About The Number of Twin Prime

Jihyeon Yoon*

August 3, 2023

Abstract

The proof that there are infinite twin primes.

1 Introduction

Are there infinite number of twin prime[1]?

2 Understanding

Assuming that prime number p_a , p_b , p_c , p_d , p_e , p_f :

$$p_a = (n^3 + 3n^2 + 2n)p_b + p_c$$
$$p_d = (m^3 + 3m^2 + 2m)p_e + p_f$$

And also:

$$p_d = p_a + 2$$

The twin prime conjecture is that the number of (p_a, p_d) is infinite. It would be true if the number of solution $p_d - p_a = 2$ is infinite. And assuming that:

$$p_d - p_a = (m^3 + 3m^2 + 2m)p_e + p_f - (n^3 + 3n^2 + 2n)p_b - p_c$$

= $(m^3 + 3m^2 + 2m)p_e - (n^3 + 3n^2 + 2n)p_b + p_f - p_c = 2$

By upper equation with an assumption of primality and expanding cases, the condition goes:

$$(m^3 + 3m^2 + 2m)p_e - p_c = 1, p_f - (m^3 + 3m^2 + 2m)p_b = 1, n(\forall (p_b, p_c, p_e, p_f)) = \infty$$

$$\Rightarrow n(\exists \{(p_a, p_d) \mid p_d = p_a + 2\}) = \infty$$

And:

$$(m^{3} + 3m^{2} + 2m)p_{e} - p_{c} = (m^{3} + 3m^{2} + 2m)p_{e} - (m'^{3} + 3m'^{2} + 2m')p'_{c} - p''_{c} = (\cdots) - k \quad (0 \le k < 6)$$

$$p_{f} - (m^{3} + 3m^{2} + 2m)p_{b} = -(m^{3} + 3m^{2} + 2m)p_{b} + (m'^{3} + 3m'^{2} + 2m')p'_{f} + p''_{f}$$

$$= (\cdots) + r \quad (0 \le r < 6)$$

When k = 5 and r = 1, it fills the upper condition.

Yeongdeungpo-gu, Seoul, 07429,

Seoul, South Korea

E-mail: flyingtext@nate.com

^{*}Jihyeon Yoon is a Korean medicine doctor. And he is a freelancer programmer also.

ORCiD: https://orcid.org/0000-0001-9610-0994

3 Conclusion

There are infinite twin primes.

References

 D. Goldston, S. Graham, J. Pintz, and C. Yıldırım, "Small gaps between primes or almost primes," Transactions of the American Mathematical Society, vol. 361, no. 10, pp. 5285–5330, 2009.