Brazilian J.
Microbiol. 2003;34:121-125.



American Journal of Experimental Agriculture, 3(2): 374-391, 2013

391

122. Baath E. Measurement of heavy metal tolerance of soil bacteria using thymidine
incorporation into bacteria extracted after homogenization-centrifugation.Soil
Biological biochemistry. 1992;24:1167-1172.

123. Doelman P, Haanstra L. Short-term and long-term effects of cadmium, chromium,
copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil
factors. Plant Soil. 79:317-327Dordrecht, the Netherlands: Kluwer Academic
Publisher. 1984;413–423.

_________________________________________________________________________
© 2013 Hafeez et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=203&id=2&aid=1132


