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Abstract

We consider Riemann’s Xi function &(s) which is evaluated at s = 1+0+iw, given by £(3+0+iw) =
E,.(w), where o,w are real and compute its inverse Fourier transform given by E,(t). We study the
properties of E,(t) and a promising new method is presented which could be used to show that the
Fourier Transform of E,(t) given by Ej,(w) = £(3 + 0 +iw) does not have zeros for finite and real w
when 0 < |o] < 1, corresponding to the critical strip excluding the critical line.
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1. Introduction

o

It is well known that Riemann’s Zeta function given by ((s) = >_
m=1

where the real part of s is greater than 1. Riemann proved that ((s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ((s) satisfies a symmetric functional
equation given by £(s) = £(1—s) = 2s(s—1)m2['(£)((s) where I'(s) = [~ e "u*"'du is the Gamma
function.[4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-
mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of {(s) lie on the critical line with real part of s = %, which is

called the Riemann Hypothesis.[1]
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converges in the half-plane

Hardy and Littlewood later proved that infinitely many of the zeros of ((s) are on the critical line
with real part of s = 1.[2] It is well known that ((s) does not have non-trivial zeros when real part
of s = %+ o + iw, given by £ + ¢ > 1 and 3 4+ o < 0. In this paper, critical strip 0 < Rels| < 1
corresponds to 0 < |o| < 1.

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section [2] to Section [ we prove Riemann’s hypothesis by taking the analytic continuation of
Riemann’s Zeta Function derived from Riemann’s Xi function £(3 + 0 + iw) = Ej,(w) and compute
inverse Fourier transform of E,,(w) given by E,(t) and show that its Fourier transform E,,(w) does
not have zeros for finite and real w when 0 < |o] < %, corresponding to the critical strip excluding
the critical line.
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In Section [7] it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the
critical line with real part of s = %

We present an outline of the new method below.

1.1. Step 1: Inverse Fourier Transform of f( + w)

Let us start with Riemann’s Xi Function &(s) evaluated at s = 1 +iw given by £(3 +iw) = E(w) =
Eo,(w), where w is real. Its inverse Fourier Transform is given by Eo(t) = 5= [ Fou(w)e™!dw, where

w, t are real, as follows (link).[3] (Titchmarsh pp254-255) We take the term e out of the bracket and
rearrange the terms as follows.

EO( Z 71' e 2 3n Te 2 Z 471'2 4 4t 6’/T7’L ]e_ﬂ.n%zte% (1)

=1

We see that Ey(t) = Ey(—t) is a real and even function of ¢, given that Ep,(w) = Egu(—w)
because £(s) = (1 — s) (link) and hence £(3 +iw) = £(3 — iw) when evaluated at s = 1 + iw.(Details
in [Appendix C.8)

The inverse Fourier Transform of &(3 —|— o +iw) = E,,(w) is given by the real function E,(t). We

can write E,(t) as follows for 0 < |o| < 1 and this is shown in detail in |Appendix A}
E,(t) = Ep(t)e " = [An*n'e" — 6rn2e™]e ™ " eze " (2)
n=1
We can see that E,(t) is an analytic function for real ¢, given that the sum and product of
exponential functions are analytic for real ¢ and hence infinitely differentiable for real t.

1.2. Step 2: On the zeros of a related function G(w,t, 1))

Statement 1: Let us assume that Riemann’s X1 function £(3 + o + iw) = E,,(w) has a zero at
w = wy where wy is real and finite and 0 < |o| < 3, correspondlng to the critical strip excluding the
critical line. We will prove that this assumption leads to a contradiction.

Let us consider 0 < o < % at first. Let us consider a new function g(t, ts, to) = f(¢, t2, to)e™ " u(—t)+
[t ta,to)e” u(t), where f(t,ts,to) = €727 f1(t, ta, to) + €27 fo(t, ta, to) and fi(t, ta, o) = " E,(t +
t(), tz) and fg(t, tz, to) = GiotOE;(t - to, tg) and E;(t, tg) = €7Ut2Ep(t — tg) — 60t2Ep<t + tg) and to, tg
are real and g(¢, to, %) is a real function of variable ¢ and u(t) is Heaviside unit step function. We can
see that g(t,ta, to)h(t) = f(t,t2,to) where h(t) = [eTu(—t) + e " u(t)] .

In Section , we will show that the Fourier transform of the even function ge,e,(t,t2,ty) =
lg(t, ta, to) + g(—t, t2, )] given by Gg(w, t2,ty) must have at least one zero at w = w, (ts,to) # 0,
for every value of ty, for each nonzero value of ty, where Gr(w,ts,ty) crosses the zero line to the
opposite sign, to satisfy Statement 1, where w, (2, o) is real and finite.
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1.3. Step 3: On the zeros of the function Gg(w,ts,to)

In Section we compute the Fourier transform of the function g(¢, ¢, %) and compute its real
part given by Gg(w, ts,t) and we can write as follows.

0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey, (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E[;(T — to, t2)672‘” + E(/)n(T + to, to)] cos (wT)dT

(3)
We require Gg(w, ta,ty) = 0 for w = w,(ts,ty) for every value of ¢y, for each non-zero value

of ty, to satisfy Statement 1. In general w,(ts,tg) # wo. Hence we can see that P(ty,ty) =
Gr(w:(t2, ), t2,to) = 0.

1.4. Step 4: Zero Crossing function w,(ts, 1)) is an even function of variable i
In Section [2.4] we show the result in Eq. 4 and that w,(f2,%9) = w.(t2, —to). It is shown that

P(t27t0) = GR(wz(tQ,to),tQ,to) = odd(t%to) + Podd(tg,—to) = 0 and that Podd(tg,to) is an odd
function of ¢y, for each non-zero value of £, as follows.

to
P,aq(ta,to) = [cos (wz(tg,to)to)/ E(I)(T, ty)e 7 cos (w.(ta, to)T)dT
o
4 sin (w2 (fa, fo)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]
to , - to ,
€210 cos (w, (ta, to)to) / E, (7. 5) cos (w2 (ta, fo)7)dr + sin (w. (fa, fo)to) / E, (7, 12) sin (w. (ta, to)7)d7]

(4)

1.5. Step 5: Final Step

In Section , it is shown that w,(ts,%p) is a continuous function of variable ¢, and to, for all
0 <o < oo and 0 <t < co. In Section [} it is shown that Ey(¢) is strictly decreasing for ¢ > 0.

In Section |3} we set ty = to. and ty = to. = 2to., such that w,(ta,to.)to. = 5 and substitute

in the equation for P,y4(ts,to) in Eq. 4 and show that this leads to the result in Eq. 5. We use
E(/)(t,tg) = Eo(t — tg) — E()(t + tg) and E{)n(t,tg) = E(/)(—t,tg)

/0 OC(EO(T — tae) — Eo(T + tac))(cosh (20ty.) — cosh (207)) sin (w, (tac, toe)T)dT = 0
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(5)
We show that each of the terms in the integrand in Eq. 5 are greater than zero, in the interval
0 < 7 < to. and the integrand is zero at 7 = 0 and 7 = tq., where to. > 0.

Hence the result in Eq. 5 leads to a contradiction for 0 < o < %

We show this result for 0 < o < 3 and then use the property £(2 +0 +iw) = (3 — 0 —iw) to show

the result for —% < 0 < 0. Hence we produce a contradiction of Statement 1 that the Fourier
Transform of the function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < 3.



2. An Approach towards Riemann’s Hypothesis

Theorem 1: Riemann’s Xi function £(5 + o + iw) = E,,(w) does not have zeros for any real
value of —0o < w < o0, for 0 < |o| < %, corresponding to the critical strip excluding the critical
line, given that Ey(t) = Eo(—t) is an even function of variable ¢, where E,(t) = 5= [* Ep,(w)e™dw,

2.2t t

E,(t) = Eo(t)e 7" and Ey(t) = > o [Ar?nie® — 6rne?|e ™ ¢ e2.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that Riemann’s Xi function £(5 + 0 + iw) = E,,(w) has a zero at
w = wp where wy is real and finite and 0 < |o| < %, corresponding to the critical strip excluding the
critical line. We will prove that this assumption leads to a contradiction.

We will prove it for 0 < ¢ < 3 first and then use the property £(3 4+ 0 +iw) = £(3 — 0 — iw) to
show the result for —% < ¢ < 0 and hence show the result for 0 < |o| < %

We know that wy # 0, because ((s) has no zeros on the real axis between 0 and 1, when s =
s +o0+iwisreal, w=0and 0 < |o| < 5. [3] (Titchmarsh pp30-31). This is shown in detail in first
two paragraphs in [Appendix C.1]

2.1. New function ¢(t,ts,10)

Let us consider the function E (1) = e "2 E,(t — to) — e"2E,(t + to) = (Eo(t — t2) — Eo(t +
ty))e™ = Ey(t,ty)e !, where ty is non-zero and real, and Ey(t,ty) = Eo(t—ty)—Eo(t-+t,) (Definition
1). Its Fourier transform is given by E, (w,t2) = Ep,(w)(e 72e7!2 — ¢7'2¢™!2) which has a zero at

the same w = wy, using Statement 1 and linearity and time shift properties of the Fourier transform
(link). (Result 2.1.1).

Let us consider the function f(,ts,ty) = 27 f1(t,ta, to) + €27% fo(t, ta, ty) where fi(t,t2,t0) =
e™E (t + to,t2) and fo(t, ta,to) = fi(t,ta, —to) = e 7E (t — to,t3) Where to is finite and real and
we can see that the Fourier Transform of this function F(w,t2,ty) = E,,(w, t)(e 700 4 otoe—twlo)
also has a zero at the same w = wy, using Result 2.1.1. (Result 2.1.2)

Let us consider a new function g(t,ts,tg) = g_(t, ta, to)u(—1t) + g4 (t, to, to)u(t) where g(t,ts,1¢) is
a real function of variable ¢ and wu(t) is Heaviside unit step function and g_(t,ts, tg) = f(t,t2,t0)e 7"
and gy (t,t2,t0) = f(t,t2,t0)e’" . We can see that g(t,ts,to)h(t) = f(t,ta, to) where h(t) = [e” u(—t) +
e 7tu(t)].

We can write the above equations as follows.
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E\(t,t)) = e "Byt — ts) — e Ey(t + to) = (Eo(t — t2) — Eo(t + t2))e 7" = Eqy(t, to)e "
filt ta, to) = €7 B, (t + to, 12)

folt, ta, to) = fi(t,ta, —to) = e 7K, (t — to, o)

Ft ta,to) = €721 fi(t o, to) + €270 fo(t, o, o) = € O E (t + to, ta) + €7 E, (t — to, o)
g(t,ta,to) = [f(t,ta, to)e " Ju(—t) + [f(t, ta, to)e” Ju(t)

g(t,ta,to)h(t) = f(t 2, t0),  h(t) = [ u(—t) + e " u(t)]

(6)
We can show that E,(t), E,(t,t2),h(t) are absolutely integrable functions and go to zero as
t — +o0o. Hence their respective Fourier transforms given by Epw(w),E;w(w,tz),H (w) are finite

for real w and go to zero as |w| — o0, as per Riemann Lebesgue Lemma (link). We can show that
FEo(t) and Ey(t)e~27" are absolutely integrable functions. These results are shown in [Appendix C.1}

In Section and Section , it is shown that g(¢,ts,to) is a Fourier transformable function and
its Fourier transform given by G(w, ta, tg) = e 270G (w, ta, to) + €2 Gy (w, ta, —tg) converges. (Eq. 14
and Eq. 17)

If we take the Fourier transform of the equation g(t, t2, to)h(t) = f(t,t2,to) where h(t) = [e”'u(—t)+
e 'u(t)], using Result 2.1.2, we get =[G (w,ts,t0) ¥ H(w)] = F(w,ta,ty) = E;w(w,tg)(e’atoe"”to +
e7loemwh) = Fp(w, ta, tg) + 1 Fr(w, tQ,to) as per convolution theorem (link), where * denotes con-
volution operation given by F(w,t2,t0) = 5- f GW', ta, to)H(w — w')dw'.

We see that H(w) = Hr(w) = [= + 75] = (022fw2) is real and is the Fourier transform of
the function A(t) (link). G(w,ts,ty) = Gr(w,ta, to) + iGr(w, ta,to) is the Fourier transform of the
function g(t,ts,ty). We can write g(t, ta,t0) = Geven (L, t2, to) + Goaa(t, t2, to) Where geyen(t,ta,to) is an
even function and g,qq(t, t2, to) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(¢,t,%) given
by F(w,ts,ty) to have a zero at w = wy for every value of t;, for each non-zero value of ¢, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
Geven(t, b2, t0) = 3[g(t, ta, o) + g(—t, t2, )] given by Gr(w, ta, to)({Appendix D.2) must have at least
one zero at w = w,(ta,ty) # 0 where w,(ts, ) is real and finite, where Gg(w, t2, ty) crosses the zero
line to the opposite sign, explained below. We note that w,(t2,to) can be different from wy in general.

Because H(w) = (022+—0w2) is real and does not have zeros for any finite value of w, if Gr(w, 2, 1)
does not have at least one zero for some w = w,(t2,ty) # 0, where Gg(w, ta, to) crosses the zero line to
the opposite sign, then the real part of F(w,ty,t) given by Fr(w,ts, tg) = %[GR(w, to, to) * H(w)],
obtained by the convolution of H(w) and Gg(w, t2, ty), cannot possibly have zeros for any non-zero fi-

nite value of w, which goes against Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.
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The proof for Lemma 1 below is shown for a fixed value of ¢, = to; and ty = t5¢, in the interval
[to] < oo and 0 < |t < oo (Interval A), where Gr(w,ts,1p) is a function of w only. The proof
continues to hold for our choice of each and every combination of fixed values of ¢; and ¢; in
interval A, where Gg(w, t2, o) is a function of w only.

Lemma 1: Let t,t, € R be fixed values and £(3 + 0 + iwy) = Ep(wo) = 0 using Statement 1.
Then the Fourier transform of the even function gee,(t, ta, o) given by Gg(w, ta,ty) must have at
least one zero at w = w,(ts,ty) # 0, where Gr(w,ta, %) crosses the zero line to the opposite sign
and w, (t2, to) is real.

Proof: If E,,(wy) = 0 to satisfy Statement 1, then F'(wy,t2,to) = 0, using Result 2.1.2 and its
real part given by Fg(wo,t2,ty) = 0, where wy # 0(Result 2.1.3).

We do not have a closed form solution for Gg(w, ts,ts) and do not know the exact location of its
zeros at w = w,(tq, ty), for each fixed choice of ¢y, ty. For a specific choice of 5, ¢y, only one of the 2
cases is possible: Case B: Gr(w,ts, ) has at least one zero crossing for a specific w # 0 or
Case A: Gg(w,ts,1y) does not have a zero crossing for any choice of w # 0. If Statement 1 is true,
then Case B is the only possibility and Case A is ruled out, as shown below.

We want to show the Result 2.1.5 that Gr(w, t2,ty) must have at least one zero crossing at
some value of w = w,(t2,ty) # 0 (Case B), to satisfy Statement 1, for this choice of fixed t, t5.

To show Result 2.1.5, we assume the opposite Case A, that Gg(w,t2,%y) does not have at
least one zero for any value of w # 0, where Gg(w, t,t) crosses the zero line to the opposite sign
(zero crossing) and will show that Fr(w,ts,t) does not have at least one zero at finite w # 0 for this
case, which contradicts Result 2.1.3 and Statement 1 and hence prove Result 2.1.5 and Case B.

This does not mean that, proof of Lemma 1 will work only if Gg(w,ts,to) does not have a zero
crossing for any value of w # 0, for any choice of t5,t5. The device Proof by Contradiction is used
here to rule out Case A and arrive at Case B. (Details of other cases in Section [2.1.1])

The arguments above and following proof continue to hold for our choice of each and every
combination of fixed values of ¢ty and ¢, in interval A, where Gr(w, t9,to) is a function of w only.

Given that H(w) is real, we can write the convolution theorem only for the real parts as follows.

1 [e.e]
FR(wa lo, tO) = 2_ / GR<w,7 lo, tO)H(w - w/)dw/ (7)

™ —0o0
We can show that the above integral converges for real w, given that the integrand is absolutely
integrable because G(w, ts,to) and H(w) have fall-off rate of 2 as [w| — oo because the first deriva-

tives of g(t,t2,to) and h(t) are discontinuous at ¢t = 0.( [Appendix C.2and |[Appendix C.6))

We substitute H(w) = (a22+—0w2) in Eq. |7l and we get

9 > !/ ]' /
Fr(w, ta, to) = p /_Oo Gr(W', t2, o) (02 + (w— w/>2)dw (8)

We can split the integral in Eq. using = = fi)oo + /57, as follows.




1
(0% + (w—w')?)

0 1 [e'e]
Fr(w,ta, 1) = %[/ Gr(W' t2,to) dw' +/ Gr(W' ta, o)
0

e (02 + (w—w)?) dw]

(9)
We see that Gr(—w,ta,t9) = Ggr(w,ta,to) because g(t, t2,to) is a real function of variable t.

({Appendix D.1)) We can substitute ' = —w” in the first integral in Eq. 9 and substituting w” = «’
in the result, we can write as follows.

1 . 1
(024 (w—w")?) (024 (w+w)?)

o 00
FR(w,tQ,to) = ;/ GR(wl,tQ,to)[ ]d(.d/
0

(10)

We note that ¢y and ty are fixed in Eq. 10 and Gg(w,t2,1) is a function of w only and the
integrand in Eq. 10 is integrated over the variable w only.

In [Appendix C.2] it is shown that G(w', t9,to) is finite for real w’ and goes to zero as || — 0.
We can see that for w’ — oo, the integrand in Eq. 10 goes to zero. For finite w > 0, and 0 < W’ < oo,
we can see that the term (02+(Lj_w,)2) + (02+(U}+w, = >0, for 0 < o < % We see that Gr(w, ta, 1) is
not an all zero function of variable w’ (Section . (Result 2.1.4)

e Case 1: Gg(w',ta,t9) > 0 for all finite w’ >0

We see that Fr(w,ts,t9) > 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =
Fr(w,ta,tg) because f(t,1ts,t0) is a real function ( [Appendix D.1|) and link ). Hence Fr(w,ts,tg) > 0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gg(W', t2,ty) must have at least one zero at w' = w,(t2,t9) > 0
where it crosses the zero line and becomes negative, where w, (o, o) is real and finite.

e Case 2: Gr(W',ta,ty) <0 for all finite w’ >0
We see that Fr(w,ts,ty) < 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =

Fr(w, ts,to) because f(t,ts,1o) is a real function ( [Appendix D.1)) and link ). Hence Fr(w,ts,%9) <0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gr(w’, ta,ty) must have at least one zero at w' = w,(t2,ty) > 0,
where it crosses the zero line and becomes positive, where w, (ts, to) is real.

We have shown that, Gr(w, t2, ty) must have at least one zero at finite w = w,(t2, ty) # 0 where

it crosses the zero line to the opposite sign, to satisfy Statement 1, for specific choices of fixed ty, ts.
We call this Result 2.1.5.

The arguments above and the proof continue to hold for our choice of each and every combi-
nation of fixed values of ¢y and ¢, in interval A, where Gg(w, ts, ) is a function of w only.
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In the rest of the sections, we consider only the first zero crossing away from origin, where
Gr(w, ta, 1) crosses the zero line to the opposite sign. Hence 0 < w,(t,t) < oo, for all |ty| < oo, for
each non-zero value of 5, to satisfy Statement 1.

2.1.1. Discussion of Lemma 1

Result 2.1.5: Gp(w,t2,ty) must have at least one zero at finite w = w,(t3,%y) # 0 where it
crosses the zero line to the opposite sign, to satisfy Statement 1.

We can arrive at Result 2.1.5, for each and every combination of fixed values of tg, t5 in interval
A (Jto] < 0o and 0 < [ts]| < oo ) using Proof of Lemma 1 for Case C and Case D or using Case E, as
explained below. This is an alternate method of analyzing all possible cases.

Logic 1: The logic used is this proof is as follows: If Statement 1 is true(RH is false), then
Result 2.1.5 is true, for each and every combination of fixed values of ¢y, f5 in interval A. Then we
proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement
1 in Eq. [40] and thus prove the truth of RH.

It is noted that Fr(w,ts,to) and Ggr(w, ta, tp) may have more zeros than F'(w, ts, ty) and G(w, ta, to)
respectively. That does not affect the proof of Lemma 1, as explained below.

We do not have a closed form solution for Gg(w,t2,ty) and do not know the exact location of its
zeros at w = w,(ta,tg), for each fixed choice of to,tg. We consider 3 cases of Gg(w, to,tg) below.

e Case C: We consider the case that Gg(w, ta, %)) does not have at least one zero crossing, for
any value of w # 0, for each and every choice of ¢y, and we use Proof of Lemma 1 to show
that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5. Hence Case C uses
Statement 1.

e Case D: We consider the case G R(w,t;,tg) has a zero crossing, for a specific value of w =
w,(th, 1)), corresponding to specific choices of t,,t,.(Not for all possible choices of t,,t,)

For Case D, this means that Gg(w, t,,1,) has at least one zero crossing at w = w,(t}, t;) which
is the desired Result 2.1.5 and hence we do not go through the arguments in this proof and we can
jump to end of Proof of Lemma 1. In this case, we have not assumed Statement 1 and yet arrived
at Result 2.1.5, for specific choices of t,, t,,.

For Case D, there may be at least one choice of tof, to for which Gr(w, taf, tof) does not have
at least one zero crossing, for any value of w # 0. For this choice of ¢y, tos, we go through proof of
Lemma 1 assuming Statement 1 and arrive at Result 2.1.5. Hence Case D uses Statement 1.

e Case E: We consider the case Gr(w, t,to) has at least one zero crossing, for a specific value of
w = w,(ta, tp), corresponding to each and every choices of t5,ty. We call this Statement 3.

For Case E, this means that Gr(w, ts,ty) has at least one zero crossing at w = w,(ts, ty), for
each and every choices of o, t; which is the desired Result 2.1.5 and hence we do not go through



the arguments in this proof and we can jump to end of Proof of Lemma 1. In this case, we have not
assumed Statement 1 and yet arrived at Result 2.1.5, for each and every choices of o, .

For Case E, we see that we arrive at Result 2.1.5 by assuming Statement 3 only. For Case C
and B, we see that we arrive at Result 2.1.5 by assuming Statement 1 only.

e We arrive at Result 2.1.5 using Proof of Lemma 1 for Case C and Case D, assuming Statement
1 or using Case E assuming Statement 3, for each and every combination of fixed values of ty, t5 in
interval A, independently. In general, zero crossings w,(ta,ty) # w.(t, ;) and need not be equal,
for ty # t, 1o # t;, in interval A.

Then we proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction
of Statement 1 or Statement 3 or both in Eq. 40} Hence either Statement 3 is false or Statement 1 is
false or both statements are false.

We consider 2 cases now. Case F: If Statement 1 is false, we prove the truth of RH. Case G:
If Statement 3 is false, then Case E is ruled out and we consider only Case C and B, which have
assumed Statement 1. Then we proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce
a contradiction of Statement 1 in Eq. 0] and prove the truth of RH.

2.2. Ggr(w,ts,ty) is not an all zero function of variable W'

If Gr(w',ts,t0) is an all zero function of variable w’, for each given value of ty, ¢, (Statement
2), then Fg(w,ts,ty) in Eq. [7] is an all zero function of w, for real w. Hence 2fepen(t,ta,to) =
f(t,ta, to) + f(—t,ta, 1) is an all-zero function of ¢, given that the Fourier transform of fe e, (2, t2, to)
is given by Fgr(w, ts, ), using symmetry properties of Fourier transform( [Appendix D.2)) and link
). Hence f(t,ts,19) is an odd function of variable ¢.(Result 2.2).

From Eq. 6 we see that E (t,t5) = e "2 E,(t — t) — "2 E,(t + t5) = [Eo(t — ta) — Eo(t + t2)]e "
Hence f1(t,tq,t0) = e"tOEZ;(t +to,ta) = [Eo(t + to — t2) — Eo(t +to + t2)]e 7" and
fo(t,ta,to) = e TOE (t — to,ta) = [Eg(t — to — ta) — Eo(t — to + t2)le™" . Hence we can write
f(t,ta,tg) = e 270 f1(t, Lo, tg) + €27 fo(t, 12, ty) in Eq. 6, as follows.

f(t,ta,to) = e 270[Ey(t+to —ta) — Eo(t+to+1t2)]e 7 +e* [ Ey(t —to—ts) — Eo(t —to+1t2)]e” " (11)

Case 1: For tg # 0 and t5 # 0, it is shown that Result 2.2 is false. We will compute f(t,s,%0) in
Eq. |11} at ¢ = 0 and show that it does not equal zero.

We see that f(0,ts, o) = €77 [Ey(to — ta) — Eo(to + ta)] + €2 [Eo(—to — ta) — Eo(—to + t2)]
= —2sinh (20tg)[Eo(to — t2) — Eo(to + t2)]. We use the fact that Fy(ty) = Eo(—to) (|Appendix C.8))
and hence E()(to — tg) = EQ(—tQ + tg) and Eo(to + tz) = Eo(—to — tg)

If Result 2.2 is true, then we require f(0,%s,%) = 0 in Eq. . For our choice of 0 < 0 < % and
to # 0, this implies that Eq(tg — t2) = Eo(to + t2). Given that ¢ty # 0 and ¢y # 0, we set to = Kt
for real K # 0 and we get Eo((1 — K)tg) = Eo((1 + K)ty). This is not possible for ty # 0 because
Ey(to) is strictly decreasing for ¢y > 0 (Section[f)) and 1 — K # 1+ K or 1 — K # —(1+ K) for
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K # 0. Hence Result 2.2 is false and Statement 2 is false and Gg(w', t2, %) is not an all zero function
of variable w’.

Case 2: For tg = 0 and ty # 0, we have f(t,tq,t0) = 2[FEo(t — t2) — Eo(t + t2)]e™ 7" = 2D(t)e™ 7"
in Eq. where D(t) = Ey(t — t3) — Eo(t + t2). We see that D(t) + D(—t) = Ey(t — t3) —
Eo(t + t2) + Eo(—t — to) — Eo(—t + t2). Given that Ey(t) = Eo(—t), we have D(t) + D(—t) =
Eo(t — tg) — Eo(t + tg) + Eo(t + tg) - Eo(t - tg) = (0 and hence D(t) = Eo(t - tg) - Eo(t + tg) is an
odd function of variable ¢ (Result 2.2.1).

If Result 2.2 is true, then we require f(t,t2,t9) = 2D(t)e " to be an odd function of variable
t. Using Result 2.2.1, we require D(t) to be an odd function of variable ¢. This is possible only for
o = 0. This is not possible for our choice of 0 < 0 < % Hence Result 2.2 is false and Statement 2 is
false and Gr(w', t2,to) is not an all zero function of variable w'.

Case 3: For t; = 0 and |tg| < oo, we have E;D(t,tg) = e E,(t — ty) — e"2E,(t + t3) = 0 and
f(t ta,tg) = g(t, ta,to) = 0 for all ¢ in Eq. 6 and Lemma 1 is not applicable for this case.

11



2.3.  On the zeros of a related function G(w,ty, 1)

In this section, we compute the Fourier transform of the function geyen (£, t2,t0) = %[g(t, to, to) +
g(—t,ta,to)] given by Gr(w, t2, to)(|Appendix D.2)). We require Gg(w, ta,ty) = 0 for w = w, (¢, to) for
every value of ¢y, for each non-zero value of t,, to satisfy Statement 1, using Lemma 1 in Section [2.1]

We define gl(t7 t?; to) = fl <t7 t?) to)eiatu(_t) + fl (ta t2a t())eatu(t) = eatOE}/)(t + th t2)67o-tu(_t) +
e E (t + to, t2)e” u(t), using Eq. 6 (Definition 3). First we compute the Fourier transform of the
function (51 (ta t27 t(]) given by Gl (W, t27 tO) - GIR(W7 t27 tO) + iGlI(wa t?? t())

00 0

G1<W,t2,t0) :/ gl(t7t27t0)€_iwtdt :/

—00 —00

0

g1 (t, tg, to)e_thdt + / g1 (t, tQ, to)e_iu}tdt
0

Gl(wa t?a tO) = /

—00

e"tOE;D(t + to, ta)e e dt + /0 e"tOE;(t + to, ta)e et

(12)

We use E;(t,tg) = Ey(t, ty)e " from Eq. 6, where Ey(t,ty) = Ey(t — ty) — Eo(t + t3), using
Definition 1 in Section and we get E(t + to,t2) = Ey(t + to, t2)e """ and write Eq. 12 as
follows. Then we substitute ¢ = —t in the second integral in first line of Eq. 13.

0 o
Gr(w, b2, t9) = / Eo(t + to, ta)e 2 e ™t dt + / Ey(t + to, ta)e " dt
. ;
0 ! . 0 / .
Gr(w, by, tg) = / Ey(t + to, ta)e 27t e ™™ dt + / Bl (—t + to, t)e™ldt

(13)
We define FE,(t,ty) = Ey(—t,ty) (Definition 2) and get Ey(—t + to,t5) = E, (t — to,t2) and
write Eq. 13 as follows. The integral in Eq. 14 converges, given that Ey(t)e 2! is an absolutely

integrable function ( [Appendix C.1]) and its t¢, t5 shifted versions are absolutely integrable, using
Ey(t, ty) = Eo(t — to) — Ey(t + to) in Definition 1 in Section [2.1{ and Definition 2.

0 0

Gl (w, t27 tO) = / E(l)(t + to, t2)6_20t6_iwtdt + / E(l)n(t — to, tQ)Gthdt = GlR(w, tg, to) + iGH(w, tg, to)

(14)
The above equations can be expanded as follows using the identity ™! = cos(wt) + isin(wt).
Comparing the real parts of G;(w, ts, ), we have

0 0

Gir(w,ta, ty) = / Ey(t + to, t2)e 27 cos (wt)dt + / Ey, (t — to, t5) cos (wt)dt

—00 — 00

(15)
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2.4. Zero crossing function w,(ts,ty) is an even function of variable ty, for a given t,

Now we consider Eq. 6 and the function f(t,ta,t0) = e727% fi(t, ta, to)+€*" fo(t, ta, to) = e T E (t+
to, ta) + eatoE;(t — to,t2) where fi(t,ta,t0) = e E(t 4 to,t2) and fo(t,ta,t0) = fi(t,t2, —to) =
G_UtOE;@—to, tg) and g(t, to, to)h(t) = f(t, to, to) where g(t, to, to) = f(t, to, to)e_JtU(—t)+f(t, to, t())eJtUJ(t)
and h(t) = [e”u(—t) + e “"u(t)]. We can write the above equations and ¢ (¢, ta, t) from Definition 3
in Section , as follows. We define gy(t, to,to) below and write g(t,t2, 1) as follows.

g1(t,ta,t0) = fi(t, ta, to)e " u(—t) + fi(t, ta, to)e” u(t), gi(t,ta, to)h(t) = fi(t,ta, to)
g2 (tu t2) t()) = f2(t7 t27 to)e_otu<_t) + f2(t7 t27 to)egtu(t)7 g2 (tu t2) to)h(t - f2 (ta t27 tO)
gt ta, tg) = e 270y (¢, ta, to) + €70 ga(t, ta, to)

(16)

We compute the Fourier transform of the function g¢(t,t2,%9) in Eq. 16 and compute its real

part Gg(w, ta, o) using the procedure in Section [2.3] similar to Eq. 15 and we can write as follows in

Eq. 17. We use Gag(w, ta, tg) = Gir(w, ta, —to) given that fo(t,ta,t0) = fi(t, t2, —to) and ga(t,t2, o) =

g1(t, ta, —to) and Gao(w, te, tg) = Gi(w,ta, —tg). We substitute t = 7 in the equation for Gyg(w, ts, o)
below, copied from Eq. 15.

Gr(w,ta, tg) = e 270G 1 r(w, ta, tg) + €27 Gar(w, ta, tg) = e 27 G1g(w, ta, o) + €*7° G g(w, ta, —to)

0
G, ta, o) = / EL(T + to, t2)e=2" + Bl (7 — to, £2)] cos (wr)dr
_(;)O / /
Grlw, ty, ty) = e 2% / [Eq(T + to, t2)e 27T + By, (T — to,t2)] cos (wT)dr

0
+e2oto / [E(;(T — to, t2)€_2UT + E(l)n(T + to, t2)] cos (wT)dT

—00

(17)

We require Gr(w, ta,ty) = 0 for w = w,(t2, o) for every value of ¢y, for each non-zero value of o,
to satisfy Statement 1, using Lemma 1 in Section . In general w,(ty,ty) # wo. Hence we can see
that P(te,tg) = Gr(w.(t2,t0),t2,to) = 0 and we can rearrange the terms in Eq. 17 as follows. We
take the first and fourth terms in Gg(w, t2,to) in Eq. 17 and include them in the first line in Eq. 18.
We take the second and third terms in Eq. 17 and include them in the second line in Eq. 18.

0
P(ty, to) = Grlw.(ta, to), ta, to) = / (€720 B (7 4 Lo, t5)e ™27 + €70 Ey (T + to, t2)] cos (ws (Lo, to)T)dT

— 00

0
+/ (€270 By (T — to, ta)e 2T + e 20 (T —tg, ty)] cos (w,(te, to)T)dT = 0

—0o0

(18)
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We use the fact that f(¢,ts,tg) = e 7E (t + to, 1) + € E,(t — to, t2) = f(t,t2, —to) in Eq. 6, is
unchanged by the substitution to = —to. If f(t,t9,t0) = f(t,t2, —1p) is unchanged by the substi-
tution ty = —to, then g(t,ts,tg) = g(t,t2, —t) is unchanged by the substitution ¢ty = —ty, using the
fact that g(t,ta, to)h(t) = f(t, t2,t0) and h(t) = [e7'u(—t) + e tu(t)].

Hence the Fourier transform of g(t,ts,%9) given by G(w,ta,ty) = G(w,ta, —tp) and its real part
given by Gg(w,ts,t9) = Gr(w,ts, —tg) is unchanged by the substitution ty = —t; and the zero
crossing in Gr(w, ta, —to) given by w,(t2, —to) is the same as the zero crossing in Gr(w, ta,ty) given
by w.(t2,t9) and we get w,(ta, 1) = w,(t2, —ty) and hence w,(ts,ty) is an even function of variable ¢,
for each non-zero value of t,.

We can write Eq. 18 as follows, where P,g(t2,%9) is an odd function of variable ¢y, for each
non-zero value of to. We use w,(ta,ty) = w.(t2, —to).

P(to, to) = Poaa(ta, to) + Poaa(ta, —to) =0
0

Podd(t27 to) = / [6_2UtOE(I) (7' + to, tg)e_z‘” + €2at0E6n (7’ + to, tz)] COS (wz (tz, to)T)dT

— 00
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3. Final Step

We expand P,gq(ts,to) in Eq. 19 as follows, using the substitution 7+ ty = 7. We get 7 = 7" — 1
and d7 = d7r’ and substitute back 7 = 7 in the second line below. We use e 27%¢27% = 1 below.

tO / / ! 1
PLaq(ta, to) = / [e7 270 Ey (1, ty)e ™27 2700 4 270 E (7', t5)] cos (ws (ta, to) (T — to)dr’
o .
P,aq(ta,to) = [cos (wz(tg,to)to)/ Eqy(T, tQ)G_QUT cos (w,(ta, to)T)dT
o
+ sin (w, (t2, to)to) / Eqy(T, tg)e_Q‘” sin (w, (ta, to)T)dT]
to , - to ,
+e20to [cos (wz(tz,to)to)/ E,, (T, t2) cos (w,(ta, to)T)dT + sin (wz(tg,to)to)/ E,, (T, t2) sin (w, (ta, to)7)dT]

(20)

In Section it is shown that 0 < w,(ta,t9) < oo, for all |ty| < oo, for each non-zero value of t,.
In this section, we consider ¢y > 0 and ¢, > 0 only.

In Section , it is shown that w,(t3,19) is a continuous function of variable ¢, and 5, for all
0<tyg<ooand 0 <ty < o00.

In Section 6] it is shown that Eq(t) is strictly decreasing for ¢ > 0.

Given that w,(t2,19) is a continuous function of both ¢y and ¢, we can find a suitable value of
to = toc and ty = ty. = 2t such that w, (tac, toc)to. = 5. Given that w.(t2,10) is a continuous function
of ty and t5 and given that ¢y is a continuous function, we see that the product of two continuous
functions w, (2, t)ty is a continuous function and is positive for ¢, > 0 because 0 < w, (2, ) < 0.

We see that w,(ts,t9) > 0 and is a continuous function of variable ¢y and t,, as ty and ¢, increase
to a larger and larger finite value without bounds and that the order of w,(ts,%0)to is greater than 1
(Section . As ty and ty increase from zero to a larger and larger finite value without bounds, the
continuous function w;, (ts, )ty starts from zero and increases with order greater than O[1] and will
pass through 7.

We set tg = to. > 0 and ty = ty. = 2to. such that w,(ta., toc)toc = 5 in Eq. 20 as follows. We use
the fact that cos (w,(tac, toc)toc) = 0, sin (w,(tac, toe)toe) = 1 and w,(tae, —toe) = w,(tae, toe) shown in
Section 2.41

toc toc
PLaa(tae, toe) :/ Eé(T, tgc)e_Q‘” sin (wz(tQC,tOC)T)dT—l—e%toc/ E(/]n<7', to.) sin (w, (tac, toe)T)dT

—0o0 —00

(21)
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We compute Ppyq(ts, —to) in Eq. 20 as follows. We use w, (ta, —tg) = w,(t2, to) (Section .

—to

P,aq(ta, —to) = [cos (wz(tg,to)to)/ E(l)(T, ty)e 27 cos (w,(ta, to)T)dT

— 00

—to
’

— sin (ws (2, £o)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]

—00
—to

627 cos (w (2, £0)to) / B, (7.2) 008 (s (s, to)7)dr — sin (w- (£, o)) / E, (v, 1) sin (w. (ta, to)7)d7]

—0o0 —00

7t0

(22)

We set g = to. > 0 and ty = ty. = 2to. such that w,(ta, toc)loc = 5 in Eq. 22 as follows. We use
oS (W, (tae, toc)toe) = 0, sin (w, (tae, toc)toc) = 1.

—toc

E(l)(T, th)e_QUT sin (w, (tae, toe)T)dT — g~ 20t0e / E(;n(T, toc) sin (w (tac, toe)T)dT

[e.e]

—toc

Podd(t207 _tOC) = _/

(23)

We compute P,gq(ts,to) + Poaa(ta, —to) = 0 in Eq. 19, at ty = to. and ty = ty. using Eq. 21 and
Eq. 23.

tOc
/ Eqy(T, tgc)e_2” sin (w, (tae, toe)T dT—i—eQ”toc/ EOn T, tae) sin (w, (tae, toe)T)dT

—00 oo

—toc —toc
— / E(,](T, t26)6_20T sin (w, (tac, toe)T)dT — ¢~ 20toc / E(l)n(T toe) sin (w, (tac, toe)T)dT = 0

(24)
. . . . . toc —toc toc
We split the first two integrals in the left hand side of Eq. 24 using [72 = [__” + [7 as follows.

toc

_tOc
[/ E(I)(T, tQC)e_Z‘” sin (w, (tae, toe)T)dT + / E(I)(T, tQC)e_Q‘” sin (w, (t2e, toe)7)dT]

) —toc
—toc toc

+€20't()c[ E(/)n(T, tQC) sin (wz (t2ca tOc)T)dT T / Eé)n (T7 tQC) sin (wz <t2‘3’ tOC)T>dT]

—00 —toc

—toc —toc
— / E(,](T, t26)6_2UT sin (w, (tae, toe)T)dT — ¢~ 20toc / E(lm(T, tae) sin (w, (tae, toe)T)dT = 0

(25)

We cancel the common integral f:;? Ey (7, t2e)e™ %77 sin (w, (tae, toe)T)dT in Eq. 25 and rearrange

20toc —20toc

the terms as follows, using 2sinh (20t,.) = e —e

toc toc
/ (7, tae)e=27 sin (w. (tes toe) 7)dr + €271 / E, (7o) sin (w. (fe, foo) 7)dr

—toc
—toc

= —2sinh (ZUtOC)/ E(l)n(T, toe) sin (w, (tae, toe)T)dT

— 00
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We can combine the integrals in the left hand side of Eq. 26 as follows.

tOc
/ [E(/)(T, t26)6_2UT + E(l)n(’]', tgc)e%toc] sin (w, (tae, toe)T)dT

—toc
—toc

— _9sinh (201p,) / Bl (7, t2e) sin (. (fae, toe) ) dr

(27)

We denote the right hand side of Eq. 27 as RHS. We can split the integral in the left hand side

of Eq. 27 using ff‘;% = ff)top + JOC as follows.

0
/ B (7 t20) 62 + Bl (7, £22)€210°] sin (s (fae, foc)7)dr

—toc

toc
+ / [E(,J (7'7 tQC)e_QJT + E(;n(ﬂ t2c)620t06] sin (wz (t207 tOC)T)dT = RHS
0

(28)

We substitute 7 = —7 in the first integral in Eq. 28 as follows. We use Ej(—7,t2.) = Ej, (7, ta.)
and Ey, (—7,ts.) = Fy(T, ta.) using Definition 2 in Section .

0
/ [E(/)n(T, t28)6207 + E(/) (T, tgc)e%toc] sin (w, (tae, toe)T)dT

toc

toc
+/ By tac)e ™™ + Egy (7, 1) sin (ws (tae, to)7)dr = RHS
0

(29)
Given that ft?) =— JOC, we can simplify Eq. 29 as follows.
tOC / /
/ [E0<7-7 t2C) (67207 - e2<7t0c) + EOn(T7 tQC)(_e2UT + QQUtOC)] sin (wz(t2cy tOC)T)dT = RHS
0
(30)

We substitute 7 = —7 in the right hand side of Eq. 27 as follows. We use Ey,,(—7, t2.) = Eo(7, tac)
using Definition 2 in Section [2.3]

RHS = 2sinh (20toc)/ Eé(T, toc) sin (w (tac, toe)T)dT

toc
(31)
We split the integral on the right hand side in Eq. 31 using [~ = [~ — 7, as follows.
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[ee) tOc
RHS = 2sinh (20t0.)] / (7, £22) sin (. (fae, too) 7)dT — / (7, tae) sin (ws (oo, foo)7)dr
0 0

(32)

We consolidate the integrals of the form fotoc E(/)(T, toe) sin (w, (tac, to.)T)dT in Eq. 30 and Eq. 32 as
follows. We use 2sinh (20tg,) = 27t — ¢=27%0c,

toc
/ [E(/](T, toe) (€277 — ¥toe 4 2toe _ om20loc) 4 E(;n(T, toe)(—e7T 4 e27'0¢)] sin (w, (tae, toe)T)dT
0

:2sinh(20toc)/ E(l)(T, tae) sin (w; (tae, toe)T)dT
0

(33)
We cancel the common term e27%¢ in the first integral in Eq. 33 as follows.
tOC / /
/ [Ey (7, tae) (67277 — e727%0¢) - B (7, tae)(—€*7T + €27%°)] sin (w, (tae, toe)T)dT
0
— 2sinh (200.) / By (7, tae) sin (ws (2, o))
0

(34)

We substitute Fy(7,to) = Eo(T — toe) — Eo(T + ta.) (using Definition 1 in Section ) and
B, (T,t) = Ey(—7,ts.) = Eo(—T — ty.) — Eo(—T + ta.) (using Definition 2 in Section [2.3). We see
that Eo(—7 —ta.) = Eo(T+t2.) and Eo(—7+t2.) = Eo(T —ta.) given that Ey(7) = Eo(—7)(|Appendix

C.8). Hence we see that £, (T, to.) = Eo(T +ta.) — Eo(T — ta.) = —Ey(7, t2.) (Result 3.1) and write
Eq. 34 as follows.

tOc
/ (Eo(T — tae) — Eo(T + tQC))(€_2UT — g7 20te 4 20T _ GQUtOC) sin (w, (tae, toe)T)dT
0

= 2sinh (20t,) / (Eo(T — toe) — Eo(T + tae)) sin (w (tae, toe)T)dT
0

(35)
We substitute 2cosh (207) = €27 + ¢72°7 and 2cosh (20t).) = e*c 4 ¢727%: and cancel the

common factor of 2 in Eq. 35 as follows.

/0 OC(EO(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT

= sinh (20tq.) / (Eo(T — tae) — Eo(T + tac)) sin (w, (tae, toe)T)dT
0
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Next Step:

We denote the right hand side of Eq. 36 as RHS . We substitute 7 — ty. = 7/ and 7 + to. = 7" in
the right hand side of Eq. 36 and then substitute 7/ = 7 and 7" = 7 in the second line below.

o0

RHS' = sinh (20t06)[/ Eo(7") sin (w, (tae, toe) (7" + toe))dT" — / Eo(7") sin (w, (tae, toe) (T — tac))dT"]

—toc tac
RHS' = sinh (20t0,)[cos (w. (tae, toc) tac) / Eo(7) sin (w, (tac, toe)T)dT
—t2¢
i (00 (s oo e / Eo(7) cos (ws (fae, tor)7)dT
—t2c
— cos (s (faes for) e / Eo(r) sin (@ (tae foo) 7 + sin (s (f20s foo)iae) / Eo(r) cos (w. (fae, toe)7)d7]
toc tac
(37)
In Eq. 37, given that w.(fa, toc)toc = 5 and ty, = 2ty and hence w,(tac, toc)loe = 25 = m and
sin (w, (tae, toe)tae) = 0 and cos (w,(tac, toe)ta.) = —1. Hence we cancel common terms and write
Eq. 37 and Eq. 36 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT
0
= —sinh (QO'tOC)[/ Eo(7) sin (w, (tae, toe)T)dT — / Eo(7) sin (w, (tac, toe)T)dT]
—tac toc
(38)

We use f_oi;c Eo(7) sin (w,(tae, toe)T)dT = fi;c Eo(7) sin (w, (tac, tOC)T)d7'+fth Eo(7) sin (w, (tac, toe)T)dT
and cancel the common term ftzo Eo(7) sin (w,(tae, toe)7)dT in Eq. 38 as follows. Given that Ey(7) is
an even function of variable 7 ( [Appendix C.8) and Ey(7) sin (w, (2, toc)7) is an odd function of
variable 7, we get ffi; Eo(7) sin (w, (tae, toe)T)dT = 0.

We see that I= ftQC Eo(7) sin (w, (tae, toe)T)dT = fEtQC Eo(7) sin (w, (tac, toe)T)dT
f b ) sin (w, (tae, toe)T)dT. We substitute 7 = —7 in the first integral and get
I= ft EO ) sin (w: (tae, toe)T)dT + [3* Eo(7) sin (w. (fae, toc) 7)dr
t2° Eo(7) sin (w, (tae, to.)T)dT + fOtQC Eo(7) sin (w, (tae, toe)7)dT = 0. We write Eq. 38 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT = 0 (39)
0

We can multiply Eq. 39| by a factor of —1 as follows.

/0 : [Eo(T — tae) — Eo(T + tac)](cosh (20tg.) — cosh (207)) sin (w, (tae, toe)7)dT = 0 (40)

In Eq. , given that w;(tac, toc)toc = 5, as 7 varies over the interval (0,to.), w(toc, toc)T = ST
varies from (0, g) and the sinusoidal function is > 0, in the interval 0 < 7 < %y, for to. > 0.
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In Eq. [0 we see that the integral on the left hand side is > 0 for ¢,. > 0, because each of the
terms in the integrand are > 0, in the interval 0 < 7 < t. as follows. Given that Ey(t) is a strictly
decreasing function for ¢ > 0(Section [6)), we see that Eo(7 — to.) — Eo(T + ta) is > 0 (Section
in the interval 0 < 7 < to.. The term (cosh (20t¢.) — cosh (207)) is > 0 in the interval 0 < 7 < tq..

The integrand is zero at 7 = 0 due to the term sin (w, (2., to.)7) and the integrand is zero at 7 = ¢,
due to the term cosh (20ty.) — cosh (207) and hence the integral cannot equal zero, as required by
the right hand side of Eq. . Hence this leads to a contradiction, for 0 < g < %

For o = 0, both sides of Eq. |40|is zero, given the term (cosh (20t,.) — cosh (207)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < o < 1. If the Fourier transform of E,(t) = Ey(t)e”"" given by
E,.(w) = Epry(w) + iE,,(w) has a zero at w = wy, then the real part E,g,(w) and imaginary part
E,1,(w) also have a zero at w = wy, to satisfy Statement 1.

Given that E,(t) = Ey(t)e " is real, its Fourier transform E,,(w) = £(3 + 0 + iw) has symmetry
properties and hence Epp,(—w) = Eppro(w) and Epp,(—w) = —Ep1,(w) (Symmetry property) and
hence Ej,(—w) = £(5 + 0 — iw) also has a zero at w = wy to satisfy Statement 1.

Using the property &£(s) = £(1 —s), we get (3 + 0 —iw) =&(5 — 0+ iw) at s = 5 + 0 — iw and
Ey(w) = &(3 — 0 4 iw) also has a zero at w = wy to satisfy Statement 1. We see that Eg,(w) is
obtained by replacing o in E,,(w) by —o. Hence the results in above sections hold for —% <0o<0
and for 0 < |o| < 3.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that Riemann’s Xi Function given by £(3+0+iw) = Ep, (w)

has a zero at w = wy, where wy is real and finite, leads to a contradiction for the region 0 < |o| < 2

2
which corresponds to the critical strip excluding the critical line. Hence ((s) does not have non-trivial

zeros in the critical strip excluding the critical line and we have proved Riemann’s Hypothesis.

3.1. Result Eo(t — tzc) — Eo(t + tQC) >0

It is shown in Section |§] that Ey(t) is strictly decreasing for ¢ > 0. In this section, it is shown
that E()(t — tgc) — Eg(t + tgc) > 0, for0 <t< toc and t2c = 2t00 in Eq .

Given that Ey(t) is a strictly decreasing function for t > 0 and Ey(t) is an even function of vari-
able ¢ (|[Appendix C.8), and to. = 2t., we see that, in the interval 0 < ¢t < tq., Eo(t+t2.) = Eo(t+2to.)
ranges from Ey(2to.) > Eo(t + tae) > Fo(3to.)(Result 6.3.1) and Ey(t — to.) = Eo(t — 2to.) which
ranges from Fo(—2to.) < Eo(t —ta.) < Eo(—to.) respectively. Given that Fy(t) = Ey(—t), we see that
E0(2toc) < E(](t — tgc) < E0<tOc> in the interval 0 < t < o, (Result 6.3.2)

Using Result 6.3.1 and Result 6.3.2, we see that Ey(t—to.) > Eo(t+ta.), in the interval 0 < t < tq..
At t = 0, Eo(t — tgc) = Eo(t + tgc). At t = toc, Eo(t — tQC) > Eo(t + tQC) because Eo(—toc) > E0<3toc).
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Hence Ey(t — ta.) — Eo(t 4 ta.) > 0 for 0 < t < to. in Eq. 40|, for to. > 0 and to. = 2t,.
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4. w,(ta,t0) is a continuous function of t, and ¢,

We see from Section [2.1] that w,(t2,to) is shown to be finite and non-zero for all |{y| < co and
for each non-zero value of ¢, and that w,(ts,ty) is an even function of variable ty, for a given value
of t5(Section [2.4). For a given t» and tg, w;(t2, ) can have more than one value, corresponding to
multiple zero crossings in Gr(w, ta, ty), but we consider only the first zero crossing away from origin in
the section below, where Gr(w, ta, tg) crosses the zero line to the opposite sign, as detailed in Lemma
1 in Section 2.1

We consider the Fourier transform of the even part of g(t,ts,%9) given by Gr(w,ts,to) in the
section below and show that, under this Fourier transformation, as we change to and t5, the zero
crossing in Gg(w, ta,ty) given by w,(ts,ty) is a continuous function of ¢y and ¢y, for all 0 < ¢y < oo
and 0 < t3 < oco. This is shown in the steps below using Implicit Function Theorem.

e In Section [4.1] it is shown in proof of Lemma 2 that, if Gr(w,t2,t) = 0 at w = tw,(ts,to), for
each fixed choice of ty,ty € R and (27 + 1) is the highest order of the zero at w = fw,(ts, o) for some
value of r € W (r =0,1,2,..R and R is a whole number), then G, (w,ts,%)) = PGrlwtato) _ () gt

Ow?"
aGR7 (w,tg,to) o2r+1ig wt 7t
w = Fw,(ta,ty) and o aﬁrﬂ 2200 £ 0 at w = tw, (L, tp).

e It is shown in Section that Gr(w, ta,t9) and Ggar(w,ts,ty) are partially differentiable at
least twice with respect to w.

e It is shown in Section that Grar(w, 2, to) is partially differentiable at least twice with re-
spect to tp. It is shown in Sectionthat GRroar(w,t,t) is partially differentiable at least twice with
respect to ts.

e It is shown in Section that the zero crossing in Gr o, (w, ta,ty) given by w,(ts, 1), is a con-
tinuous function of ¢y, for a given t,, for 0 < tg < oo, using Implicit Function Theorem in R2.

e It is shown in Section that w,(t2, o) is a continuous function of ¢ty and ts, for 0 < ¢y < o0
and 0 <t < 00, using Implicit Function Theorem in R3.

4.1. Proof of Lemma 2

In this section, it is shown that, if Gr(w,ts,tg) = 0 at w = Fw,(t9,ty), for each fixed choice of
to,t2 € R and (2r + 1) is the highest order of the zero at w = +w,(ts,%y) for some value of r € W
(r=0,1,2,..R and R is a whole number), then G, (w,2,%) = P Grlwitate) _ () ot o = +w, (ta, to)

8UJ2T
OGR.2r(Wt2,to) _ 9>t Gp(w,ta,to)
and o s # 0 at w = Fw,(ts, ty).

In Section , it is shown that Gg(w, ta, to) is partially differentiable (2R + 1) times, as a function
of w, where R is a positive integer.
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We see that Gr(w,ta,1) is a real and even function of w and has its first zero crossing at
w = tw,(t2,tg) # 0.(Result 2.1.5 in Section Hence we can write Gr(w,ta, to) = (w.(t2,t9)?* —
W) N (w, g, tg), for r € W, where N'(w,(ta, to), ta, to) # 0, for each fixed tg,t; € R and (2r + 1) is
the highest order of the zero at w = w,(ts,t). The case of (w,(ta,t0)* — w?)?" is ruled out because
Gr(w, ta,t9) changes sign at w = dw,(t2,ty) and N'(w, t9, ty) does not change sign at w = tw, (ts, to).

It is noted that the order of the zero given by (2r + 1) is finite because Gr(w, ta, to) is finite.
For a fixed t, to, let Gr(w,ta,to) = M (w),N'(w,ta,t9) = N(w) and w,(t2,%y) = ws.

We consider the case of M(w) = M,(w) = (w? —w?)* N, (w) for each r € W (r =0,1,2,..R and
R is a whole number), where N, (w.) # 0.

Lemma 2: If M, (w) = (w? —w )2”1]\7( ) where N,(w,) # 0 and r € W and (2r + 1) is the

highest order of the zero at w = w., then @ dMgf ©) — 0 and ‘FT;TML(W # (0 at w = F+w, using principle

of mathematical induction.

Proof: For r = 0, we see that My(w) = (w? — w?)Ny(w) where No(w,) # 0 . We see that
My(w,) = 0 and My(w) = %w(w) = (W? —w )dNO(w) + No(w)(—2w). At w = w,, we see that

My(w.) = No(w.)(—2w,). Given that w, # 0 and Ny(w,) # 0, we get My(w,) # 0 and hence
dMO(w # 0 at w = *w,, given that M(w) = Gr(w,ts,to) is a real and even function of w.

For r = 1, we see that M;(w) = (w? — w?)*N;(w) where Ny(w,) # 0 . We compute the first 2
derivatives as follows.

M) = PR r o) | )32 — 0P (-2
PMy(w) sPNi(w) | dN(W),, 5 oy
W_( =) dw? * dw 3w W) ()

2~ P(60) ) 6 ()] — iy ()20 — 0?)(-2)
d2Ml( ) 3d2N1(UJ) le(W)

— = (w2 — w?) I (w? — w?)?[~12w . 6N (w)]

124w Ny (w) (W? — w?)
(41)

We can write above equation as follows and take the third derivative, where A;;(w) = 24w?N; (w).

’ ](\1{52(0)) = (wg - w2)3A13(w) (W —w ) A12( ) (wi — WQ)AH((,Q)
d® M (w) 2 3dA 3 (w) 9 ) yepdA1 (W)
W—(WZ_W)T‘FAB( )(w —w)(—?w)—}—(Wz—w)T

dAll(UJ)

+ A1 ()22 = 0t)(<20) + (2 — ) L

+ An(w) (—2(,{})

(42)
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We see that dM—l(“’) =0 at w = +w,. We evaluate B3(w) = % at w = w, and see that all

terms except the last term in Eq. 42 become zero. Hence Bs(w,) = —ZwZAH(wz) = —48w3 Ny (w,).
Given that w, # 0 and N;(w,) # 0, we get Bs(w,) # 0 and hence B3(w) = & 2113 # 0 at w = fw,,
given that M(w) = Ggr(w,ts,1p) is a real and even function of w.

4.1.1. Inductive Hypothesis

For r = R, we see that Mz(w) = (w? — w?)*PT 1 Np(w) where Nz(w,) # 0. Let us hypothesize
2R+1
that % = Z (w? —w?)"” Apy(w) and Agy(w) = Crw? Ng(w) and Cg # 0 and %QRR() =0 at
r’'=1
w = Fw,. Its first derivative is given by
2R+1

2R+1 w ! dARr/ w r—
o) 32—ty P |y ) - ) (),
=1
We evaluate Bagi1(w) = % at w = w, and see that all terms become zero, except the term
with (w? — w?)” ! corresponding to r’ = 1. Hence Bypyi(w.) = —2w, A (w,) = —20Rw* " Ng(w.).

Given that w, # 0 and Ng(w,) # 0 and Cr # 0, we get Bogry1(w,) # 0 and hence Bogiq(w) =
% # 0 at w = +w,, given that M(w) = Gr(w,ts,ty) is a real and even function of w.

4.1.2. Inductive Result

For r = R+ 1, we see that Mg, (w) = (w? — w?)2FE+DHINL | (w) where Ngyy(w.) # 0. Using

z

Inductive Hypothesis in the last 2 paras, we get

2R+3
2R+2 w o
%ﬁgl() = Z (w2 — w?)" Apyyw (w) and Apyin(w) = Criaw?F2Ng 1 (w) and Cryy # 0 and
% =0 at w = tw,. Its first derivative is given by
d2R+3M 2R+3 /dA R+]_ ( ) 2
g = Z T + Apgnyr (W) (W2 — W) (—2w).

We evaluate BQR+3( ) = % at w = w, and see that all terms become zero, except
the term with (w? — w?)"”~! corresponding to 7 = 1. Hence Bopis(w.) = —2w,Agii(ws) =
—2CR w3 Ny (w,). Given that w, # 0 and Ngy;(w,) # 0 and Cryy # 0, we get Bogryz(w.) # 0

R
and hence Bopis(w) = % # 0 at w = Fw,, given that M(w) = Ggr(w,ts,t) is a real and
even function of w. We see that d?Q—]]\fﬁ =0 at w=*w,.

Thus we have proved Lemma 2, using principle of mathematical induction. Hence we see that

%:(Jatw:iwz anddQJQ—]X[fl#Oatcu—j:wz, for each r € W, where
M, (w) = (w? — w?)* TN, (w), where N,(w,) # 0.

z

Given that Gr(w,ta,t9) = M,(w) for some value of r € W and fixed choice of ¢, 5, we see that

27 2r+1
% =0 at w = +w, and 88G+flt2’to # 0 at w = tw, for each fixed choice of ¢yt € R.
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4.2.  Gpr(w,ta, ty) and Grar(w,ts, ty) are partially differentiable twice as a function of w

Gr(w,ty, ) in Eq. 17 is copied below.

0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey (T — to, t2)] cos (wr)dr
_5)0 / !
+e2oto / [Ey(T — to, ta)e™ 2" + Ej,, (T + to, )] cos (wr)dr

(43)

We could then use Ey(7,ty) = (Eo(T — t3) — Eo(T + t2) (using Definition 1 in Section ) and
B, (T,ty) = Ey(—7,ts) = —Ey(7,t5) (using Definition 2 in Section and Result 3.1 in Section .
We see that Ey(7) in Eq. [I] and its tg and ¢, shifted versions are analytic functions of 7,ty and to,

given that the sum and product of exponential functions are analytic and hence infinitely differen-
tiable.(Result 4.1)

In Eq. 43, Gg(w,ts,ty) is partially differentiable at least twice with respect to w and the inte-
1

grals converge in Eq. 43 and Eq. 44 for 0 < 0 < 3, because the terms T Ey(T % to, t2)e™ 2T and
7" By, (T + to,ty) = —7"Ey(T %+ to,t5) have exponential asymptotic fall-off rate as |7| — oo, for
r=0,1,2,..R (Section . The integrands in Eq. 43 and Eq. 44 are absolutely integrable and are
analytic functions of variables w and tg, for a given t,(using Result 4.1 in Section and given that
the terms cos (w7),sin (wr) and €27 are analytic functions). The integrands have exponential
asymptotic fall-off rate (Section and we can find a suitable dominating function with exponential
asymptotic fall-off rate which is absolutely integrable.(Section Hence we can interchange the
order of partial differentiation and integration in Eq. 44 using theorem of differentiability of functions

defined by Lebesgue integrals and theorem of dominated convergence, recursively as follows. (theorem)

T[E(’)(T + to, t2)6_2UT + E(,]n(T — to, to)] sin (w7)dr

Qinlortnt) __jo [
Oow

—0o0

0
+e2oto / T[Eo(T — to, ta)e 2" + Ey, (T + to, to)] sin (w7 )dr]

—00

O*Gr(w, ta, to) _ _[6—20to /O

D2 T2[Ey(T 4 to, t2)e” 2T + Ej, (T — to,t3)] cos (wr)dr

— 00

0
+e20to / T2[Ey(T — to, t2)e 2T + Ej, (T + to, t2)] cos (w)dr]

(44)

We can use the arguments in the above paras and derive the (2r)™ derivative of G g(w, ta,ty), for
reW (r=0,1,2,..R and R is a whole number), which is differentiable at least twice, as follows.

0% Grlw, ts,t 0 /

Gror(w, l2,to) = };(52’7, 2, o) = [e20t0 / T [Ey(T + to, ta)e 27T + By, (T — to,t2)] cos (wr)dr
0OO ,

+e2oto / 2 — to, ta)e —207 4 Eq, (T + to, ta)] cos (wT)dT]


http://mathonline.wikidot.com/differentiability-of-functions-defined-by-lebesgue-integrals

4.5.  Exponential Fall off rate of B(t) =t"E,(t £tg,ty)e >t for r ¢ W

In this section, it is shown that the term B(t) = t" E,(t % to, t2)e~2" has exponential asymptotic
fall-off rate as |t| — oo, for r € W (r = 0,1,2,..R) where Ey(t,t;) = Eo(t — t5) — Eo(t + ;). Hence
B(t) = t"e " [Ey(t — ta £ t9) — Eo(t + ta £ to)] (Result B.6.1).

We consider C(t) = t"e 27'Ey(t — t,) for finite and real t,. We see that C(t +t,) = (t +
to) e 2te 27t Fy(t). We see that Ey(t)e " is an absolutely integrable function, for 0 < |o| < 3
given that it has exponential fall-off rates as |t| — oco. (|Appendix C.5/and |[Appendix C.6)).

Hence C(t+t,) = (t+1t,) e 2% Ey(t)e~2°! also has exponential fall-off rates as |t| — oo, for r € W
(r =0,1,..R) and finite ¢, and is an absolutely integrable function.

Hence C(t) = t"e 7' Ey(t — t,) has exponential fall-off rates as |t| — oo, for finite ¢, and is an
absolutely integrable function. We set t, = to+t; and t, = —ty £ty and see that B(t) in Result B.6.1,
has exponential fall-off rates as |t| — oo, for finite ¢5,ty and is an absolutely integrable function.

4.4.  Dominating function

We consider x(t) = Ey(t)e~2°! which has asymptotic exponential fall-off rate of at least O[e=5/*l].(
shown in [Appendix C.5)) We see that z(t+t,) also has the same asymptotic exponential fall-off rate,
for finite shift of t, =ty + to and y(t,t,) = t"z(t + t,)e** also has the same asymptotic exponential
fall-off rate, for r € W (r =0,1,2,..R). We consider the intervals 0 <ty <, ., 0 <ty <ty  and
0<t, <t where toy, . ,to .1 are finite.

Umaz Amazx

We consider t; >> t,, . where y(t,t,) = t"z(t +t,)e*"' falls off at the rate of at least O[e®*] for
t << —t4. We consider f(t,t,,w) = y(t,t,) cos (wt) and we get M = —ty(t,t,) sin (wt) which
falls off at the rate of at least O[e"?] for t << —t4. Let fae > 0 be the maximum value of |M|
in the interval —oo < t < oo0.

We can find a suitable dominating function D(t) = e Kl £ et > 0 with a fall off rate of
Ole= %] where 0 < K < 0.5 and hence D(t) has a slower fall off rate than af(% and D(t) = fiaz
at t = —tq and hence D(t) > ]M| for —oo < t < 0 and hence |8f o) | < D(t) in the interval
(—00, 0] andf (t)|dt = f e KU f, wpeBtadt = f 8t [e K]0 = —fmaxeth is finite.(Result
B.6.2)

—00

The first term in Eq. 44 given by B(t) = t" Ey(t+to, to)e 27 = t"e 27 [ Ey(t —ty+to) — Eo(t+ta+to)]
using Result B.6.1 in Section . We set t, =ty + to and t, = t5 — ty and get B(t) = t"e 27! [Ey(t —
ty) — Eo(t + t,)]. Hence y(t,t,) = t"z(t +t,)e* ' = t"Fy(t + t,)e 2" in the second para, corresponds
to the second term in B(t) and Result B.6.2 holds for this term. The first term in B(¢) is obtained
by replacing t, by —t, and Result B.6.2 holds for this term and hence for B(t). We see that Result
B.6.2 holds for the other 3 terms in Eq. 44 using arguments in above paragraphs and replacing ¢, by
—to and setting o = 0 as needed.
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As to,..,to, . ts, . increase to a larger and larger finite value without bounds, we consider
larger intervals 0 < ¢y < tg,,.., 0 < ta <ty and 0 < t, < t, .. and fn. and t; also increase
correspondingly and the results in above paragraphs are valid in these intervals.

Similarly, we consider f(t,t,,w) = y(t,t,)cos(wt) = t"Eg(t + t,)e 27" cos (wt) = t"Eo(t + to +
ts)e 27! cos (wt) and we see that 2 (g:g’w) and % (g:;’w) which fall off at the rate of at least O[e’?] for

t << —tg, using BEq. 49 and Fy(t) = Eo(—t) and due to the term e~™"¢" and we can use arguments

in above paragraphs to get a result similar to Result B.6.2 for the terms in Eq. 46 and Eq. 56. We can
0% f(tta,w)
ot?

use these arguments to get a result similar to Result B.6.2 for the second derivative terms

and % in Eq. 51 and Eq. 60.
2
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4.5, Gprar(w,ta, ty) are partially differentiable twice as a function of ty, r € W

In Eq. 45, Grar(w, ta,to) is partially differentiable at least twice as a function of t, and the
integrals converge in Eq. 46 and Eq. 51 shown as follows. The integrands in the equation for
Gror(w,ta, tg) in Eq. 46 are absolutely integrable because the terms 7% Ej(7 4 to,t)e 27 and
T B, (T + to, 1) = —72 Ey(T =+ to,t;) have exponential asymptotic fall-off rate as |7| — oo, for
re€ W (r=0,1,2,..R and R is a whole number)(Section [£.3). The integrands in Eq. 46 are ab-
solutely integrable and are analytic functions of variables w and tg, for a given ¢, (using Result 4.1
in Section ). The integrands have exponential asymptotic fall-off rate(Section and we can
find a suitable dominating function with exponential asymptotic fall-off rate which is absolutely in-
tegrable.(Section Hence we can interchange the order of partial differentiation and integration in
Eq. 46 using theorem of differentiability of functions defined by Lebesgue integrals and theorem of
dominated convergence as follows. (theorem)

0
GRrar(w,ta, tg) = e 2t (—1)" / T2T[E(l)(7' + tg, ta)e 27T + E(/)n(T — to, ta)] cos (wT)dr

—0o0

0
Heoto(—1)" / T2T[E(l)(7' — to,tr)e 2T + E(l)n(T + to, t2)] cos (wT)dT

—0o0

OG por(w, ta, t 0 : :
R2r (W, t2, o) — —206_2“0(—1)’"/ T Ey(T + to, ta)e 27T + By, (T — to,t2)] cos (wT)dr

dto —c0
0 ! —20T !
O(E, to, t E, — 1,1
+€20to(_1)r/ L2 (Eo(T +to, ta)e + By, (T — to,t2)) cos (wr)dr
o dtoy
0 / /
+20e270(—1)" / T [Ey(T — to,t2)e 27" + By, (T + to, t2)] cos (wT)dr
0 ! —20T !
O(Ey (T — to,t E, to,t
+62at0(_1)r/ L2 (Eo(T — o, ta)e o + Eg, (T + to, £2)) cos (wr)dr
—00 0

(46)

We show that the integrals in Eq. 46 converge, as follows. We see that E, (7 +to, ts) = Eo(T +to—
tg)—Eo(T—l—to—f-tQ) and E(,)n(T—to, tg) = —E(/)(T—t(), tg) = Eo(T—to—l—tQ)—Eo(T—to—tg) (using Definition

1 in Section and Result 3.1 in Section |3|).We see that the first and third integrals in the equation

for %W in Eq. 46 converge because the terms 72 Ey (T £ to, t5)e 2" and 77 E, (T £ 1o, t5) =

—72 Ey(T + tg, ) have exponential asymptotic fall-off rate as |7| — oo(Section .

OGR,2r(w,t2,to)

We consider the integrand in the second integral in the equation for Bt

and use the results in the above paragraph.

in Eq. 46 first

a(E£)<T + to, t2)€_207— + E(’)n<7- — to, tg)) _ a(E10(7— +to — t2)€_2UT — EQ(T +to + t2)€_207—)
8250 o 8150
LOE(T —to + 1) = Eo(T — to — 1))

Oty
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(47)

We consider the term Eo(7 + tg + to) first in Eq. 47 and can show that the integrals converge in
Eq. 46, as follows. We take the factor of 2 out of the summation in Ey(7) in Eq. [I| copied below.

00
_ 2. 217 T
E 271'2 4 47' 37Tn2627—]6 m™moe” o5
=1

EO(T + tQ 4 t[)) — 2 § [27T2n4€4T€4(t2+t0) 37Tn2 27 2(t2+t0)]e*ﬂ'n262'r62<t2+t0)egew

(48)

We can show that %E@(T + o+ ty) = %EO(T + ty + 1) as follows, given that the equation for

Eo(T +ta + o) in Eq. 48 has terms of the form e™ " and the equation is invariant if we interchange
the variables 7 and ;. (Result A)

0 2,27 2(tg+ty) T (t2ttg)
™ Eo(T +ta +to) =2 E e TR oh e T [ intelT et to) _ G 22T e2(t2 o)
to

n=1

+(1 27Tn2 27 2(t2+t0))(27T2n464T64(t2+t0) 37Tn2 2T 2(t2+t0))]
2

0 2,27 2(tg+tg) T (t2tto)
—Ep(t+ta+ 1) =2 E e TR o s e T [ intelT et o) Gy 22T e2(t2 o)

or —
_'_(; 2mn2e2T A2 tto)) (92t Altatto) _ 32627 2Ata+ o))
(49)
We can replace to by t; = —to in Eq. 48 and see that B%)EO(T—I—tQ +ty) = %EO(T—HQ +1t,) (Result
E) given that the equation is invariant if we interchange 7 and tz). Given that a% = a%)%g = —8%,

we substitute it in Result E and get E()(T iy — tg) = — 2 Eo(1 + ts — t).(Result B)

We can write the term Ey(7 + to + t2)e 2" in Eq. 47, corresponding to the term in the second
OGR,2r(w,t2,t0)

integral in the equation for — g in Eq 46 using Result A, as follows. We use the fact that
ffoo d’z(TT)B(T)dT = ffoo —d( B) qr — f AT T) dr.
0 0
O(Eo( t t 0(E t t
/ ol + 2+ o)) 727 cos (wT)dT = / ( O(T;_ 2+ O)T2T€_2UT cos (wr)dr
. T
8 E t t —20T1 0 o 2r ,—20T
/ o(T + ta + 1) 72 cos (cuT))dT _/ Eo(r+ 1y + o) (12re7277 cos (cuT)dT
o 87’ e or
0
= [Eo(T +ta +to)7¥ e > cos (wr)]° . +w / Eo(T +ty + 1)) 7% e 2" sin (w7)dr

0 0
+20/ Eo(T + ty + 1)) 7% e 277 cos (wT)dr — 27"/ Eo(T + ty 4 1)) 7> te ™7 cos (wr)dT

e} —00

(50)
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We see that the integrals in Eq. 50 converge because the integrands are absolutely integrable be-
cause the terms Fo(7 +tg + 1) e 27" sin (w) and Ey(T + to + to)72"e 27 cos (wT) have exponential
asymptotic fall-off rate as |7| — oo(Section . The term [Eo(T + to + to)72 e 27" cos (wT)]° , is

finite, given that 72" Ey(7)e 2" and its shifted versions go to zero as t — —oo( [Appendix C.5| ).

8<E0(T+t2;g)7%72w) cos (wr)d7 in Eq. 50 and in Eq. 46 corresponding to the

term Eo(7 + ta + to)e™ 27 in Eq. 47, converges.

Hence the integral ffoo

We set o = 0 and ty = —t; in the term Fo(7 + to + to)e 2°" and see that the integral

ffoo %ﬁ?—t“))ﬁr cos (wr)dr in Eq. 46 corresponding to the term Ey(7 + to — ty) in Eq. 47 also

converges, using Result B and the procedure used in Eq. 48 to Eq. 50.

We set ty = —to in the term Eyo(T + to + to)e 2°7 in Eq. 48 to Eq. 50 and see that the integral

ffoo B(EO(T_t;tttO)efzaT)TQ’" cos (w7)dr in Eq. 46 corresponding to the term Ey(7 —to+1t9)e 2" in Eq. 47

also converges.

We set ty = —to, 0 = 0 and tg = —tg in the term Ey(7 + to + tg)e 2°" and see that the integral
ffoo %ﬁrm))r” cos (wr)dr in Eq. 46 corresponding to the term Ey(7 — to — ty) in Eq. 47 also
converges, using Result B and the procedure used in Eq. 48 to Eq. 50. Hence the second integral in

. oG ot
the equation for 29R:2r(@:t2t0)

Bl in Eq. 46, also converges.

We can see that the last integral in Eq. 46 converges, by setting t, = —t; in Eq. 47 and using
Result B and using the procedure in Eq. 48 to Eq. 50. Hence all the integrals in Eq. 46 converge.

4.5.1. Second Partial Derivative of Gror(w,ts,ty) with respect to t,

2
The second partial derivative of Gga,(w,ts,ty) with respect to ¢y is given by MR’%—W =
0

%%{:’tm as follows. We use the result in Eq. 46 and the fact that the integrands are absolutely

integrable using the results in Section 4.5 and are analytic functions of variables w and ¢y for a
given ty (using Result 4.1 in Section ). The integrands have exponential asymptotic fall-off
rate (Section and we can find a suitable dominating function with exponential asymptotic fall-
off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 51 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)
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0?Gror(w, ta, 1 0 .
rarl@ b, 00) _ 2 2ot / By (1 + to, t2)e2™ + By (7 — to, )] cos (wr)dr
0

on .
_40-6—20150 / 7_ 7—+t07t2> 2UT+E(I)n(T_t07t2>) COS ((,UT)dT
[e%S) atO
0 —20T
to, t E. —to,t
—20to( / T2 olT + o, ta)e 5 * Eon(7 = o, 12)) cos (wr)dr
0

o2t (—1)" / TZT[EO(T—to,tz) T 4 B, (7 + to, t2)] cos (wr)dr

—to,ta)e 2T + E| to,t
40t (— / T2 0, t2)e + Eon(T + to, t2)) cos (wr)dr
Oto
OP(E) (T —tg, t2)e 2" + E, to, t
et (— 1)7"/ L2 (Eo(T —to, ta)e — + Eo, (T + to, t2)) cos (wr)dr
o 0

(51)

The first two integrals and fourth and fifth integrals in Eq. 51 are the same as the integrals in the
equation for %&j’tm in Eq. 46 and have been shown to converge in Section . We will show
that the third and sixth integrals in Eq. 51 converge, as follows.

We consider the integrand in the third integral in Eq. 51 first. We see that Ey(1 + to,ts) =
E()(T +t0 — tg) — Eo(T +t0 +t2> and E(l)n(T — to, tQ) = —E(/)(T — to, tg) = Eo(T — to +t2) — E()(T — to — tQ)
(using Definition 1 in Section and Result 3.1 in Section [3| ). We write an equation similar to
Eq. 47.

62(E6<T + to, t2)6_207— + E(/)n(T - to, tg)) . 82<E0(T + to - tg)e_z(ﬂ— - E()(T + t(] + t2)€_207)

ot} ot}
+82(E0(T - to + tg) - Eo(T — to — tg))
ot}
(52)
We consider the term Ey(7 + tg + t2) first in Eq. 52 and copy Eq. 48 below.
_ QZ 27_[_2 4 47’ 37Tn2 27]6 7rn262"e%
[ee]

E (T Tty to Z O r2niedt pAltatto) _ 37Tn262762(t2+t0)]e*ﬂ'nzeQTeQ(tz‘Ho)egew

(53)

We can see that 2 e EO(T +ity+tg) = 7_22 Eo(T +to + to), given that the equation has terms of the
form e and the equation is invariant if we interchange the variables 7 and ¢,.(Result A”)

31



We can replace ty by t, = —t; in Eq. 53 and see that O Fo(T 4ty + ty) = aa—jQEo(T + ty + tp)

)
(Result E’) given that the equation has terms of the form eT+t0 and the equation is invariant if we
interchange the variables 7 and tb.

- o _ o0 _ _ o 2 00y _ _ 0 0y _ 0 0y _ & i
Given that 5 = o Bt — ot Ve get 2 e = (o) = ato(%) = 8t6(8t{)) = 5y Ve substi

tute it in Result E’ and get 2 oz S Eo(T + ty — tg) = TQQ Eo(T +ty — to) .(Result B?)

We can write the term Fy(7+to+t2)e 277 in Eq. 52, Corresponding to the term in the third integral
in Eq. 51, using Result A', as follows. We use the fact that [ _“0B(r)dr = [ DB g

dr
f AT —dB(T dr
—00 dr .

0 9%(E ty+t O 9%(F, ty+t
/ ( O(Ta—; 2+ 0))7'%6_207 cos (wr)dr = / ( O(Ta+2 2+ 0))72T€_207 cos (wr)dr
—00 0 —0o0 T

/0 a(aEO(TthQ‘FtO)TZTefZO'T coS (WT)) p /0 8E0<T 4 t2 + t()) a<7_2r6—2a7- CcoS (w7_>> J
= T —

oo or e or or T

OF, ty+1t O 9F ty+ 1t
= [ O(Tg 2 0)727“6’2‘" cos (wT)] + w/ 0(7'; 2+ O)TQTe’Z‘” sin (wr)dr
T . T
0 0
0F t t OF t t
—1—20/ 1 g 2 O)T2T€_2UT cos (wr)dr — 27‘/ o —{I; 2+ 0)7'27"_16_2” cos (wr)dr
o T o T
(54)

We see that the integral f? w =297 cos (wr)dr in Eq. 54 converges, using Eq. 50 in

. . OE to+1t — :
the previous subsection. We see that the term [MT%B 297 cos (wT)]? ., also converges, given

that Eo(7) = Eo(—7) and Eo(T + to + to) = Eo(—T — t2 — tp) and we consider OBo(rttatto) por =207 _

or
9Eo(=1=tat) 127 —207 using Eq. 49 and see that the term e~™¢*" goes to zero faster than the rising

term 7%7¢"2°7e"%7¢"2  as 7 — —oo. (Result 4.2.1.1)

It is shown below that the remaining term [°_ w 2re=297 gin (w7)dT also converges.

0
E
/ OEN(T +t2 4 10)) 727 e 72T gin (wT)dT
oo or
_ /O I(Eo(T +tg + to)T* e 277 sin (wT)) gr — /0 Eo(r + £y + 1)) A(1?e27 sin (wT) i
S or o or
0

= [Eo(T +ta + to)7¥ e " sin (wr)]° , —w / Eo(T 4ty + 1)) 7% e 27 cos (wT)dr

0 0
—1—20/ Eo(T 4ty + 1)) T 27 sin (wT)dr — 27“/ Eo(T 4ty + 1)) 7> e 7 sin (wr)dT

(55)

We see that the integrals in Eq. 55 converge because the integrands are absolutely integrable be-
cause the terms Eo(7+ty+19))72 e 27 sin (w) and Ey(7 +t2+1t0))72 e 2" cos (wT) have exponential
asymptotic fall-off rate as |7| — oo(Section [£.3). The term [Eo(7 + ta + to)72 e~ sin (wr)]%, is
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finite, given that TQT’EO( ) ~297 and its shifted versions go to zero as t — —oo( |[Appendix C.5| ).

Hence the integral f al (THQ;;QO)T%_QM) cos (wr)dr in Eq. 54 and in Eq. 51 corresponding to the

term Eo(7 +t2 +tg)e > in Eq. 52, also converges.

We set ¢ = 0 and ty = —t in the term Eo(7 + to + to)e 2°" and see that the integral

J‘O 2 (Eo(T+t2—t0))
—0o0 Btg

converges, using Result B’ and the procedure used in Eq. 53 to Eq. 55.

7" cos (wr)d7 in Eq. 51 corresponding to the term Fy(T + ty — tp) in Eq. 52 also

We set ty = —ty in the term Ey(7 + ¢ + to)e 2" in Eq. 53 to Eq. 55 and see that the integral
fo 92 (E() (T—t2+t0)727‘6720‘r)
—o0 atg
also converges.

cos (wr)dr in Eq. 51 corresponding to the term Ey(7 —ts+1p)e 27 in Eq. 52

We set ty = —tz, o =0 and ty = —t( in the term Ey(7 + t3 + ty)e 2°" and see that the integral

J‘O 92 (Eo(T to— t()))
—00 8t2

converges, using Result B’ and the procedure used in Eq. 53 to Eq. 55. Hence the third integral in
Eq. 51, also converges.

7% cos (wT)d7 in Eq. 51 corresponding to the term Ey(7 — ty — tg) in Eq. 52 also

We can see that the sixth integral in Eq. 51 converges, by setting ¢ty = —ty in Eq. 52 to Eq. 55
and using Result B" and the procedure used in Eq. 53 to Eq. 55. Hence all the integrals in Eq. 51
converge.

4.6.  Gprar(w,ts, ty) is partially differentiable twice as a function of ty for re W

In Eq. 45, Gra,(w, ta, ty) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 56 and Eq. 60 shown as follows. The integrands in the equation for G, (w,t2, o)
in Eq. 56 are absolutely integrable because the terms 72 Ey(7 + to, t2)e 2" and 72" Ey, (1 £ 1o, o) =
—72" B (T %19, t5) have exponential asymptotic fall-off rate as |7| — oo(Section. The integrands
are analytic functions of variables w and ty, for a given ty (using Result 4.1 in Section ). The
integrands have exponential asymptotic fall-off rate (Section and we can find a suitable domi-
nating function with exponential asymptotic fall-off rate which is absolutely integrable.(Section
Hence we can interchange the order of partial differentiation and integration in Eq. 56 using theorem
of differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence
as follows. (theorem)

0
GR’QT(w’tQ,tO) _QUtO / T T"‘to,tg) —207 +E(,)n(7'—t0,t2)] COS (CUT)CZT
e
2‘”0 / T2 T—to,tg) ’2”T+E0n(7'+to,t2)] cos (wr)dr
OG R o (w, ta, t 0 to, ta)e 20T + B (1 — to, 1
R2 (w, 9, 0) _ —20to / or T + o, 2) + on(T 05 2)) cos(wT)dT
Ota o Oto
0 9
— g, 1 T+ F to, t
QJto / 7_ 05 2) gy + On(T+ 05 2)) COS(UJT)CZT
e’} 2

(56)
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We use the procedure outlined in Eq. 47 to Eq. 50, with ¢y replaced by t, and show that all the
integrals in Eq. 56 converge, as follows.

We see that E(/)(T—{—to,tQ) = E0(7+t0 —tz) —Eo(T—{—to —|—t2) and E(l)n(T—to,tQ) = —E(I)(T—to,tQ) =
Eo(T —tg + to) — Eo(T — to — t2) (using Definition 1 in Section [2.1] and Result 3.1 in Section (3| ). We

consider the integrand in the first integral in the equation for %ﬁw’m) in Eq. 56 first.

8(E(l)<7' + o, tg)@iQUT + E(l)n(T — 1o, tg)) o a(E()(T + 1ty — tg)@iQUT — E()(T + iy + tg)@iQUT)
Ot B Ot
+8<E0(T - to + tg) — EQ(T - t(] - tz))

Oty

(57)

We consider the term Ey(7 + to + t2) first and can show that the integrals converge in Eq. 56, as
follows. We copy Eq. 48 below.

2,21 T
_2§ 27T2 4 4T 37Tn2 27’]6 m™m<e es

2,27 2(tg+tg) T (tattg)
e“Te“\"'2 0626 5

Eo(t +ta + 1) =2 Z[2W2n4e4764(t2+t0) - 37rn262762(t2+t0)]e_”"
n=1
(58)

We see that - s Bo(T +ta+ o) = L Eo(T + t2 + to) given that the equation has terms of the form
e 2 and hence the equation is invariant if we interchange 7 and ¢,.(Result C)

We can replace ¢y by ty, = —t5 in Eq. 58 and see that a%Eo(’T +ty+to) = ZEo(T +ty + to) given
2

that the equation is invariant if we interchange 7 and t,(Result F). Given that 8‘? = 6%3—2 = —3%,

we use it in Result F and we get 7 EO( — by + ty) = —ZEo(T — ta + ty).(Result D)

We consider the term Ey(7 + to + t2)e ~297 first in Eq. 57, corresponding to the term in the first

integral in the equation for M in Eq 56 as follows, using Result C. We use the fact that

[, O B(ryr = [ B g7 _ [0 (7).
O 9(E O 9(E
/ OEn(T +t2 +10)) 72767297 cos (wr)dT = / OED(T +t2 +10)) 7277297 cos (wT)dT
. Ots s or
O O(Eo(1 + ty + to)T?" ™27 cos (wT)) 0 I(T*e 27" cos (wT)
-/ o7 ir— [ B+ttt o7 i

0
= [Eo(T +to +to) 7 e 2" cos (wr)]° o, +w / Eo(T + ty + to)7 e 27 sin (wr)dr

—0o0

0 0
+2a/ Eo(T 4ty + to)7e ™27 cos (wr)dT — Qr/ Eo(T 4ty + to)7 e 27 cos (wr)dr

—00 —00

(59)
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We see that the integrals in Eq. 59 converge because the integrands are absolutely integrable be-
cause the terms FEo(7+t2+t0))72 e 27 sin (wr) and Eo(7+t2+1y))7* 727" cos (wT) have exponential
asymptotic fall-off rate as |7| — oo(Section . The term [Eo(T + to + to)72 e 27" cos (wr)]° , is

finite, given that 72" Ey(7)e 2" and its shifted versions go to zero as ¢t — —oo( [Appendix C.5| ).

8(E0(7+t§ttt°)672ﬁ)7” cos (wr)dr in Eq. 59 and Eq. 56 corresponding to the

term Eo(7 + to + to)e 27 in Eq. 57 also converges.

Hence the integral fi)oo

We set 0 = 0 and ty = —t; in the term Fy(7 + to + tp)e 2’ and use the procedure in Eq. 58 to

Eq. 59 and see that the integral fi)oo %ﬁ_t”))ﬁ" cos (wt)dr in Eq. 56 corresponding to the term

Eo(T + ta — to) in Eq. 57 also converges.

We set to = —ty in the term Ey(7 + t + to)e 2°" and use the procedure in Eq. 58 to Eq. 59

and see that the integral fi)oo a(EO(T_%;;tO)(%T)TQT cos (wT)dr in Eq. 56 corresponding to the term

Eo(T —ty +t9)e 2" in Eq. 57 also converges, using Result D.

We ty = —ty, 0 = 0 and ty = —t in the term Fy(7 +t3 +tg)e 2°7 and use the procedure in Eq. 58
to Eq. 59 and see that the integral ffoo %}552_“))7‘% cos (wT)dt in Eq. 56 corresponding to the
term Eo(T —t2 —to) in Eq. 57 also converges, using Result D. Hence the first integral in the equation
fOI' 3GRygr(w,t2,to)

5t in Eq. 56 also converges.

We can see that the last integral in Eq. 56 converges, by setting to = —ty in Eq. 59. Hence all the
integrals in Eq. 56 converge.

4.6.1. Second Partial Derivative of Gra(w,ta,ty) with respect to ty for r e W
The second partial derivative of Gga,(w,ts,%y) with respect to ty is given by w =
2

%%tj’tz’to) as follows. We use the result in Eq. 56 and the fact that the integrands are absolutely

integrable using the results in Section and the integrands are analytic functions of variables w
and t5 for a given ¢y (using Result 4.1 in Section ). The integrands have exponential asymptotic
fall-off rate(Section and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 60 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem))

0?Gpror(w, ta, t 0 O2(E, to, ta)e 2T + E (1 — to,t
R2 (C;)a 2, to) 2620150(_1)7“/ Lo (Eo(T +to, ta)e - + Eo, (T — o, 12)) cos (wr)dr
0 2 / —20T !
0“(E, — 1o, 1 E to, 1
+€20t0(_1>r/ 7_27" ( 0(7_ 0 2)6 8t2 + On(T =+ 2o, 2)) cos (WT)dT
o 2

(60)

We consider the first integral in Eq. 60 and using Fy(7 +to, t2) = Eo(T +to — ta) — Eo(T 4+ 1o + Lo
and E,, (T —to, o) = —Ey(T —to, ta) = FEo(T —to+1t3) — Eo(T —to —to)(using Definition 1 in Section
and Result 3.1 in Section (3] ), we write an equation similar to Eq. 57.
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82(E(/)(7' -+ to, t2)6_207— -+ E()n(T — to, tg)) . 82<E0(T -+ to — t2)€_2UT — Eo(T + to -+ t2)€_207)

ot ot3
82(E0(7' - to -+ t2) - Eo(T - to - tg))
+ 2
ot;
(61)
We consider the term Ey(7 + to + o) first in Eq. 61 as follows. We copy Eq. 48 below.
-9 Z 27_[_2 4 47’ 3ﬂ_n2€27]6—7rn262"e%
Eo(T +ts + 1) = Z 924 AT A (t2tt0) 3ﬂ_n262762(t2+t0)]e*ﬂnQeQTeQ(tZ‘HO)656@
(62)

We can see that 2 o S Eo(T 4ty + 1) = e 2% Eo(7 +ty +to), given that the equation has terms of the

form e™*"2 and the equation is invariant if we interchange the variables 7 and ¢,.(Result C’)

We can replace ty by t, = —t; in Eq. 62 and see that —Z— Eo(1 +t, + 1) = a—QQEO(T + ty + to)

a(t )
(Result F’) given that the equation has terms of the form ™ and the equation is invariant if we
interchange the variables 7 and t,.

i
i 0 _ 00 _ 0 > _ 0 (0 _ _9 (0 _ 98 (d\_ & i
Given that 5~ = o0 06 = o We et 8t2 = 35 (35) = 8,52((%/2) = at;(at;) = qum Ve substi-

tute it in Result F” and get 2 7 EO( —ty+ 1) = 86—T22E0(7' —ty+ 1) .(Result D’)
2

We can write the term Ey(7+1to+1t2)e” 27 in Eq. 61, corresponding to the term in the first integral
in Eq. 60, using Result C”, as follows. We use the fact that fi)oo %(TT)B(T)CZT = fi)oo wd
f A dB(T d

0 9%(E ty+t 0 9%(FE ty+t
/ ( 0(7'(;;2 2+ 0))72T6_2"T cos (wT)dr = / ( O(T(;z 2+ 0))727"6_2” cos (wT)dT
—00 2 —00 T

_ /0 a(w,r%“@_?a‘r CcOS (WT)) dr — /0 8E0<T + ity + tO) 8(7_27”6—207' CcoS (MT
oo or or

>d7'

oo or
aEg(T—f—tQ—i—to) 2 0 8E0(T—|—t2+t0) 2

= [ 5 e 727 cos (wr)]° . + w/ 5 e 27 sin (wT)dT
T e T

0 0
OF, to +1 OFE, to+t
+20/ o(7 + 12 O>T2T 27 cos (wT)dT — 2fr/ o(7 + 15 0)72’"*1 —207

- 57 e - 57 e 7 cos (wT)dT

(63)

We see that the integral f 8EO+:2H°)T e 277 cos (wT)dT in Eq. 63 converges, using Eq. 59 in the

OF, to+t _
previous subsection. We see that the term [WT e 277 cos (wT)]" , also converges, using Re-

sult 4.2.1.1 in Section|4.5.1| Tt is shown in Eq. 55 that the remaining term f OBo(Titatio) p2r =207 gin (wr)dr
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also converges.

Eo(T+t2+t0) 2r —QUT)
otz

in Eq. 61 also converges.

We see that the integrals in Eq. 63 converge and hence the integral f cos (wT)dT

—20T

in Eq. 60 corresponding to the term Ey(7 + t3 + tg)e

We set ¢ = 0 and ty = —ty in Eq. 63 and see that the integral f WT% cos (wr)dr in

Eq. 60 corresponding to the term Ey(7 + ty — tg) in Eq. 61 also converges.

We set t, = —t9 in the term Eo(T + to + t2)e 2" and use the procedure in Eq. 62 to Eq. 63

and see that the mtegral f EO(TJFg)t ta)e"27T)
2

Eo(T —ty +t9)e 2" in Eq. 61 converges, using Result D'.

72" cos (wr)d7 in Eq. 60 corresponding to the term

We set ty = —ty, 0 = 0 and ty = —to in the term Eo(7 + ty + to)e 2°" and use the procedure in
Eq. 62 to Eq. 63 and Result D" and see that the integral fi) MT% cos (wT)dT in Eq. 60
2

corresponding to the term Fy(T —ts —ty) in Eq. 61 also converges. Hence the first integral in Eq. 60,
also converges.

We can see that the second integral in Eq. 60 converge, by setting ty = —to in Eq. 61 to Eq. 63 .
Hence all the integrals in Eq. 60 converge.

4.7.  Zero Crossings in Gra,(w,ta, ) move continuously as a function of ty, for a given
to, forre W.

Result 4.7.1: It is shown in Lemma 1 in Section that Gg(w,t2,t0) = 0 at w = w,(t2,to)
where it crosses the zero line to the opposite sign, if Statement 1 is true. It is shown in Section
that Gpror(w, t2,to) is partially differentiable as a function of w, for » € W and hence a continuous

function of w, for a given value of ¢y, and t5. It is shown in Section that w # 0 at
w = w,(ta, to), if Statement 1 is true. (example plot)

We use Implicit Function Theorem for the two dimensional case ( linkl and link). Given
that Grar(w, 2, to) is partially differentiable with respect to w and to, for a given value of t,, with
continuous partial derivatives (Section and Section and given that Gra,(w,t2,t9) = 0 at

w = w,(ta, tp) and aG’“g# #0atw= Wz(tg,to) for some value of r € W where (2r 4 1) is the
highest order of the zero of Gg(w, t2, tg) at w = w,(t2,to) (using Lemma 1 in Section [2.1], Lemma 2 in
Section and Result 4.7.1), we see that w,(ts,ty) is a differentiable function of t,, for 0 < ¢y < oo,

for each value of ¢, in the interval 0 < £ < 0.

Hence w, (9, 1) is a continuous function of ¢y for 0 < ¢y < oo, for each value of ¢5 in the interval
0 <ty < 0.

e It is shown in Sectionthat GRar(w, ta, to) is partially differentiable at least twice with respect
to to. We can use the procedure in previous subsections and Implicit Function Theorem and show
that w,(tq,%9) is a continuous function of ¢y, for 0 < ¢ty < oo, for each value of ¢, in the interval
0 <ty < oo.
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4.8. Zero Crossings in Gra(w,ts,t)) move continuously as a function of t, and t,, for
reWw

We can use the procedure in previous subsections and show that w, (s, %) is a continuous func-
tion of 5 and ¢y, for 0 < ¢ty < 0o and 0 < t, < oo, using Implicit Function Theorem in 3.

We use Implicit Function Theorem for the three dimensional case (link and Theorem 3.2.1 in
page 36). Given that Gga,(w,t2,to) is partially differentiable with respect to w and t, and ¢, with
continuous partial derivatives, for r € W (Section , Section and Section and given that
Groar(w, ta,tg) = 0 at w = w,(t2, o) and w # 0 at w = w,(ts, tp), for some value of r € W
where (2r + 1) is the highest order of the zero of Gg(w,ts,%y) at w = w,(t2,%p) (using Lemma 1 in
Section 2.1 Lemma 2 in Section [4.1]and Result 4.7.1), we see that w,(¢s, o) is a differentiable function

of tg and 5, for 0 <ty < oo and 0 < ty < 0.

Hence w,(ts,t9) is a continuous function of ¢y and ¢,, for 0 < ¢y < 0o and 0 < t5 < occ.

38


https://en.wikipedia.org/wiki/Implicit_function_theorem
https://www.google.com/books/edition/The_Implicit_Function_Theorem/TuvSBwAAQBAJ?hl=en&gbpv=1
https://www.google.com/books/edition/The_Implicit_Function_Theorem/TuvSBwAAQBAJ?hl=en&gbpv=1

5. Order of w,(tz2,%0)to is greater than O[1]

It is noted that we do not use lim;, ,, in this section. Instead we consider real ¢, > 0 which
increases to a larger and larger finite value without bounds. We use 0 < 0 < % below.

We write P,gq(t2,to) in Eq. 20 concisely as follows.

to to

Posalto, to) / (7, 12)e=27 cos (wa (ta, to) (7 — to))dr + €27 / B, (7.5) cos (ws (b2, £o) (7 — to))dr

—00 —00

Poaa(ta, to) + Poga(tz, —to) =0

(64)

We note that Ej(7,ty) = Eo(T — ta) — Eo(T + to) and Ey,(7,t2) = Ey(—7,t2) = —FEy(1,t) =
Eo(T + t3) — Eo(T — t2) (using Result 3.1 in Section [3). We choose t; = 2t; and we choose ¢; such
that Ey(t) approximates zero for |t| > t; and we choose tg >> t; and hence Eo(7 — t2) = Eo(7 — 2tp)
approximates zero in the interval (—oo,to]. Hence in the interval (—oo, o], we see that Fy(T,ts) ~
—Ey(1 +t3) and E,, (7,t2) = Eo(T + t3), for sufficiently large to. We can write Eq. 64 as follows. We

use w,(ta, —ty) = w,(t2,t9) (Section 2.4). We note that ¢, = 2¢, in the rest of this section and we
continue to use the notation w,(ts,tg) where ty = 2t.

to

Praalta, to) ~ — / Eo(r + 2to)e 2" cos (w. (b, £o) (7 — to))dr

—00

to
+e*7h / Eo(7 + 2to) cos (w(t2, to) (T — to))dT

— 0o
7t0

Poaa(ta, —to) = / E(;(Ta ta)e 27 cos (w,(ta, to) (T + to))dT

o0

—to
v [ ) con o ) -+ 1)
(65)

We see that the term P,44(t2, —to) in Eq. 65 approaches a value very close to zero, as real tg
increases to a larger and larger finite value without bounds, due to the terms e~2°% and the integrals
f__;g, given 0 < 0 < % and tg > 0 and given that the integrands are absolutely integrable and finite
because the terms E(7,t2)e 2" and Ej, (7,t2) = —Ey(7, t2) have exponential asymptotic fall-off rate

as |T| — oo(Section Hence we can ignore P,y4(ts, —to) for sufficiently large ¢y and write Eq. 64,
using Eq. 65 and ty = 2t.

Q(to) = Podd(tQ, to) + Podd tg, —to / E() T+ 2t0 T COsS (wz(tg, to)(T — to))dT

to
f-e2to / Eo(T + 2tg) cos (w,(ta, to) (T — to))dT ~ 0

— 00
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(66)
We substitute 7 + 2ty = t, 7 =t — 2ty and d7 = dt in Eq. 66 and write as follows.

3to
Q(to) = —64Ut0 / Eo(t)6_2at COSs (wz (tg, to)(t - 3t0))dt

—00

3to
L2t / Ey(t) cos (w,(te, to)(t — 3tg))dt = 0

(67)

We multiply Eq. 67 by e27% and ignore the last integral for sufficiently large t,, given that
e2otoe=39t0 = = and |ff:i Eo(t) cos (w. (ta, to)(t — 3to))dt| < ff:i |Eo(t)|dt (link) is finite.( |Ap-
pendix C.1)

3to
S(to) = Q(tg)e 7" ~ —eto / Ey(t)e 27" cos (w,(ta, o) (t — 3tp))dt = —e“ R(ty) ~ 0
3to - 3to
Rto) = cos (w. (ta, £0)3t0) / Eo(t)e=2" cos (w. (ta, to))dt + sin (. (2, £0)3t0) / Eo(t)e~2" sin (w. (ta, to)#)dt

(68)
Case 1: Order of w,(ts, 1)ty less than 1

Let us assume that the order of w,(to,tg)to is less than 1 and w,(ts,%9)ty decreases to a very
small finite value close to zero, as real t; increases to a larger and larger finite value without bounds.
(Statement B) We see that t; is a real number and as it increases to a larger and larger finite
value without bounds, we can use the approximations cos (w,(t2,%0)3ty) ~ 1, sin (w,(t2,%0)3ty) =~
3w (ta,to)to =~ 0. We see that the integrals in the expression for R(ty) in Eq. 68 converge to a finite
value, given that | [*° Ey(t)e 27 cos (w.(ta, to)(t — 3to))dt| < [ |Eo(t)e=!|dt (link) is finite.( [Ap-

pendix C.1J)

We choose t3 such that Fy(t)e 2" approximates zero for [t| > t3. As t; increases without
bounds, we see that {3 << ¢y and in the interval [—t3, 3], we see that the term cos (w,(t2,)t) =
cos (w,(ta, to)tO%) ~ 1 given Statement B and ¢35 << ty. Hence we can write Eq. 68 as follows.

t3

3to
R(to) ~ / Eo(t)e_20t COS (wz (tQ, to)t)dt =~ / EO (t)e—Qotdt

—0o0 —t3

(69)

For sufficiently large t,, the integral R(ty) ~ fﬁg} FEo(t)e2°'dt remains finite and non-zero and
does not approach zero exponentially, as real ¢ increases to a larger and larger finite value without
bounds, given that [ Eo(t)e >*'dt > 0. (|Appendix C.1|) This is explained in detail in Section .

The term €% in S(ty) = —e’™ R(ty) in Eq. 68 increases to a larger and larger finite value exponen-
tially and hence the term S(tq) approaches a larger and larger finite value exponentially, given that
R(to) does not approach zero exponentially and hence S(ty) and Q(to) and Pogq(te, to) + Poaa(t2, —to)
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in Eq. 64 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement B is false and w,(ts,%)ty does not decrease towards zero, as finite ¢, in-
creases without bounds. Given that w,(t,%y) is a continuous function of variable ¢y and ¢, for all
0 <ty <ooand0 <ty < oo (Section , we see that the the order of w,(ts,to)ty is greater than or
equal to 1, as finite ¢y increases without bounds.(Result 5.1)

Case 2: Order of w,(ty,%0)to is 1

Let us assume that the order of w,(ts,t0)ty is 1, as real ¢, increases to a larger and larger finite
value without bounds. (Statement C). In this case, the order of w, (s, 1) is O[%] and we consider
w,(ta, to) = % where 0 < K < 7.(We require w,(t2,%)tp = 5 in Section . If K> 7, we do not need
the results in this section.)

We choose t3 such that Ktz <<ty and Fy(t)e 2! is vanishingly small and approximates zero for
|t| > t3. Astg increase without bounds, in the interval [—t3, t3], we see that the term cos (w, (2, to)t) ~
1 and sin (w,(ts, to)t) = w,(t2,to)t =~ 0, given that w,(ts,to)t = f—; < f—(’? << 1. Hence we can write
Eq. 68 as follows.

3to t3

Eo(t)e™ 7" cos (w, (ta, to)t)dt ~ cos (3K)/ Eo(t)e 27t dt (70)
—t3
For sufficiently large t¢, the integral R(tq) ~ cos (3K) fig FEo(t)e27'dt remains finite, because the

order of cos (w;(t2,9)3to) is 1 and [~ Ey(t)e >7'dt > 0 (|Appendix C.l[) and does not approach
zero exponentially, as real ¢y increases to a larger and larger finite value without bounds. This is
explained in detail in Section

R(ty) ~ cos (wz(t27t0)3to)/

—00

The term €% in S(ty) = —e”™ R(ty) in Eq. 68 increases to a larger and larger finite value exponen-
tially and hence the term S(tq) approaches a larger and larger finite value exponentially, given that
R(to) does not approach zero exponentially and hence S(ty) and Q(to) and Pogq(te, to) + Poaa(ta, —to)
in Eq. 64 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and the order of w,(ts,%y)tp is not 1, as finite ¢y increases without
bounds. Given that w,(ts,1) is a continuous function of variable ¢, and to, for all 0 < tg < oo and
0 < ty < oo (Section {f) and given Result 5.1 in Case 1, we see that the the order of w,(ts,%o)to is
greater than 1, as finite ¢y increases without bounds.

If we consider the case w,(t2,ty) = %j’to) where 0 < K < 7 and D(t, 1) is a function of order

1, whose maximum value is 1, the arguments in the above paragraphs still hold. If K > Z  then

2 )
w;(t2,to)to = § can be reached for suitable ¢, which is required in Section .

5.1.  Alty) = ff’g FEo(t)e 27" cos (w,(t2, to)t)dt does not have exponential fall off rate

We compute the minimum value of the integral A(ty) = ffii Eo(t)e27 cos (w,(t2, to)t)dt in
Eq. 68 , for sufficiently large ¢t3 and o >> t3 and 0 < 0 < % We split A(ty) as follows. We note that
tg = 2t0 below.
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A(to) - B(t3, to) + C(t3, to) + D(tg, to)

—t3 t3
Blts, to) = / Eo(t)e=2" cos (w.(ta, to)t)dt,  Clts, to) = / Eo(t)e~2" cos (w. (ta, to)t)dt

0 —t3

D(tg,t()) = /Sto E()( ) COS (wz(t27t0)t)dt

(71)

We see that Ey(t)e=27t > 0 for lt| < o0 and Ey(t)e 27" is an absolutely integrable function (
pendix C.1)) and hence Cy(t3) = f Eo(t)e ?tdt > 0 (Result 5.1.1).

Given that w,(ts,tg) = % where 0 < K < 7 in Case 2 in previous subsection and ¢y >> t3,

we see that w,(ta,to)t = % < %3 ~ 0 in the interval [t| < t3 and hence cos (w,(t2,t0)t) ~ 1 and
cos (w,(ta, to)t) > l in the interval [t| < t3. The same result holds for Case 1 in previous subsection be-
cause w, (tq, o) has a faster falloff rate. Hence we can write C(t3,ty) = f Eo( L cos (w,(tg, to)t)dt >

CO(t?’ > 0, using Result 5.1.1. (Result 5.1.2).

We see that |B(ts,t0)| = | [ Eo(t)e 27 cos (w.(ta, to)t)dt| < [~ |Ey(t)e27"|dt ~ 0 (link) and
|D(t3,t0)| = ]ftito Eo(t)e 27 cos (w,(ta, to)t)dt| < f3t° |Eo(t)e27dt =~ 0, for sufficiently large 3 and

to >> t3, given that Ey(t)e~2°* has an asymptotic exponential fall-off rate of at least O[e~%I"]]
(|Appendix C.5) and Ey(t)e=27" > 0 for |[¢t| < oo (|Appendix C.1]).

As we increase t3 to t§ and ty to ), >> t§, we see that C(t5,t)) > C(t3,19) > 0, using Result 5.1.1
and Result 5.1.2, given that Fy(t)e 2" > 0 for |t| < oo (Result 5.1.3).

As we increase t3 to t; and to to t, >> t4, we see that |B(t5, )| < |B(ts,to)] and |D(t}, )] <
|D(t3,to)| approach zero (Result 5.1.4), given that Ey(t)e 2! has an asymptotic exponential fall-
off rate of at least O[e~ "] ([Appendix C.5) and Ey(t)e 2" > 0 for |¢t| < oo (|Appendix C.1IJ).

Hence we see that A(t) fStO Eo(t)e27 cos (w, (ta2, to)t)dt > % — | B(ts, to)| — |D(t3,t0)| ~
% > ( using Result 5.1.2, Result 5.1.3 and Result 5.1.4.

For example, we choose t3 = 10 such that Ey(t)e 2" is vanishingly small and approximates
zero for [t| > t¢3. Given that Eg(t) > 0 for || < oo (|Appendix C.7) and the term e 2t has
a minimum value of el for 0 < o < 1, we see that the integral Co(ts) ft3 Eo(t)e 2°tdt >

2 fotg Eo(t)e Mdt > Cyy = 0.42 where Cyg is computed by considering the first 5 terms n = 1, 2,3,4,5

2,2t

in Ey(t) = 320 [4n?nie' — 6rn2e?]e ™ 2. Hence Cy(ts) > 0.42. (link)

Hence we see that A(ty) = f3t° Eo(t)e 2" cos (w. (ta, to)t)dt > LB | B(ty to)|—|D(ts, to)| ~ 0.21.
As ty increases without bounds, we see that A(ty) does not have exponenmal fall off rate.
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6. Strictly decreasing Ey(t) for t > 0

Let us consider Eo(t) = ®(t) = 3.2 [dn?nte® — 6mn?e*]e ™" ez in Eq. |1} whose Fourier
Transform is given by the entire function Ey,(w) = ( +iw). It is known that ®(t) is positive for
[t] < oo and its first derivative is negative for ¢ > 0 and hence ®(t) is a strictly decreasing function
for t > 0. (link). This is shown below. We take the term 27n? out of the brackets.

Ey(t) = 0(t) = Y _[4nn'e" — 6rn?e]e ™" e2 Z2m2 —m?e o3 2rn2ett — 3¢
n=1
(72)
We show that X (t) = Eo(t) is a strictly decreasing function for ¢ > 0 as follows.
e In Section , it is shown that the first derivative of X (t), given by X0 ) < 0 for t > t. where

1 X _
t, = 5log% and y, = 3.16.

e In Section it is shown that, ( <0Ofor0<t<t,.

(t) is strictly decreasing for all t > 0 and Ey(t) = 2X (t)
is strictly decreasing for all t > 0.

6.1. dX(t <0 fort>t,

We consider X (t) = 220 = Y ap2e ™ es[2mn2et — 3¢%] in Eq. 72 and take the first
derivative of X (t). We note that Fy(t) and X (t) are analytic functions for real ¢ and infinitely
differentiable in that interval. We compute dX(t below and take the term e* out, in the last line
below.

1
g mne ™ o5 [8an2et — 66 + (2mn’e — 36%)(2 2mn2e?)]
2p—mn%e? 5 2t 4t 3 2,46t
E ™moe e2[8mn?e* — 6e* + (mn’e —5¢ — dr*nte% 4 6mne™)]

= 15
= Zﬂn%_mge €7 [—4mne® 4 15mn%e* 5 —e?]

15

= ZWnQe_”"Q eze’ H—dn?n*e® + 15mn2e® 5 —]

(73)

We substitute y = me?* in Eq. 73 and define A(y) such that d)gt(t) = e
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- 15
= Z n2eY[—4n*y? + 15n%y — ?] (74)

We see that A(y) = 0 at y = m which Corresponds to t = 0 given y = me?* and dX( t) = 7Te5tA(y),

given that dX M — 0 at t = 0. Because X (t (t) = Eo® is an even function of variable t( Appendlx C.8I)

2
d)flt(t) is an odd function of variable ¢.

and hence

The quadratic expression B(y,n) = (—4n*y*+15n?y—<) in Eq. has roots at y = —13n2Ev225n1-120n"

-y
(15/108) dB(y n _
8n2

y = g%. The second derivative of B(y,n) given by

. We see that the first derivative of B(y,n) is given by
d? B y n)

—8nty + 15n? is zero at

= —8n?, is negative for all y and n>1
and hence B(y, n) is a concave down function for each n, which reaches a maximum at y = g% and

given the dominant term —4ny? in Eq . we see that B(y,n) < 0, for y > (15+\/ﬁ) > 3. 16 =1,

for n > 1 and hence A(y) < 0 for y > y.. Using y = we* ddX )—7T€2A(y) Weseethat () <0

for ¢ > $log % = t.(Result 1). (concave down function)

We show in the next section that %t(t) < 0 for 0 <t <t,. It suffices to show that %Z(Jy) < 0 for
T<y< yz = 3.16 and hence A(y) < 0 for 7 < y <y, = 3.16, given that A(y) =0 at y = 7. [ We
use y = me?t ddX D= wes Aly) and%t(t):()attzo.]

6.2. ZU <0 for0<t<t,

It is shown in this section that dA(y < 0 for m < y < 3.16 and hence A(y) < 0 for 7 < y < 3.16

[8] , given that A(y) =0 at y = . We take the derivative of A(y) in Eq. [74 and take the factor n?
out of the brackets in the last line below.

15
Zn e Y[=8ny + 15n° + (—4n'y? + 1502y — ?)(—nQ)]

= 45
-8 15+ 4 — 15 n? 2 _923p? —
E: n*y + 15 + 4n'y ny+ Ene nty ny+2]

(75)

We examine the term C(y,n) = nle™""¥(4n*y? — 23n%y+ %) in Eq. 75 in the interval 7 < y < 3.16
and show that %‘Ly) =C(y,1)+>..2,C(y,n) <0, as follows. We want the maximum value of C(y, n)
and we consider the maximum value of positive terms and minimum value of absolute value of nega-
tive terms in the paragraphs below.

For n = 1, we see that C(y, 1) = e7¥(4y* — 23y + L) = 4y’e ¥ — 23ye ¥ + Le™¥ < 0 in the interval
7 <y < 3.16 as follows. Given that 3.162 < 10 and 7 > 3.14, in the mterval m <y < 3.16, we see

that C(y,1) < 4% 10e™?1 — 23 % 3.14e7 316 4 L7314 = —0.3588 < —6e 3 = Cipas(1) where Craq(1)
is the maximum value of C(y, 1) in the interval 7 <y < 3.16.

45
C(y,1) = e ¥ (4y* — 23y + ?) < —6e3 7<y<3.16 (76)
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For n > 1, in the interval 7 <y < 3.16, we can write C(y,n) as follows, given that = > 3.14 and
3.16% < 10 and the term —23n%y < 0 is omitted below, given that we want the maximum value of
C(y,n). We write the term 2 < 4n* % 0.5 and e 0147% 4 10.5 < 10 for n > 2 .

45
C(y,n) =n'e "¥(An'y? — 23ny + 7) < nte ™ (4n*((3.16)% + 0.5)) < 4nle =3 e 01 4 10.5 < 40ne

(77)

We want to show that d/jl;y) =C(y,1)+> 72, C(y,n) <0 in the interval 7 < y < 3.16. Using
Eq. 76| and Eq. 77, we write as follows. We multiply both sides by €3 in the second line below.

dA . G 2
# =C(y,1) + Z C(y,n) < —6e™> + 2407186’3”
Yy n=2 n=2
284w _ 6+Z40833n
dy n=2
(78)
We want to show that e3*5% dA( ) < 0 in the interval 7 < y < 3.16. We compute log (n®e>~ 3n? ) as

follows. We note that f(z) = loga: is a concave down function whose second derivative given by
—x% < 0 for |z| < oo and we can write f(x) = logz < f(zo) + f (w0)(z — xp) using its tangent line
equation. We see that f'(x) = 1. We set 2 = n and xp = 2 and get logn < log 2 + 3(n — 2) below.

1
log (n%¢*="") = 8logn + (3 — 3n?) < 8(log2+ 5 (n —2)) + (3 - 3n%)
log (n®e*~%"") < 8log2 + 4n — 5 — 3n?

(79)

We note that g(z) = 4z —5—3z? in Eq. 79 is a concave down function (concave down function)),
whose second derivative given by —6 < 0 for all  and we can write g(x) < g(zo) + ¢ (20)(x — o)
using its tangent line equation. We see that ¢'(z) = 4 — 62. We set 2 = n and 29 = 2 and get
g(n) < g(2) + [4 — 6x],—2(n — 2) = =9 — 8(n — 2) and write Eq. 79 as follows. We take the exponent
e on both sides in the second line below.

log (n®e®>*"") < 8log2 — 9 — 8(n — 2) < 8log2 — 1+ 8(1 — n)
n8€3—3n2 < e8log2—1+8(1-n) _ 98,—18(1-n)

(80)
We substitute the result in Eq. 80 in Eq. 78 and simplify as follows.
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dA >
63# < —6+40x 287! Z eS1-m)

3dAlY -
d;)< —6 4+ 40 * 2%~ *682678”
dA(y) B 678*2
3 81 4 8
—= < —6+40%*2% —_—
‘ dy A 1—e8
dA(y) Sy, e
3 8 -1
dy < —6 440 % 2% g
dA(y)
3 8 —1
a0 < —6440 % 2% *68—1
(81)
We multiply Eq. 81 by —1 and write as follows.
dA 8 -1 256
¢ d;y) (e . ) et 14 d0e 5 o 2352 (82)
We see that e3 d’zgf’) (< o D < 0 in Eq. |82, given that e > 2 and hence d’z?(f’) < 0, in the interval
7 <y < 3.16, given that €3 3lef=1) > 0. Given that A(y) = 0 at y = 7, we see that A(y) < 0 in Eq.
, for m <y < 3.16 and d)ét — % A( ) < 0 in the interval 0 <t < t,.(Result 2)
In Section E it is shown that <X < 0 for ¢t > ¢, (from Result 1). In this section, we have shown
that dX(t <0for0<t<t,. Hence ) <0 for all t > 0.

Hence Ey(t) = 2X(t) is a strictly decreasing function for ¢ > 0.
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7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta
functions and does not contradict the existence of their non-trivial zeros away from the critical line
given by Re[s] = 5. The new method requires the symmetry relation £(s) = £(1 — s) and hence
&(3 +iw) = (3 —iw) when evaluated at the critical line s = § +iw. This means (3 +iw) = Eo,(w) =
Eou(—w) and Eo(t) = Ey(—t) (|Appendix C.8) where Ey(t) = 3.°°, [4n’ntet — 6mne®|e ™ e2
and this condition is satisfied for Riemann’s Zeta function.

It is not known that Hurwitz Zeta Function given by ((s,a) = > m satisfies a symmetry
m=0

relation similar to £(s) = £(1 — s) where £(s) is an entire function, for a # 1 and hence the condition
Ey(t) = Eo(—t) is not known to be satisfied [6]. Hence the new method is not applicable to Hurwitz
zeta function and does not contradict the existence of their non-trivial zeros away from the critical
line.

Dirichlet L-functions satisfy a symmetry relation £(s,x) = e(x)é(1 — s,x) [7] which does not
translate to Ey(t) = Eo(—t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

o0

We know that ((s) = > -L= diverges for Re[s] < 1. Hence we derive a convergent and entire
m=1
> 2 1 > n?2
function £(s) using the well known theorem F(x) = 1 + 2 E e = 7(1 +2Y e ™), where
x
n=1 n=1

x > 0 is real [](link) and then derive Ey(t) = Y2°° [4n’nte¥ — 6nn2e®|e ™" ez, In the case of

Hurwitz zeta function and other zeta functions with non-trivial zeros away from the critical
line, it is not known if a corresponding relation similar to F'(x) exists, which enables derivation of
a convergent and entire function £(s) and results in Fy(t) as a Fourier transformable, real, even and
analytic function. Hence the new method presented in this paper is not applicable to Hurwitz zeta
function and related zeta functions.

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Rie-
mann’s Zeta function and only for the critical strip 0 < |o| < 3. This proof requires both E,(t)
and E,,(w) to be Fourier transformable where E,(t) = Ey(t)e~7" is a real analytic function and uses
the fact that Fy(t) is an even function of variable ¢ and Ey(t) > 0 for |¢t| < oo ([Appendix C.7)) and
Ey(t) is strictly decreasing function for ¢ > 0 (Section [f]). These conditions may not be satisfied
for many other functions including those which have non-trivial zeros away from the critical line and
hence the new method may not be applicable to such functions.
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Appendix A. Derivation of E,(t)

Let us start with Riemann’s Xi Function £(s) evaluated at s = % + iw given by 5(% ) =
Eoo(w). Its inverse Fourier Transform is given by Ey(t) = &= [0 Eou(w)e™idw = Y07 [dn?nie®

2.2t t .
6rn2e?le™™ ¢ e2 using Eq. .

We will show in this section that the inverse Fourler Transform of the function £(3 + o + iw) =
By, (w), is given by E,(t) = Ey(t)e " where 0 < |o] < 1 is real. We use Ep,(w) = Eg,(w —i0) below.

5(% + o0 +iw) = 5(; +i(w —i0)) = Ep(w) = Eg(w — i0)

E,(t) = % /_Z By (w)e™dw = gy /_Oo Eou(w —io)e™ dw
(A1)
We substitute w’ = w — io in Eq. A.1 as follows. We get w = w’ + io and dw = dw'.
E,(t) = e”t% /OO aa Eoo(w)e™  dw’ (A.2)
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We can evaluate the above integral in the complex plane using contour integration, substituting

w' =z =z + 1y and we use a rectangular contour comprised of C; along the line z = [—o0, 00|, Cy
along the line z = [00, 00 — i0], C3 along the line z = [co — i0, —00 — i0] and then Cy along the line
z = [—00 —io, —oo|. We can see that Ey,(z) = £(5 + iz) has no singularities in the region bounded

by the contour because £(3 4 iz) is an entire function in the Z-plane.

We use the fact that Eo,(2) = &(5 +i2) = &(5 —y+ix) = [*o Eo(t)e #'dt = [ Fy(t)evie 'dt,
goes to zero as © — oo when —o < y < 0, as per Riemann-Lebesgue Lemma (link), because
Ey(t)e¥" is a absolutely integrable function for real ¢( [Appendix A.1)). Hence the integral in Eq.
vanishes along the contours C5 and C}. Using Cauchy’s Integral theroem, we can write Eq. as
follows.

1 &0 -
E,(t) = e*"tQ— / Eoo(w')e™ tdw'
T

E,(t) = Ey(t)e " = Z[47r2 Lt — Grn2ee ™ ez !
n=1

Thus we have arrived at the desired result E,(t) = Ey(t)e 7"

Appendiz A.1. E,(t) = Ey(t)e’" is an absolutely integrable function

We see that Ey(t) > 0 and finite for —oco < t < oo ([Appendix C.7)). Hence E,(t) = Ey(t)e?" > 0
and finite for all —oo <t < o0, for —o <y <0and 0 < |o| < % (Result 11).

Ey(t) has an asymptotic exponential fall-off rate of at least O[e~'*!"l] (|Appendix C.5)) and hence
E,(t) = Eo(t)e¥" has an asymptotlc exponential fall-off rate of at least Ole= 5] > Ole~], for
—0 <y <0and 0 < |o| < 3. Hence Ey(t) = Ey(t)e¥" decays exponentially, at ¢ — +oo.(Result 12)

Using Result 11 and 12, we can write [°°_|E,(t)|dt is finite and E,(t) is an absolutely integrable
function ( |Appendix C.6|) and its Fourier transform E,,(w) goes to zero as w — =£o0, as per
Riemann Lebesgue Lemma (link).

Appendix B. Derivation of entire function £(s)

In this section, we will start with Riemann’s Xi function £(s) and take the inverse Fourier Trans-
form of £(1 + iw) = Eg,(w) and show the result Ey(t) = 300 [dn?nte™ — 6mne?]e ™ ez,

We will use the equation for £(s) derived in Ellison’s book ”Prime Numbers” pages 151-152 which
uses the well known theorem 1 + 2w(z) = %(1 + 2w(1)), where w(x) = Ze_“”% and z > 0 is

real.[4] (link).
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(B.1)

We see that £(s) is an entire function, for all values of s in the complex plane and hence we get
an analytic continuation of £(s) over the entire complex plane. We see that £(s) = (1 — s) [4].

Appendiz B.1. Derivation of E,(t) and Ey(t)

o0
Given that w(z) = Y e ™%, we substitute z = e*, % — 2dt in Eq. B.1 and evaluate at s =
n=1
1 .
5 + 0 + 1w as follows.

1 1 1 1 A ,
E(5 o +iw) = S[L+2(5 +0+iw)(—5 +o +iw) / D e ezete ! e e dt] (B.2)
We can substitute ¢t = —t in the first term in above integral and simplify above equation as follows.
f(l +0+iw) = 1y (—1 + 0% — w4+ iw(20)) Z B
2 2 4

+/ Zefﬂn et 1t ot 71wtdt]
0

(B.3)

We can write this as follows.
1 . _ 1 1 —mn2e _— —ot —iwtd
§(§+a+zw) = §+(_Z+O —w? +iw(20)) Ze +Ze e2u Je %%e t
(B.4)

2

We define A(t) = [Z e e T u(—t) + Z e ™ e3y(t))e ! and get the inverse Fourier

transform of (5 + o —|— zw) in above equation g1ven by E,(t) as follows. We use dirac delta function
a(t).

1 o, dA(t)  d?A(t)
E,(t) = §(S(zf) + (_Z +0?)A(t) + 20 o T
At) = [Z 6_”"2672te_7tu(—t) + Z e_m%%e%u(t)]e_”t
n=1 n=1

(B.5)

We compute the derivatives of A(t) as follows.

20



dA(t) & o - 1 = 1
—dz(f ) = ; e~ 2tGTte_"t[—Q — o+ 2rnPe” Hu(—t) + Z e_”"%%e%e_"t[é — o — 2mn*e*|u(t)
FA() = i e ™ 07 e —dmnle 4+ (—1 — o+ 2mn’e )% |u(—t)
dt? ot 2
> 1
+ Z e ™ ezem [~ 4mn2e + (5 —2mn?e®)?|u(t) + Agd(t)
n=1
(B.6)
We use Ay = | dﬁt)]t =04+ — [ ]t =0- = Z e ( — 0 —2mn’ — (‘% _‘7+27T”2)) Z o (1-
47n?). We can simplify above equation as follows. B
PAEt) = 1
dt2 Z Tmieew *"t[l—l + 0% + o+ 4rinte ™ — 6mnle® — domnie M |u(—t)

=1

2 2t 1 > 2
+ Z e e _"t[4 + 0?2 — o + 4r*nte? — 6mn2e® 4 domne?u(t) + 5(t)[z e ™ (1 — 4mn?))

n=1

(B.7)

We use the fact that F'(z) = 14 2w(x) = \%(1—1—21{)(%)), where w(z) = 3. ™% and z > 0 is real

[4], and we take the first derivative of F(z) and evaluate it at z = 1. We see that > ™™ (1—4wn?) =

n=1
—1 (|Appendix B.2) and hence dirac delta terms cancel each other in Eq. B.5 written as follows.

Ey(t) = 15@) b (Lot ap + 2,240 FAW

4 dt dt?
- 71'7‘L2€_2t St et 1 1 2t
Ze [_Z+U +20(—§—0+27me )
n=1
1
+Z + 0%+ o+ 4rinte ™ — 6rnle® — domnie M |u(—t)

1 1 1
—f—Ze_’me €%€_Ut[—1+02+20‘(§—0‘—2ﬂn )+4—i—a — o +4n*n*e — 6mn%e® + domn’e|u(t)

= Z e e ' D(t,n)u(—t) + Z e %e_"tC’(t, n)u(t)
n=1

(B.8)
We cancel the common terms in Eq. B.8 and simplify above equation as follows.
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1 1
C(t,n) = —= + 0> + 0 —20° — domn’e” + = + 0> — o + 4r°n'e! — 6mne® + domn®e®
C(t,n) = 4r’*n*e* — 6mn’e?

2 —2t

1 1
D(t,n) = ~1 + 0% — 0 —20° +4omn’e " + 1 + 0% + o +4r*nte ™ — 6rne " — domnie”
D(t,n) = 4x’n'e ™ — 6rn’e
(B.9)
We see that D(t,n) = C(—t,n). Hence we can write as follows.
Ep(t) = [Eo(—t)u(—t) + Eo(t)u(t)]e™"
Ey(t) = Z C(t, n)e‘””ge%e% = Z[47r2n4e4t - 67m262t]e_7m262te%
n=1 n=1
(B.10)

We use the fact that Ey(t) = Eo(—t) (|Appendix C.8) we arrive at the desired result for E, () as

follows.
Ey(t) = Z[47T2n464t — 6mn2e®)e ™ ez
n=1
E,(t) = Ey(t)e 7" = Z[47T2n4e4t — 6ﬂn262t}e_””262t656_”t
n=1
(B.11)
Appendiz B.2. Derivation of > e_””2(1 —4mn?) = —%

n=1

o0

In this section, we derive 3 ™™ (1 — 47n?)
n=1

—=(142w(2)), where w(z) = > e~ ™% and z > 0 is real [4], and we take the first derivative of F(x)

fx 1
n=

We use the fact that F(z) = 1 4 2w(x)

1
= —3.

Fla) =1+ 20(x) = %(1 4 2w(i))

— ) 1 - 21
F(z) = 1+226_7mz= —(1—1—226_”” x)
n=1 \/E n=1

dF(.I') - 2\ —mniz 1 - 2\ —mn2l 1 = —mn2l —1,1
- :2;(—7m Je :ﬁ;(%m Je w(ﬁ)—i—(l%—Q;G x)(7)$—%

(B.12)
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We evaluate the above equation at x = 1 and we simplify as follows.

[d];:(::)]I:l =2 Z(—mfﬂ)e*fm? _ Z(an2)e*’m2 + (142 Zeﬂnz)(—?l)

n=1
o0 5 1
Do (- dmn?) = —3
n=1

(B.13)
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Appendix C. Properties of Fourier Transforms

Appendiz C.1.  E,(t),h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function E,,(w) = &(2 + 0 + iw) is given by E,(t) =
Ey(t)e ' = o= [7 Ep(w)e™'dw. In Eq. m, we see that Ey(t) = >0 [An?n*e* —6mn’e?]e ”"%Qte% >
0 and finite for all —oo < t < oo( |Appendix C.7). Hence E,(t) = Ey(t)e " > 0 and finite for all
—00 <t < 0.

It is shown in [Appendix C.5|that Ey(¢) has an asymptotic exponential fall-off rate of at least
[e=151t] and hence E,(t) has an asymptotic exponentlal fall-off rate of at least O[e~(-5=2)It] >

[e7!], for 0 < |o| < L. Hence E,(t) = Fy(t)e " goes to zero, at t — +o0o and we showed that

@)

0 2

E,(t) > 0 and finite for all —oo < t < oo in the last paragraph.(Result 21) Hence E,,(w) =
[ Ep(t)e ™tdt, evaluated at w = 0 cannot be zero. Hence E,,(w) does not have a zero at

w = 0 and hence wy # 0.

Given that £(3+0+iw) = E »(w) is an entire function in the whole of s-plane, it is finite for real w
and also for w = 0. Hence E,,(0) = [ E,(t)dt is finite. Using Result 21, we can write [°_|E,()|dt
is finite and E,(t) is an absolutely mtegrable function and its Fourier transform £, ( ) goes to
zero as w — +00, as per Riemann Lebesgue Lemma |(link).

Using the arguments in above paragraph, we replace o in E,(t) by 0 and 20 respectively and see
that Eo(t) and Eo(t)e 27" are absolutely integrable functions and the integrals [~ |Eo(t)|dt < oo

and [*|Eo(t)e "|dt < oco.

Given that E,(t) = Ep(t)e " is an absolutely integrable function, its shifted versions are abso-
lutely integrable and we see that E,(t, t) = e "2 E,(t—ts) —e"2 E,(t+t2) = (Eo(t—t2) — Eo(t+1t2))e ™!
in Eq. 6 is an absolutely integrable function, for a finite shift of ¢5. ( We substitute ¢t — ¢t = 7 and
dt = dr and get [*°_|E,(t —to)|dt = [*°_|E,(7)|dT and hence E,(t — t5) is an absolutely integrable
function, given that E »(t) is absolutely integrable. Same argument holds for E,(t + t3).)

We can see that h( ) = e7tu(—t) —l—e_"t (t) is an absolutely integrable function because h(t) > 0
for real ¢ and f (t)|dt = f h(t f h(t)e ™“tdt],—o = [U_liw + C,Jrﬁ]wzo = %, is finite for
1

0 <o < 3 and 1ts Fourler transform H ( ) goes to zero as w — £o00, as per Riemann Lebesgue

Lemma |(link).

Appendiz C.2. Convolution integral convergence

Let us consider h(t) = e”'u(—t) + e 7'u(t) whose first derivative given by %Sf) = cetu(—t) —
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ge~u(t) and Ay = [P0, — [2O],_ = 20 and hence 2 js discontinuous at ¢ = 0, for
1

0 <o < ;. The second derivative of h(t) given by hs(t) has a Dirac delta function Ayd(t) where
Ap = —20 and its Fourier transform Hs(w) has a constant term Ay, corresponding to the Dirac delta

function.

This means h(t) is obtained by integrating ho(t) twice and its Fourier transform H (w) has a term
Ao |(link) and has a fall off rate of % as |w| — oo and [~ H(w)dw converges.(Result B.2)

Let us consider the function g(t,ts,t0) = [f(t,t2,t0)e " 'u(—t) + f(t,t2,t0)e’ u(t) in Eq. 6 and

its first derivative given by % = [—oe 7 f(t, ta, to) + e‘”tm]u(—t) + [oe” f(t, ta, to) +

et dlLizto) ]y (1), We get [LLz0)], = —g f(0, o, to)+[LL20)], o and [L20)], = 5 f(0, s, to)+

[df(t,cilff,to)] i—o+ (Result B.2.1).

df(t,tzio)] _ [df(t7t2,to)]
dt

We note that f(t,ts,1) is a continuous function in Eq. 6 and get | "

and get [M]t:0+ - [%]tzo— = 20 f(0, 2, 1) using Result B.2.1. Hence W is discon-

tinuous at t =0, for 0 < 0 < %, if f(0,t9,t0) # 0.

We can see that the first derivatives of g(t,ts, %), h(t) are discontinuous at t = 0 and hence
G(w, ta, to), H(w) have fall-off rate of 5 as |w| — oo, using Result B.2. Hence the convolution
integral below converges to a finite value for real w, for the case f(0,ts, ) # 0.

F(w,ty, ty) = € /OO G(W' ta, to)H(w — w')dw' = %[G(W,tg,to) x H(w)] (C.1)

27 J_o s

If £(0,t5,t9) = 0, and if the N derivative ofg(t ta, to) is discontinuous at t = 0 where N > 1,
we see that G(w, tg,to) has fall-oﬁ' rate of —xr7 as |w| — oo [Appendix C.3). G(w,ts, 1) has a
minimum fall-off rate of 2 as |w| = oo for this case. Hence the convolution integral in Eq.
converges to a finite value for real w.

Appendiz C.3.  Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P(t) = Py (t)u(t) + P_(t)u(—t) whose

(N — 1) derivative is discontinuous at t = 0. The (N)™ derivative of P(t) given by Py(t)
has a Dirac delta function Agd(t) where Ay = [detjvlD+ - dNC;LE“)]tZO and its Fourier transform

Pn,,(w) has a constant term Ay, corresponding to the Dirac delta function.

This means P(t) is obtained by integrating Py (t), N times and its Fourier transform P, (w) has a
v (link) and has a fall off rate of _y as |w| — oo.

We have shown that if the (N — 1) derivative of the function P(t) is discontinuous at ¢ = 0
then its Fourier transform P, (w) has a fall-off rate of Jv as |w| — oo .

Appendiz C.4. FExponential Fall off rate of analytic functions.

We know that the order of Riemann’s Xi function £(3 + iw) = Ey,(w) = ZE(w) is given by

95


https://web.stanford.edu/class/ee102/lectures/fourtran#page=15
https://web.stanford.edu/class/ee102/lectures/fourtran#page=15

O(wAe_#) where A is a constant [3] (Titchmarsh pp256-257 and Titchmarsh pp28-31).

We consider z(t) = Eo(t)e " and its Fourier transform is given by X (w) = [7_ Fy(t)e e dt =
[Z Eg(t)eiwmi2oltgt = EOw(w —i20) = &(3 +i(w —1i20)) = £(5 + 20 + zw) EOw(w — 220). Hence

both EOw(w) and X (w) = Egy,(w — 120) have exponential fall-off rate O(wAe_¥) as |w| — oo
and they are absolutely integrable ( |Appendix C.6)) and Fourier transformable, given that they are

derived from an entire function £(s).

Given that £(s) is an entire function in the s-plane, we see that X (w) is an analytic function
which is infinitely differentiable which produces no discontinuities for real w and 0 < o < 1. Hence
its inverse Fourier transform z(t) has fall-off rate faster than limy_,o 737, as [t| — oo (
C.3) and hence x(t) = Ey(t)e 2! should have exponential fall-off rate of e=PIl as |t| — oo, where
B >0 is real.

Appendiz C.5.  Exponential Fall off rate of x(t) = Ey(t)e "

We can write Ey(t) = Y200 [4n?ntet — 6mn®e*]e ™" ez in Eq. [ Ias follows. We take the term

2,2t
22t —m7e™ we use Taylor series expansion around t = 0

2mn“e out of the brackets below. In the term e

0 r
for e* = Z ( ' ) , given that e?! is an analytic function for real ¢.
Iy
r=0

_ t
E 2mn?e® [2mn2e® — 3le”™ ¢ e2

202 | (@213
_ } :27m2 2922 — g]e—wn2(l+2t)e—7m2( -+ 8- 4

(C.2)

We take the term e~2™ out of the summation, corresponding to n = 1 and then take the term
t 9t .
2mettez = 2me= out and write Eq. C.2 as follows.

(2t)?

i 3
Eol(t) = o2t % Z n2[2mn? — 3~ 2™ e 2n(n? Dt —mn?(1 +20° (C.3)

For t > 0, we see that the term corresponding to n = 1 in Eq. [C.3 has an asymptotic fall-off rate
of at least O[ (27=3)1] > Ole™1%]. The terms corresponding to n > 1 have fall-off rates higher
than O[e~"%], due to the term e~ 27"~

Hence we see that Ey(t) has an asymptotic fall-off rate of at least O[e='*!], for ¢ > 0. Given that

Ey(t) = Eo(—t)( [Appendix C.8]), we see that Ey(t) has an exponential asymptotic fall-off rate of
at least Ofe~12].

Similarly, Ey(t)e 2! has an asymptotic exponential fall-off rate of at least Ofe~(1°=20)Itl] >

Ole™%], for 0 < |o] < L .

o6


https://www.ocf.berkeley.edu/~araman/files/math_z/titchmarsh_p2.png
https://www.ocf.berkeley.edu/~araman/files/math_z/Titchmarsh_pp28_31.pdf

Appendiz C.6. Absolutely integrable functions

We see that a real function y(t) which is finite for all ¢ and has an asymptotic falloff rate of at
least O[3;] is an absolutely integrable function, given that [ _|y(¢)|dt = [~ T y(t)|dt+ f (t)|dt +
I ly(t |dt is finite, for non-zero and finite 7', because when we integrate the integrand ]y( )| with
order O[] , we get the result O[1], which is finite at the limit ¢ = +7 and the result O[] is zero at
the limit ¢ — 4o00. If y(¢) has an exponential asymptotic falloff rate, when we integrate the integrand
ly(¢)| with order O[e=*"] for real A > 0, we get the result O[+e 4] which is finite at the limit
t = £T and the result is zero at the limit ¢ — +oo and hence y(t) is an absolutely integrable function.

Appendiz C.7.  Ey(t) >0 for —oo <t < oo

For 0 < ¢t < oo, we can show that Fo(t) = Yoo, f(t,n) > 0 where f(t,n) = [dn°n'e —

202t Cn2e2t t
2t]€ mnle 2t _ 3]@ ™ €3 as follows.

6mn’e ez = 2mn2e[2mn’e
The sum is positive because each summand f(t,n) is positive for finite n, and each summand
is positive because the term 27n%e?* — 3 > 0 for all t > 0 and n > 1, given that 7 > 3 and

2mn2ete—™¢* o5 > () for 0 < t < oo and finite n > 1.(Result B.7.1)
For t = 0 and n = 1, we see that f(0,1) = 27[27 — 3]e”™ > 0.

For t = 0 and for each finite n > 1, we see that f(0,n) = 2rn?[27n? — 3le™™ > 0.

2.2t

For 0 < t < oo and for each finite n > 1, we see that f(t,n) = 2rn2e?[2rn2e? — 3l ™" ¢2 > (),
using Result B.7.1.

As n — 00, f(t,n) tends to zero, for 0 < t < oo due to the term e ™¢. We do summation over
n and see that the sum of the terms >~ f(t,n) > 0.

Hence Ey(t) => 2, f(t,n) >0 for 0 <t < 0.
Given that £(3 + iw) = Fy,(w) is an entire function in the whole of s-plane, it is finite for real w

and also for w = 0. Hence FEy,(0) = f Ey(t)dt is finite. We see that Ey(t) is an analytic function
for real t. Hence Ey(t) => | f(t,n) > 2 0is ﬁmte for 0 <t < o0.

Given that Ey(t) = Eo(—t)(|Appendix C.8)), we see that Ey(t) > 0 and finite for all —oco < t < 0.

Appendiz C.8. FEy(t) is real and even

We see that £(3 +iw) = Eo.(w) = Eou(—w) (Result 13) because £(s) = £(1— s) (link) and hence

(5 +iw) = (3 — iw) when evaluated at s =  + iw.
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We take the Inverse Fourier transform of Ey,(w) and use Ey,(w) = Eg,(—w) from Result 13 and
then substitute w = —w’ in the integrand, as follows.

1 [~ - 1 [~ ,
Eo(t) —/ FEoo(w)e™dw = %/ Eoo (—w)e™tdw

T o o
1 o0

=5 | Bas(@)e ™ = Bo(-1)

(C.4)

We see that FEy(t) in Eq. [1] is real and Ey(t) in Eq. C.4 is even and hence we have derived the
result that FEy(t) is a real and even function of variable t.

Appendix D. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.

Appendiz D.1. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g(¢), given by G(w) =
Gr(w) + iG(w) has the properties given by Gr(—w) = Gg(w) and G;(—w) = —Gr(w). We use the
fact that g(t) is real and cos (wt) is an even function of w and sin (wt) is an odd function of w below.

Gw) = /00 g(t)e “tdt = Gr(w) +iGr(w)

o0
o

Gr(w) = / g(t) cos (wt)dt = Gr(—w)

[e.9]

Grlw) = — / (1) sin (wh)dt = —Gy(—w)

—00

(D.1)

Appendiz D.2. Even part of g(t) corresponds to real part of Fourier transform G(w)

In this section, we take the even part of real function g(t), given by geven(t) = 3[g(t) + g(—1)]
and show that its Fourier transform is given by the real part of G(w).

G(w) = /_00 g(t)e ™ dt = Gr(w) +iG(w)

o0

= ; 1 , G 1 [® '
/ geven(t)e_zwtdt = / é[g(t) + g(_t)]e_lwtdt = % + 5/ g(_t)e—zwtdt

o8



We substitute ¢ = —t in the second integral in Eq. D.2. We use the fact that Gr(—w) = Gr(w)
and G;(—w) = —G(w) for a real function g(¢). ([Appendix D.1)

- » Gw) |1 [> . Glw) G(-w)
1wt _ - wt —
/_ geven(t)e dt = 5 + 5 /_OO g(t)e dt 9 + 5

= 2 [GR(w) +iG1(w) + Cr(—w) +iCr(~w)] = 5[Ga(w) +iCr(w) + Calw) — iG1(w)] = Calv)
(D.3)

Appendiz D.3. Odd part of g(t) corresponds to imaginary part of Fourier transform
G(w)

In this section, we take the odd part of real function g(t), given by goga(t) = 3[g(t) — g(—t)] and
show that its Fourier transform is given by the imaginary part of G(w).

Gw) = /_OO g(t)e ™“dt = Gr(w) +iG(w)

[e.e]

| goattetae= [~ Jigte) = gt-otetar = E2 - 2 [ g(-pyera

o — 00 —00

(D.4)

We substitute ¢ = —t in the second integral in Eq. D.4. We use the fact that Gr(—w) = Ggr(w)
and Gj(—w) = —Gr(w) for a real function ¢(¢). (|Appendix D.1))

/oo Goda(t)e™ "' dt = @ - %/Zg(t)ei“’tdt - G(QW) N G(;w)

_ %[GR(W) G (W) — Grl(—w) — iGr(—w)] = %[GR@J) F G (W) — Gr(w) + G (w)] = iGr(w)
(D.5)

Appendiz D.4. Fourier transform of a real and even function ¢(t)

In this section, we show that the Fourier transform of a real and even function g(¢), given by
G(w) is also real and even. We use the fact that [~ g(¢) sinwtdt = 0 because g(t) is even and the
integrand is an odd function of variable t.

G(w) = /_oo g(t)e “tdt = /_oo g(t) coswtdt — i/oo g(t) sinwtdt

[e.9] [e.9] —00

G(w) = /_OO g(t) coswtdt

o0

(D.6)

We see that G(w) = ffooo g(t) coswtdt is real function of w, given that g(¢) and the integrand are
real functions. We see that G(w) is an even function of w because coswt is a even function of w.
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