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Abstract: One of the major problems in clustering is the need of specifying the optimal number of clusters in some clustering 

algorithms. Numerous indices were proposed in order to find reasonable number of clusters. The purpose of the paper is to test the 

performance and ability of some indices to detect the proper number of clusters on rows and columns partitions obtained by a 

block clustering algorithm. Simultaneous clustering methods perform clustering in the two dimensions simultaneously. The 

purpose of the paper is to test the performance and ability of some indices to detect the proper number of clusters on rows and 

columns partitions obtained by a block clustering algorithms .and also focus on a large number of existing simultaneous clustering 

approaches applied in text mining, web mining, information retrieval as well as bioinformatics and categorize them in accordance 

with the methods used to perform the clustering and the intention applications. The main goal of this paper is to provide a 

systematic comparison and validation of prominent bi-clustering algorithms. 
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1. INTRODUCTION 

Simultaneous clustering, usually designated by biclustering, co-clustering or block clustering, is an important technique in two 

way data analysis. The goal of simultaneous clustering is to find submatrices, which are subgroups of rows and subgroups of 

columns that exhibit a high correlation. A number of algorithms that perform simultaneous clustering on rows and columns of a 

matrix have been proposed to date. They have practical importance in a wide variety of applications such as biology, data analysis, 

text mining and web mining. A wide range of different articles were published dealing with different kinds of algorithms and 

methods of simultaneous clustering. Comparisons of several biclustering algorithms can be found, One of the major problems of 

simultaneous clustering algorithms, similarly to the simple clustering algorithms, is that the number of clusters must be supplied as a 
parameter. To overcome this problem, numerous strategies have been proposed for finding the right number of clusters. Several 

measures for validation exist in clustering area, but they are usually not applied for bi-clustering methods for Validation and 

comparison are made by external indices. Non-biological indices as sensitivity and specificity are used when information of 

clustering is known, usually in synthetic data where biclusters are embedded. Only constant and additive biclusters are treated, as 

they are the most extended. Biological indices are used when no information intrinsic to the data is known. Internal and relative 

indices are seldom used because biclustering concepts are hard to adapt to clustering indices. 

2. SIMULTANEOUS CLUSTERING APPROACH 

Given the data matrix A, with set of rows X = (X1, ..., Xn) and set of columns Y = (Y1, ..., Yn), aij , 1 ≤ i ≤ n and 1 ≤ j ≤ n is 

the value in the data matrix A corresponding to row i and column j. Simultaneous clustering algorithms aim to identify a set of 

biclusters Bk(Ik, Jk), where Ik is a subset of the rows X and Jk is a subset of the columns Y. Ik rows exhibit similar behaviour 

across Jk columns, or vice versa and every bicluster Bk satisfies some criteria of homogeneity 
 

Table 1. Comparison between Clustering and Simultaneous clustering 

Clustering Simultaneous Clustering 

applied to either the rows or the columns of the data 

matrix separately 

global model. 

performs clustering in the two 

dimensions simultaneously 

local model. 

produce clusters of rows or  

clusters of columns.  

seeks blocks of rows and columns that are interrelated 

- Each subject in a given subject  

cluster is defined using all the variables. Each variable 

in a variable cluster characterizes all subjects. 

Each subject in a bicluster is selected using only a 

subset of the variables  and each variable in a bicluster 

is selected using only a subset of the subjects. 
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Clusters are exhaustive The clusters on rows and columns should 

not be exclusive and/or exhaustive 

 

2.1 Bicluster classification 

A bicluster can be defined as ‘a subset of objects (rows or columns) that jointly respond across a subset of other objects (columns 

or rows)‘. In bioinformatics, rows usually refer to genes and columns to experiments or organism conditions. Madeira and Oliveira 

[10] classify biclusters depending on what is considered for ’jointly responds’: 

– Constant value bicluster (C): all elements have exactly the same value ( ). Elements of constant bicluster B = [bi j ] with n 

rows and m columns are defined as bi j =  ----------- (1) 
 

Coherent value bicluster (H): row and/or column variations are somehow related. This relationship may be additive (H+), 

multiplicative (H×) or by sign (H•}). In case of H+ and H×, each row and/or column differs from others in an additive or 

multiplicative factor (eqs. 2 and 3, respectively). In case of H•}, it is just a qualitative rule of change in tendency (α and β are 

binary vectors representing increasing or decreasing respect to another row or column –such as 1 or -1–, but it’s not imposed any 
quantitative restriction on ri j , ci j variations) 

 

 
 

– Coherent evolution bicluster (E): expression levels are first mapped to labels under certain criteria, such as order or proximity 

The above definitions can be applied to rows, columns or both, but measures are usually used in both dimesions. C biclusters are 
almost ideal, so algorithms searching for C biclusters usually treats ’constant’ as a range of near values by a mapping with 

coherence evolution. This bicluster classification presents overlaps. For example, C biclusters on rows and columns (Crc) are 

included in C biclusters on rows (Cr)andC biclusters on columns (Cc). C biclusters of any type are included in H+ biclusters and 

overlap with H× biclusters. H•} includes them all (Fig. 1). This will be important when comparing biclustering algorithms that 

search for different kinds of biclusters. 

 

C is the most used group because of direct interpretation in biological data. H+ biclusters, representing more subtle relations in data 

are the second group in references. H× and H•} are rarely used, being their biological relevance difficult to justify or interpret 
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2.2 Coherence measures 

Having in mind the different groups of biclusters, we can define measures that determine 

how constant or how (additive, multiplicative, sign) coherent is our bicluster. Biclustering algorithms define internally what is 

considered coherent, but not always under an specific measure or value. Coherencemeasures can be used to define synthetic 

biclusters for testing or to check if the results over real data fits the bicluster definition of the algorithm. Constancy by rows of 

bicluster B (Cr(B)) and by columns (Cc(B)) are easy to measure by means of Euclidean distance  

 

 

 

 
 

The average measure for all the biclusters found by an algorithm is the weighted mean of the measure for each bicluster. These 

measures, traditionally used to determine cluster compactness will give bad scores for coherent biclusters. To measure coherency, 

an incremental treatment of the data can be applied to make them ’constant’, then applying above formulas to the transformed 

bicluster B′ = [b′i j]. In case of H+: 

 

 

 
That way, as seen in Fig. 1b, H+ bicluster becomes Cr and/or Cc bicluster, and can be measured by eqs. 5, 6 and 7. A similar 

transform can be done with H× using division instead of subtraction, but now there is necessary to include an exception to avoid 

divisions by zero: 
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Proximity to zero on all these measures points that the bicluster has the corresponding coherence property. There is no limit in the 

value they can take, but values above 1.5 usually tell us that coherency is lost (see Section 4 for some practical cases). 

 

 

 
Probabilistic and generative methods use model-based techniques to define biclusters . Probabilistic Relational Models (PRMs) and 

their extension ProBic are fully generative models that combine probabilistic modeling and relational logic. cMonkey is a 

generative approach which models biclusters by Markov chain processes. Gu and Liu generalized. 

The plaid models proposed in to fully generative models called Bayesian BiClustering model (BBC). The latter models introduced 

in and are generative models which have the advantage that they select models using well-understood model selection techniques 
such as maximum likelihood. 
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3. VALIDATION INDICES 

Clustering validation indices are divided into three categories: external, internal and relative. External indices measure the 

similarity between clustering results and a priori knowledge. Internal indices compare the intrinsic structure of data with cluster 

results. Internal indices are much harder to apply to biclustering than external indices because much of the internal concepts (such 

as compactness or separation) are not applying to biclusters, where overlapping and coherent variations are usual. Finally relative 

indices compare different configurations of input parameters and cluster results, trying to find optimal or stable parameters for a 

given input data. In the context of biclustering, external validation is mainly used, preferring biological indices to traditional ones. 

Internal and relative indices are seldom used, because of the non trivial task of adapting biclustering concepts as overlapping and 
bi-dimensionality to clustering indices. 

 

3.1 Biological external indices 

Biological knowledge used in validations are usually gene annotations as those of Gene Ontology (GO) or KEGG. We will call 

them external indices because imply information external to the data. Given a bicluster B, we get all (in example) GO terms 

annotated to any of the genes in B and then apply a statistical significance test to determine if each term appearance is relevant. 

Biclustering algorithms presented in use GO and/or KEGG enrichment. Other biological knowledge applied in the same way than 

annotations is related with Transcription Regulatory Networks (TRNs). A TRN is a directed acyclic graph where nodes are genes, 

and an edge between gene A and gene B means that gene A encodes for a transcription factor protein that transcriptionally regulates 

(activate or repress) gene B. In this case it is considered the number of genes connected in our bicluster or the average distance 

between genes in it . It’s expected that the number of genes connected will be greater and the average distance lower than in 
random biclusters, which is checked with a significance test. Another interesting characteristic to check is the number of network 

motifs (substructures that appear in TRNs that are included in a bicluster, but it is seldom used in bibliography. 

Although useful for the objective of knowledge discovery, biological significance has a major disadvantage as a validation method: 

biological knowledge is not complete. When a bicluster does not group known GO/KEGG annotations, or connected genes in a 

TRN, it may be because it’s a bad bicluster, but also because information about TRN consecutiveness or GO annotations are not 

complete. Just as an example, E. Coli TRN grew from 424 genes and 577 interactions in 2002 to 1278 genes and 2724 interactions 

in 2004 . Also statistical significance tests are controversial. 

 

3.2 Non-biological external indices 

Non-biological external indices are used to check if bicluster results match with previous knowledge of biclusters in the data. They 

also can be used in comparing biclusters of two different biclustering methods. There are two main techniques to generate external 

indices: two-matrix and single-matrix techniques. In case of two-matrix technique, two binary matrices are built, P and R, of size 
n×n, where n is the number of objects (genes or conditions) of our data. P represents the grouping of objects in the a priori partition 

and R the grouping in our results. Frow those two matrices, indices are defined. Though the adaptation of two-matrix technique to 

bi-dimensionality is not very difficult, the concept of overlapping is harder to express with this method, so single matrix is 

preferred. Single-matrix technique builds a unique bicluster matrix M of order p×r where p is the number of biclusters in P and r is 

the number of biclusters in R. mi j will determine the similarity between the bicluster i of P and the bicluster j of R. A measure of 

this similarity is F1 index proposed by Getz et al. and adapted to biclusters by Turner et al.. F1 is based in the proportion of 

bicluster i present in bicluster j (sensitivity or module recovery of bicluster i) and the proportion of bicluster j present in bicluster i 

(specificity or relevance of bicluster i). Note that the sensitivity of bicluster i for j is the specificity of bicluster j for i, and the same 

with the specificity of i for j, that is the sensitivity of j for i. If gx is the number of genes in X, cx the number of conditions in X and 

nx = gxcx; sensitivity, specificity and F1 are defined as: 
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When results in R reveal exactly a priori partition P, M will be (if computed with Eq. 16) a square (p× p), symmetric matrix with 

mi j = 1 if i = j and mi j = mji < 1 otherwise. From M we can get two measures of the overall matching between R and P. 

 

 
S(R,P) gives overall bicluster relevance of biclustering R, while S(R,P) gives the module recovery capacity of biclustering R. 

 

3.3 Internal indices 

Internal indices compare intrinsic information about data with the biclustering results. In this case, no a priori information further 

than the raw data is available. Internal indices are not as precise as external indices, but they are important when a priori 
information is not available. To avoid the use of internal indices, synthetic data with known structure are built to validate 

biclustering methods.When applied to real biological data where no a priori information is known, biological tests are used. An 

internal index is computed from two matrices just as non-biological external indices. In this case, matrix P contains information 

about proximity between expression levels of genes or conditions. Now, Pi j = Pji = distance(oi,oj). Again two pairs of matrices 

are needed for biclustering, one where oi are genes and another for conditions. Pi j is greater when oi and oj are different. R can be 

built as described for external indices, but inversed so higher values correspond to objects not grouped together. For exampleCi j 

=1/(1+k), where k is the number of times that objects i and j are grouped together. Ci j will be in (0,1], being 1 if never grouped 

together and downing to near 0 if usually grouped. This two matrices can be compared with normalized Hubert statistic: 

 

 
For example, Jain and Dubes survey different drawbacks of cophenetic coefficient, estimating than even a value of 0.9 will not be 
enough to assert that there is a good correlation between P and R. 

 

3.4 Relative indices 

Relative indices try to determine the best choice of our algorithm parameters on each particular data set. If we want to compare two 

algorithms against the same data set, we want to compare its best parameterization for this data set. However this is a difficult task 

because of the heterogeneity of the biclustering algorithms and its input parameters. Relative indices use to be external or internal 

indices, depending on the availability of a priori information from the data. Independently of the index, the procedure is to run the 

algorithm with different parameter configurations, and compute the index for each one. The parameter configuration with best 

index is selected as optimal for the data set. Selection of the different parameter configurations is up to the user and is key for the 

optimal search, so it must represent all the range of possibilities, avoiding deviations. In clustering, another approach to find the 

best configuration is to find an stable number of clusters, retrieved by a great number of configurations. From them, we take the 
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one in the middle of the range, or the one with the best value for a given index. This method is also used in some biclustering 

validations, usually to find stability when the algorithm has pseudo-random behaviour  but not to find optimal initial parameters. 

These indices are used for measuring the quality of a clustering result comparing to other ones which were created by other 

clustering algorithms, or by the same algorithms but using different parameter values. These indices are usually suitable for 

measuring crisp clustering. Crisp clustering means having non overlapping partitions. 

 

Table 3.Results of Application of indices on dataset 1 

 

 
 

 

4 APPLICATIONS 

4.1 CROKI2 Algorithm 

CROKI2 algorithm is an adapted version of k-means based on the Chi-square distance. It is applied to contingency tables to 

identify a row partition P and a column partition Q that maximises χ2 value of the new matrix obtained by grouping rows and 

columns. CROKI2 consists in applying K-means algorithm on rows and on columns alternatively to construct a series of couples of 

partitions (Pn,Qn) that optimizes χ2 value of the new data matrix. Given a contingency table A(X, Y ), with set of rows X and set of 

columns Y, the aim of CROKI2 algorithm is to find a row partition P = (P1, ..., PK) composed of K clusters and a column partition 

Q = (Q1, ...,QL) composed of L clusters that maximizes χ2 value of the new contingency table (P, Q) obtained by grouping rows 

and columns in respectively K and L clusters. The criterion optimized by the algorithm is : 
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The new contingency table T1(P,Q) is defined by this expression: 

 

  

We have applied some of the performance measures discussed to two biclustering algorithms, Bimax and improved Plaid Model of 

Turner et al  Bimax is one of the most compared biclustering methods, by means of non-biological and biological validation. For 

example, in , non-biological measures are used, but only based in gene dimension because hierarchical clustering was one of the 

methods compared. Also, in the mentioned comparison only default parameters are used for each algorithm, no parameter 

optimization is done. Turner plaid model was tested by their authors with different synthetic data sets with three to ten (overlapped 

in different proportions) biclusters. Turner and Bimax algorithms have never been compared in bibliography. Both methods have 

been implemented in R according to the specifications in the corresponding bibliography. Bimax density of 1s against 0s is proved 

in a range from 1% to 10% (steps of 1%). Turner’s t1 and t2 parameters are proved as t1 = t2 in a range from 0.4 to 0.8, with steps 
of 0.1. 

 

 



International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2000-000X   

Vol. 1 Issue 4, June– 2017, Pages: 28-37 

 

www.ijeais.org 

36 

About constancy and coherence measures (Fig. 3 b-2), the measures increase with noise, revealing how structure is eventually lost. 

Additive coherent bicluster has lower (better) H+ measure than C measure, as expected. Note how H+ measures increase with 

noise until, eventually, surpassing C measure and coinciding with Bimax performance downgrade. 

 

 
Fig. 3. a) Effect of overlapping in the algorithm and the biclusters. 1) Best SS measure achieved by using F1  statistics along with 

the mean of SS for all the proven configurations. 2) Variation in the measures of constancy and coherency with changes in the 

overlap degree. b1) and b2) As a1) and a2), but representing the effect of the noise in the algorithms and biclusters, respectively. 

 

5. CONCLUSIONS AND FUTURE WORK 
To extend the use of some indices used initially for classic clustering to biclustering algorithms, especially CROKI2 algorithm for 

contingency tables generating a framework that will define bicluster specific measures (relative, internal and external indices), data 

type definitions (constant, coherent), benchmark algorithms and example (real and synthetic) data sets. Though external indices use 

is extended, our approach to relative and internal index application is new. That helps in automatic optimization of biclustering 

input parameters, a task seldom considered and critical for obtaining the highest performance. Data type definition exists as 

discussed, but only constant biclusters have been mathematically measured. Those indices are able to find correct number of 

clusters when applied to data sets 

with diagonal structure i.e data sets having the same number of clusters on rows and columns We present an approach to measure 

coherence biclusters by using constant measures and transformation of data matrices. 
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