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Abstract—Monitoring and providing customers with a satisfy-
ing Quality of Experience (QoE) is a crucial business incentive for
mobile network operators (MNOs). While the MNO is capable of
monitoring a vast amount of network-related key performance
indicators (KPIs), it typically does not have access to application-
specific performance metrics. Among others, this is due to prac-
tical obstacles, such as missing standardized interfaces between
the network and the application. Existing QoE models allow
to map collected KPIs to the user-perceived quality. However,
they are not dynamic, cumbersome to obtain, and often rely on
application-level information, such as the stalling duration in the
case of video streaming.

The 5G networking architecture provides new features which
can potentially overcome current limitations of in-network QoE
monitoring. More specifically, the Application Function (AF)
provides a standardized interface for communicating between
5G systems and third parties, such as application providers.
The Network Data Analytics Function (NWDAF) is capable of
collecting a vast number of network statistics from other 5G
network functions and is dedicated to training and deploying
Machine Learning (ML) models. This opens new possibilities,
unimaginable for earlier mobile network generations, to dynam-
ically learn the relationship between network KPIs and QoE by
utilizing ML. Besides elaborating on how the new capabilities
introduced with 5G can support an ML-based QoE estimation,
we perform a simulation-based feasibility study which evaluates
the estimation accuracy of different state-of-the-art regression
techniques. In addition, we discuss them with respect to various
qualitative aspects from an MNO’s point of view.

Index Terms—5G, Mobile Networks, Machine Learning, QoE,
HAS, VoD, VoIP

I. INTRODUCTION

Providing a good (QoE) [1] to customers is of utmost
importance to both, application providers (APs) and mobile
network operators, to avoid user churn in the constantly
growing market. APs, such as YouTube, have capabilities to
monitor QoE-relevant application-level metrics, e.g., delivered
video quality or interruption times, and to collect user ratings.
An MNO, however, has only access to network-level data,
unless it simultaneously acts as an AP. Although models
exist, which allow a mapping from QoS metrics to QoE,
they are typically only available for a limited number of
services, cumbersome to design and update, and focus only on
key network features or aggregated monitoring information.

While they allow identifying certain root causes for service
degradation, their general applicability for root cause analysis
or fine-grained resource control is limited. Consequently, these
traditional models cannot be used, for example, for self-driving
networks, which are capable of implementing control-loops
that automatically trigger QoE-aware network control actions.

With the introduction of the 5G networking architecture
comes a vast number of new capabilities, among others
supporting more intelligence in the network, potentially elim-
inating the current limitations of QoE monitoring activities
carried out by MNOs. That is, (i) the interaction with externals,
such as third party application or content providers, allowing to
communicate ground-truth QoE or QoE-relevant metrics to the
5G system. Next, (ii) enhanced capabilities for data collection,
processing, and exposure, which allow for correlating network
KPIs and QoE information, i.e., training ML-based models.
Finally, 5G facilitates (iii) the integration of ML into the
network, such as deploying a trained model which is capable of
obtaining the QoE from network KPIs. The 5G system is thus
the first one to provide all necessary abilities for deploying
ML-assisted QoE monitoring in the network at scale. While
the collaboration between network and application providers
has so far been hindered by the practical obstacle of missing
interfaces and network entities [2], 5G overcomes this limita-
tion by providing such a standardized interface. Moreover, its
enhanced analytics capability guarantees the required compu-
tational resources and collects and supplies a sufficient set of
statistics [3], potentially standardized, so as to support ML-
based QoE estimation within multi-vendor networks.

In this work, we propose an approach exploiting these
new features, i.e., the interaction with externals, the sharing
of information between network functions (NFs), and the
enhanced data processing capabilities. We discuss the relevant
research questions for introducing ML-based QoE estimation
into the network from the viewpoint of an MNO and perform
a simulation-based feasibility study to show the applicability
of such an approach with the data available in 5G systems.
In the scope of this study, we analyze the performance of
a representative set of five different regression techniques,
ranging from simple linear models to highly complex neural
networks. Thereby, we also retrieve potential factors influ-
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encing the estimation accuracy in the heterogeneous mobile
environment, where users run different applications and have
varying mobility patterns. Moreover, we analyze the ML
techniques’ complexities in both, a theoretical and a practical
manner, and compare their resource requirements as well as
the duration to train and test them. Finally, we discuss the set
of regression techniques in a qualitative manner, taking into
account factors such as their comprehensibility or provided
built-in features.

The rest of this work is structured as follows. We introduce
the used regression techniques and present related work in
Section II. Next, we describe in Section III how 5G can
support ML-driven QoE estimation and how we address the
research questions focused in this manuscript. Afterwards, we
present the applied methodology in Section IV and describe
our ground-truth data set in Section V. The evaluation results
are given in Section VI, followed by a discussion on the
study’s limitations and the lessons learned in Section VII.
Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section introduces the key working principles of the
studied regression techniques and presents related works in
the field of ML for QoE estimation and for mobile networks.

A. Background on Regression Techniques

Regression models learn relationship between features and
(non-binary) responses from training data, so that they can pre-
dict unknown responses from features at deployment. Features
can be raw observations or their predefined transformation.
In our case, the features are all network-related variables,
transformed using statistical metrics, and made available at
the NWDAF, while the response is the QoE expressed as
Mean Opinion Score (MOS), a scalar variable in a range from
1 to 5. We evaluate two linear models, where the response
is expressed as a linear function of the features, and three
non-linear models. We briefly introduce the applied regression
techniques in the following.
Least absolute shrinkage and selection operator
(LASSO) [4] is a linear regression model trained with
the L1 regularizer, the sum of absolute values of the weights
(or the regression coefficients), in addition to the mean
squared error (MSE) of the prediction. The L1 regularizer is
known to induce sparsity, meaning that many of the learned
weights are zero, and therefore the corresponding features
are completely neglected when estimating the response (QoE
in our case). The number of zero weights can be tuned by
the regularization parameter λ, which controls the strength
of shrinkage and sparsity. By doing so, LASSO does not
only help to reduce over-fitting, but can also be used for
feature selection, as done in our previous work [5]. This can
also help to make the model less complex and thus easier to
understand by humans.
Linear Ridge Regression (LRR) [6] is a linear regression

model trained with the L2 regularizer, the sum of the squares
of the weights. While its working principle in general is
corresponding to that of LASSO, the L2 regularizer shrinks

the weights to avoid overfitting, but it hardly shrinks any
weight to zero. It cares more about driving big weights to small
values, and tends to give small but well distributed weights.
By doing so, LRR tends to provide better prediction accuracy
than LASSO, while it cannot be directly used for reducing
the number of used features.

Depending on the complexity of the data, linear models
might not be sufficient to capture the peculiarities of the prob-
lem. In such cases, non-linear regression models such as the
Kernel Ridge Regression (KRR) [6] should be used. KRR
is a kernel regression model trained with L2 regularizer. It is
equivalent to the linear regression applied to a high (possibly
infinite) dimensional space into which the original features
are non-linearly mapped. By choosing an appropriate kernel,
this model can approximately express any smooth function
and thus learn non-linear relationships between features and
response. The kernel trick allows to operate in the original
feature space without computing high dimensional mapping,
offering a more efficient and less expensive way to non-
linearly transform features into high dimensional space. We
use the Gaussian kernel with the bandwidth parameter γ.
Support Vector Regression (SVR) [7] is a similar model

to KRR, but trained with the ϵ-insensitive loss, instead of the
MSE. The parameter ϵ defines an acceptable error margin -
the errors smaller than the margin are ignored during training,
resulting in a small number of support vectors. We can tune ϵ
to achieve the required accuracy. Since the ϵ-insensitive loss
is less sensitive to outliers than MSE, SVR is robust against
outliers. Similar to KRR, we apply SVR with the Gaussian
kernel to be capable of modeling non-linear relationships.
Models learned with SVR are sparse and thus typically faster
when they are deployed, compared to the non-sparse models
learned with KRR.
Neural Networks (NN) [6] are models consisting of artificial
neurons. A neuron converts a given input to the output by
applying a linear transformation with learned weights and then
a non-linear transformation, called activation. Typically, thou-
sands of neurons form a layer, and multiple layers are stacked,
where the features correspond to the input of the first layer
and the responses correspond to the output of the final layer.
The non-linearity of the activation allows to model non-linear
relationship between the features and the responses. Actually,
NNs with just a single intermediate layer (with sufficiently
many nodes) can approximately express any function. Deep
NNs with many layers showed excellent performance in many
classification and regression tasks, where the raw data (e.g.,
natural images) without any manual feature engineering are
directly fed into the network [8]. This is possible because
the first layers (the most layers except the few final layers)
work as an automatic non-linear feature extractor, if a deep
NN with a reasonable architecture is trained appropriately.
The advantages coming with a deep NN are the autonomous
generation of features from raw input and their optimal tuning,
which are transferable to related problems.

B. Related Work
1) Estimating Video QoE from Encrypted Traffic: With

the increasing adoption of network encryption, in-network
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QoE estimation is facing new challenges, as conventional
approaches, such as deep packet inspection (DPI) are not
applicable anymore. To overcome the issue, several approaches
have been proposed in literature to estimate the QoE from en-
crypted network traffic. The work in [9] presents a framework
which is able to extract the key influence factors for video
streaming QoE, namely stallings along with their duration,
the visual quality as determined by the resolution and video
encoding bitrate, as well as the quality fluctuations throughout
the play back. Based on a ground truth data set comprising
nearly 400,000 streaming sessions, the authors train a Random
Forest algorithm to classify the respective QoE influence
factors into a set of three pre-defined classes each. A similar
approach is followed in [10] for YouTube video streaming. In
addition to classifying specific QoE influence factors, such as
stallings and average quality, the authors also classify the video
sessions according to their overall QoE score. Therefore, the
authors train seven different types of classification models and
evaluate their performance by means of four different data sets,
gathered from a controlled WiFi lab environment as well as
from an operational mobile network. Besides the high accuracy
that can be achieved by the classification models, the work
also shows that despite the models have been trained in a lab
environment, they are still applicable to operational networks.

2) QoE Estimation in (5G) Mobile Networks: Mobile video
streaming is getting more and more popular. Due to additional
network-related KPIs, such as the channel quality, and addi-
tional characteristics of clients, e.g., their movement, QoE as-
sessment in mobile environments needs dedicated evaluations.
Therefore, [11] focuses on mobile networks for predicting
whether stalling occurs during video streaming. They train
a Generalized Linear Model (GLM) as well as a Support
Vector Machine (SVM) to perform a prediction based on the
wireless channel conditions and the number of active users.
Thereby, the authors distinguish moving and static users and
find that predictions are harder to perform for those users,
who are moving during streaming. The movement of users
for estimating the QoE is also addressed in our previous
work [5], which shows that the relevance of features differs
for moving and static user equipments (UEs). For moving
ones, features expressing variability gain importance and as
obtaining those features requires to monitor the network with
finer granularity, the costs for QoE estimation could increase
with user movement.

Another study on video QoE estimation using Machine
Learning in mobile networks is presented in [12]. The authors
rely on in-smartphone measurements describing the radio link
of the LTE connection. Accordingly, the feature set includes
statistics related to, e.g., the Channel Quality Indicator (CQI),
Reference Signal Received Power (RSRP), or the Carrier
to Interference Noise Ratio (CINR). Using these statistics,
a Random Forest model is trained in order to obtain the
MOS and different QoE influence factors, such as a video’s
blurriness or frame skips. Besides the evaluation of the trained
model’s accuracy, the authors study the correlation between
the different features and the MOS, and additionally perform
a root cause analysis to understand the model’s decisions.

3) Usage of New 5G NFs: The exploitation of the newly
introduced NFs in 5G systems for intelligent networking has
recently been proposed in literature. For example, it is exam-
ined how the NWDAF can be used for predicting abnormal
as well as expected behavior for a group of UEs, and for
forecasting the network load in an area of interest [13]. The
proposed architecture connects the NWDAF with other NFs
via the Service Based Interface (SBI) to allow mutual data
transfer. Using both, time series data and generated features
available at the NWDAF, different ML models are examined
with respect to their feasibility for the given problems. The
conducted study shows that NNs outperform LRR models
when it comes to network load prediction and that tree-based
XGBoost yields better classification performance compared to
logistic regression in the anomaly detection use-case.

Due to the huge amount of devices expected to be connected
to 5G systems, moving all data to a centralized unit for
analytics is inefficient. The need for running ML algorithms
in a distributed manner is discussed in [14]. Only then, a fast
decision making which minimizes the network response time
to user requests and which fulfills the latency requirement of
5G, can be guaranteed. The outlined proposal for a distributed
analytics architecture considers one centralized NWDAF in-
stance and several distributed NWDAF instances, which can be
co-located with other NFs and only collect data gathered from
that co-located NFs. Our previous work [15] proposed a work
flow for integrating ML-based QoE estimation in 5G networks
by means of utilizing the NWDAF and the AF. Thereby, the
latter is used to communicate ground-truth QoE information
from a third party application provider to the MNO. The
NWDAF, on the other hand, collects and processes network
telemetry data and trains an ML algorithm, so that at later
stages, the QoE can be estimated from the KPIs monitored in
the network.

The studies carried out in this manuscript differ from
previous works with respect to several distinct aspects. Instead
of estimating the value of specific QoE influence factors, our
goal is to estimate the overall MOS score of a completed
session. While this has been addressed in some previous works
as well, we want to emphasize that we do not make use
of classification, but solve a regression problem. Instead of
categorizing the QoE into a pre-defined, limited set of classes,
we estimate real numbers in the continuous range from 1 to
5. This allows for a wider range of use-cases, including those
where the QoE needs to be available on a fine-grained level.
In terms of the used features, we extend previous works by
combining the usage of radio-related statistics with end-to-
end flow statistics, instead of only using either one or relying
on very fine-grained packet-level statistics that are hard to
collect at scale. Our study is based on those monitoring data,
that can actually be collected by an MNO within the 5G
system according to 3GPP specifications. Apart from that,
our evaluations go beyond estimation accuracy by including
further qualitative and quantitative aspects which are relevant
from an operator’s point of view, such as the computational
complexity, the trackability, or the comprehensibility of ML
models. Finally, we note that the generalizability of our results
are enhanced by considering two distinct service types, i.e.
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Fig. 1: Integration of AF and NWDAF in the 5G architecture
to support third party information exchange and data analytics.

Voice over IP (VoIP) and Video on Demand (VoD), which
have significantly different QoS-QoE relationships.

III. CONTRIBUTIONS

In the scope of this manuscript, we first propose the usage of
two new NFs introduced with 5G, dedicated for data analytics
and third party information exchange, so to enable an ML-
based QoE estimation. In a next step, we conduct a practical
study showing the feasibility of such an approach in mobile
networks and compare the suitability of different regression
techniques in both, a quantitative and a qualitative manner.

A. Data Analytics-driven QoE Estimation in 5G Networks

Based on Figure 1, we describe two newly introduced NFs,
which are relevant for our work. The first one is the AF, a 5G
core network function, which can be owned and customized
by third parties. It is connected to the SBI, and thus allows
the communication between 5G control plane NFs (owned by
the MNO) and content or application providers, e.g., YouTube
or Netflix, in a standardized manner. The second one is the
NWDAF, which is also connected to the SBI and capable
of collecting and processing statistics from other 5G control
plane NFs, i.e., the Access and Mobility Management Function
(AMF), Session Management Function (SMF), or the Network
Management System (NMS). Besides, the NWDAF can also
obtain data from third parties via the AF, e.g., information
about the QoE. As the entity where all information is accumu-
lated, the NWDAF can be seen as the brain of the 5G system,
where ML algorithms may run and which provides intelligent
services to all NFs by exposing analytics, which other NFs
can invoke. Dedicated to an ML deployment, the NWDAF
can be decomposed into two logical functions: training and
analytics. The NWDAF which holds the logical function for
training takes care for the development of the model, including
is initial training and regular re-training with new training data,
to keep it up to date. The NWDAF containing the analytics
function applies the trained model (i.e., it estimates the QoE
in our case).

In the scope of this manuscript, we assume the following
workflow: The AP, which is aware of any application-related
information, provides the QoE scores via the AF. The MNO,

which can collect any network-related KPIs from the NFs con-
nected via the SBI, statistically processes the monitored data
at the NWDAF, i.e., it generates features from the monitored
data. The logical function of the NWDAF dedicated to training
is applied to learn the relationship between the generated
features and the QoE. Once the model is capable of obtaining
a satisfactory estimation accuracy, it can be deployed via the
NWDAF’s logical analytics function, allowing the MNO to
assess the QoE also in the absence of information provided
by the AP via the AF. Such a mechanism consequently allows
the MNO to perform QoE monitoring from its own collected
network telemetry data.

B. Research Questions and Practical Study

An MNO planning to integrate ML-based QoE estimation
into its network is faced with a variety of different chal-
lenges and design decisions. As there is no one-size-fits-all
solution, we elaborate in the following on the most important
involved questions and show how they are addressed within
our feasibility study by means of Figure 2, which classifies
our contribution with respect to the three major phases data
collection, model training and testing, and deployment.

The top of the illustration denotes our proposed concept
as introduced in Section III-A, exploiting new 5G NFs for
an ML-driven QoE estimation, thus referring to the generic
question: How can an MNO exploit new features provided
in 5G networks, so to estimate the QoE based on the avail-
able network KPIs? The blue squares denote the network
KPIs obtained during the data collection phase at different
instances 1 , e.g., at the UE or the Access Node (AN), which
are statistically processed to generate features. Additionally,
during this phase, true QoE scores are provided via the AF
(denoted as the purple box) from a third party AP. In the
course of our practical study, we gather these types of data
by means of network simulations 2 . Thereby, we consider
two distinct applications, i.e., VoD and VoIP, and take moving
as well as stationary clients into account. In this respect, the
following question needs to resolved: Which features need
to be provided at the NWDAF? Based on our generated
data set, we address this question by studying the correlation
between the network-related features and the QoE for both
service types to elaborate on the application-specific relevance
of different features 3 .

During the model training and testing phase, the logical
NWDAF function for training learns the relationship between
the network KPIs and the QoE 4 . The field of ML offers a
huge amount of individual techniques, differing with respect to
their training process, i.e., supervised vs. un-supervised learn-
ing models, as well as in terms of their respective prediction
target, which can be clusters of given data points, a catego-
rization of input samples into a pre-defined set of classes,
or actual numbers covering a continuous range. Furthermore,
the available models range from very simple approaches,
such as linear regression techniques, to highly advanced and
complex approaches like artificial neural networks. Which
one to choose is a crucial design criterion and depends on
numerous factors. Due to the vast amount of existing ML
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Fig. 2: Contributions of this manuscript with respect to the three phases data collection, model training and testing, and
deployment. Light green boxes denote elaborations carried out on the example of the five regression techniques.

techniques, an MNO is faced with the following question:
Which ML models should be trained and considered for
potential deployment? The suitability of a certain option
depends on a variety of different factors.

Firstly, the purpose of the QoE estimation reduces to a
limited set of potential ML algorithms for deployment. Dif-
ferent use-cases have different demands, e.g., in terms of the
estimation speed or the level of estimation granularity and
accuracy. If only a rough estimation of the system’s QoE is
of interest, it can be sufficient to run simple classification
algorithms using coarse-grained pre-defined classes. If the
QoE estimation should be used for a fine-grained QoE-aware,
real-time resource control on a per-flow level, the requirements
on estimation speed, accuracy, and granularity are significantly
higher. In our feasibility study, we assume that the MNO’s
goal is to estimate the QoE on the continuous MOS scale.
Accordingly, we train regression techniques 5 , which are
capable of predicting any continuous number in the given
range between 1 and 5. More specifically, we consider a
representative set consisting of the five different regression
techniques, as introduced in Section II: LASSO, LRR, KRR,
SVR, and NN. Compared to classification, which uses pre-
defined classes, e.g., low, medium, and high QoE, regression
models yield a finer granularity of the predicted output and
hence allow to cover a wider range of possible use-cases,
including reporting, on-demand troubleshooting, or automatic
corrective actions.

Secondly, the estimation accuracy is one of the key factors
when determining the algorithm to deploy. Hence, it is crucial
to evaluate how reliably an ML option performs. As today’s
networks are very heterogeneous in many terms, potential
influence factors on the estimation accuracy need to be exam-
ined. This includes for example the movement patterns of users

or the service type, for which the QoE should be estimated.
To account for this, we conduct a general performance com-
parison 6 of the ML techniques and additionally elaborate in
how far the service type, i.e., VoIP versus VoD, the movement
pattern of clients, or the true QoE, i.e., low, medium, or high,
potentially impact their estimation accuracy.

According to the proposed concept, during deployment,
the logical function of the NWDAF which is dedicated to
analytics, holds a trained ML model. Thus, based on the
network KPIs, it can estimate the QoE 7 . As a third point
when deciding about an ML option, an MNO should take the
computational and temporal overhead into account to ensure
that the mechanisms scale and can be applied efficiently to
not overload the responsible NF. For instance, the MNO needs
to be aware of the resource exploitation during training and
testing, as well as of the duration until an estimate is available.
In the scope of our feasibility study, we address this point
by analyzing the resource consumption, as well as the time it
takes the regression techniques to obtain the QoE estimates 8 .

Fourthly, there are different qualitative aspects an MNO
should consider when deciding about which ML algorithm
to deploy. This can be, for example, the comprehensibility
of a model or the required efforts for maintaining it. The
Internet ecosystem is highly dynamic, leading to the fact that
a once trained and deployed model will lose its validity with
ongoing changes in the system. For example, the usage of a
new voice codec in a VoIP service will affect the relationship
between the measured network KPIs and the resulting QoE.
The associations as learned by the original model might hence
be obsolete. Accordingly, it is advisable, or even mandatory,
for the MNO to still collect ground-truth data for updating
and re-validating a deployed model. By means of regular
sanity checks and re-training, the MNO needs to ensure that
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the model is still adequate, or – if necessary – deploy an
updated version to account for system changes. Consequently,
a deployed model can evolve over time, which potentially
raises another challenge if the MNO aims to keep track of
the evolution of the model. To account for those qualitative
aspects, we additionally perform a comparison of the different
regression techniques with respect to factors such as their
comprehensibility, trackability, or whether they provide built-
in features, e.g., supporting over-fitting prevention or feature
selection 9 .

IV. METHODOLOGY

The following section introduces the applied methodology.
We first detail on the simulation environment used to generate
the ground-truth data set and afterwards describe how the ML
models are trained.

A. Simulation Scenarios and Ground-Truth Data Collection

This section first presents our simulation environment based
on the discrete event simulator OMNeT++. Afterwards, we
describe the considered applications and the QoE models
applied to retrieve the true QoE on MOS scale. Next, the
ground-truth data collected within the experiments and the
evaluation scenarios are presented.

1) OMNeT++ Simulation Environment: For generating the
network- and application-related ground-truth data, we rely
on OMNeT++ [16] and integrate the frameworks INET and
SimuLTE [17] into our simulation setup.1 Although SimuLTE
simulates 4G networks, the type of monitored information is
the same with 5G networks. For instance, the equivalent of 4G
Packet Gateway (PGW) and eNB data is information collected
from UPF and gNB in 5G. At this stage of our research,
the main point of using SimuLTE is to obtain monitoring
information from both, access and core network. As we
assume the monitoring information to be available at NWDAF
and do not consider any signaling exchange for data collection
yet, SimuLTE can be used for our purpose of generating user
plane traffic in a mobile network. From the perspective of the
radio technology, 5G has much higher data rates compared
to 4G. However, the principles of system load (number of
UEs in a cell) and radio quality will still play a role in 5G
systems. The number of connected devices will be significantly
increased within 5G systems, which is mainly due to massive
IoT and the consequential enormous communication between
sensors. Please note that this circumstance is no limitation to
our conducted study, because the general relationship between
network KPIs and the resulting QoE for our set of applications
will not be affected by the increased connectivity.

Our simulations consist of a single AN which serves a
varying number of active UEs, which differ with respect to
their mobility characteristics. We consider static clients, which
do not move throughout the experiments, and moving clients,
which walk (3 kmph) or drive (50 kmph) between different
points of interest (POIs). To simulate realistic movement
patterns, we use the small world in motion (SWIM) movement
model [18].

1https://github.com/fg-inet/ML-simulation-and-ground-truth

2) Considered Applications and QoE Models: For each ser-
vice type, we apply existing QoE models, which allow comput-
ing the QoE based on collected network- and/or application-
related KPIs. Please note that we assume in this work that the
AP provides the QoE, e.g., on MOS scale, to the MNO. Having
this information and the network telemetry data, the MNO can
build its own ML-based model, which allows – once the model
is trained so to retrieve a reliable estimation – for obtaining
the QoE only based on network-related KPIs. That is, we skip
the step of applying QoE models which require application-
level information, such as the stalling duration, and obtain the
QoE directly from the collected network statistics.
The VoD client implements HTTP Adaptive Streaming
(HAS) [19], where the video content is split into short seg-
ments and made available in different qualities. This allows the
client to dynamically select the next video segment’s quality
based on throughput measurements or the buffer state. We
consider segments of five seconds each and a total video
duration of 400 seconds, resembling the average session
duration of popular VoD platforms, such as dailymotion or
hulu2. The video is made available in four different qualities,
comprising bitrates of 500 kbps, 1 Mbps, 1.5 Mbps, and
3 Mbps. The VoD client applies a buffer-based heuristic,
determining the next segment’s quality based on the video
buffer’s filling level. The lowest quality level is chosen if the
buffer is below 10 seconds. The second, third, or fourth quality
level is chosen if the buffer exceeds the threshold of 10 s, 20 s,
or 30 s, respectively. To not limit the results to a specific QoE
model, we apply two different existing models for obtaining
the QoE from application-specific metrics. The first one is
the standardized ITU-T P.1203 model [20]–[22], where we
consider mode 0 (without bitstream data or fame-level details)
and only the visual part, i.e., we apply the P.1203.1 model. The
second one is the cumulative quality model (CQM) [23]. In
the following, we will refer to these models as VoD-P.1203
and VoD-CQM. Both take the per-segment video bitrate, the
number of stallings, their durations, and the initial delay into
account. Furthermore, the models consider the frequency and
amplitude of quality changes. The QoE is computed on a per-
session level, i.e., after the full video clip has been played
back. CQM allows to set different parameters, such as weights
for quality window metrics. In this work, we use the default
values from the implementation’s repository3.
For VoIP, we only model the receiver side, i.e., the listener of
the conversation. The talk spurt duration (seconds) follows a
Weibull distribution with a scale of 1.4 and a shape of 0.82.
Between the talk spurts, there is silence, which also follows a
Weibull distribution (0.899, 1.089). We use the g726 codec and
a bitrate of 40 kbps. Although better voice codecs exist, the
voice processing does not have to be representative of reality,
but at least allow quality variation all along the available
range, so that training and testing data can be performed to
compare the ML techniques under study. The QoE of VoIP
clients is computed using the E-model as defined in the ITU-

2https://www.statista.com/statistics/910910/
us-most-popular-us-video-streaming-services-session-duration/

3https://github.com/TranHuyen1191/CQM
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TABLE I: Collected network KPIs and applied statistics for
feature generation. Check marks denote that the monitoring
information is collected for the specific application.

Network KPI Abbreviation VoD VoIP

Access node throughput on uplink AN TP UL ✓ ✓
Access node throughput on downlink AN TP DL ✓ ✗
User equipment throughput on uplink UE TP UL ✓ ✗
User equipment throughput on downlink UE TP DL ✓ ✓
Channel quality indicator on downlink CQI DL ✓ ✓
Channel quality indicator on uplink CQI UL ✓ ✗
TCP round trip time RTT ✓ ✗
End to end delay E2E delay ✗ ✓
Radio link control delay RLC delay ✗ ✓
Hybrid automatic repeat request error rate HARQ ER DL ✗ ✓

Applied Statistics Abbreviation(s)

Average / minimum / maximum / median avg / min / max / median
Standard deviation/ variance std / var
25th percentile / 75th percentile 25perc / 75perc
Coefficient of variation / kurtosis / skewness cov / kurt / skew
Unbiased standard error of the mean sem

T G.107 standard [24]. Thereby, a MOS value is computed
after each talk spurt. As a client’s overall QoE score for the
whole VoIP session, we consider the average MOS of all its
talk spurts during the session. Newer models, such as the ITU-
T P.863 (POLQA) are capable of better reflecting the user’s
perceived voice quality. POLQA is a full reference metric,
i.e., it needs a reference audio sample to compare it against
the received audio signal to obtain the MOS. However, due
to the simulative nature of our approach, such full reference
metrics cannot be applied in our case. Nevertheless, the general
relationship between the MOS and its impacting factors, i.e.,
delay and packet loss rate, is the same for both models [25],
[26]. Hence, we can expect a similar performance of the
applied ML models, independent of the specific QoE model
applied.

3) Collected Ground-Truth Data and Features: With the
term ground-truth data, we refer to those data points, where
both, network-related information corresponding the VoIP or
VoD session and its associated true QoE score are available.
While the estimated QoE is the output of the trained ML
model, the true QoE is reliably retrieved from the applied
QoE models. Our monitored network information for the
different application types are summarized in Table I. All of
the monitoring data is collected as time series on a per-second
scale granularity. To generate the features, which are the input
for the ML models to estimate the QoE, we apply the twelve
different statistics shown in the table to the per-session time
series. Hence, for one complete video stream or one VoIP
call, there is exactly one value for the respective combination
of monitored data and statistic, i.e., feature. For example, in
the case of VoD, where the twelve statistics are applied to the
seven collected network KPI time-series, we obtain in total
84 feature values used for estimating the QoE of that specific
video session.

Please note that in the case of VoIP, where we only consider
the transmission from sender to receiver, there is no up-link
related monitoring information. The only exception is the AN
throughput, whose UL throughput reflects the sum of DL
throughput of all active UEs. We furthermore collect two
different types of delays in the case of VoIP: the end-to-end
delay and the Radio Link Control (RLC) delay. The end-to-end

delay as obtained in our simulation is an in-app measurement
and possibly hard to obtain by the MNO. However, the MNO
is in any case capable of collecting the RLC delay in a
straightforward manner from the AN on a per-UE basis.

The 3GPP specification TS 28.552 for 5G performance
measurements [27] denotes how and where the different mon-
itoring data can be obtained within the 5G system. We want
to emphasize that not only are all of the KPI measurements
used throughout our study available, but that they can be ob-
tained on an even more detailed and comprehensive level. For
example, the smallest scale for monitoring the UE downlink
throughput is defined by one HARQ transmission and besides
the RLC delay, an MNO could consider the delay occurring
along the different entities, e.g., between the RAN and the UE
or between the RAN and UPF.

4) Evaluation Scenarios: In order to obtain QoE values
exploiting the MOS range as good as possible, we run simula-
tions with a slight overload of the cell’s capacity. We consider
80 and 160 active clients for VoD and 400 for VoIP, as VoIP
clients consume significantly less bandwidth compared to VoD
clients. The clients are either moving or static and we set
the following distribution with regard to the UEs’ mobility
patterns: 100% static, 100% moving, or half moving half non-
moving. To vary the impact of the clients’ movements on the
network KPIs, we configure the following POI settings: A
single POI, either located at the edge of the cell or very close
to the AN, as well as 10 or 100 existing POIs, which are
randomly placed within the cell. Finally, we simulate each
configuration with different seeds, which determine the initial
placement of the UEs.

B. Training of Machine Learning Models

We split the set of ground truth-data samples into a training
set, which contains 80% of the data points, and a test set
for the remaining 20%. The training set is used for training
the ML models and tuning their hyper-parameters, i.e., those
parameters which are not set upfront, but optimized during the
training phase. For tuning the hyper-parameters with LASSO,
LRR, KRR, and SVR, we apply a grid search. When tuning
the NN, we use the optimizer Adam [28]. During training, we
apply a 5-fold cross-validation, i.e., the training is repeated
5 times. In each of the five rounds, a validation error and
a training error are obtained. A high validation error in
combination with a low training score indicates an over-fit
of the model, while a high validation error in combination
with a high training error reveals an under-fitting model. The
sweet spot is located where the validation error is low, with
a moderate training error. The hyper-parameter set which
maximizes the validated performance (averaged over the 5
folds) is chosen for the final model, which is then applied
to the test set, which only contains samples the ML model
has not seen so far, i.e., none of the samples of the test set
were used to train the model. By applying the model to the test
set, we obtain the test error, which is used for reporting the
final performance. Consequently, when evaluating a model’s
accuracy in the following parts of this work, we are referring
to the test error.
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TABLE II: Tested parameters for the different ML algorithms. The selected parameters are those which yield the highest
estimation accuracy upon the tested parameters and are used in the evaluation chapter.

VoD VoIP

Parameter Description Tested # comb. Selected Tested # comb. Selected

LASSO λ Regularization [0 : 0.1] (|λ| = 21) 21 0.0005 [0:0.1] (|λ| = 21) 21 0

LRR λ Regularization [0 : 500] (|λ| = 28) 28 10−9 [0.1 : 600] (|λ| = 28) 28 0.1

KRR λ Regularization [0 : 10] (|λ| = 23) 23 0.07 [0 : 1] (|λ| = 23) 23 0.01

SVR C Regularization [0.1 : 6] (|C| = 16) 32 4.92 [7 : 12] (|C| = 10) 60 12
ϵ Acceptable error [0.01, 0.1] 0.01 [0.01 : 0.1] (|ϵ| = 6) 0.03

NN

LR Learning rate [0.001, 0.01, 0.1]

504

0.001 [0.001, 0.01, 0.1]

504

0.01
#epochs Number of epochs [100, 200, 500, 1000] 1000 [100, 200, 500, 1000] 1000
#neurons Number of neurons [10, 50, 200] 50 [10, 50, 200] 50
batchS Batch size [10 : 1000] (|batchS| = 7) 200 [10 : 1000] (|batchS| = 7) 200
AF Activation function tanh, relu relu tanh, relu relu

TABLE III: Number of samples and average MOS ± standard
deviation for the different service types and data sets.

VoD-P.1203 VoD-CQM VoIP
Dataset Size MOS Size MOS Size MOS

all 13952 2.18±0.60 13952 1.65±0.79 27592 4.17±0.49
stationary 3210 2.41±0.82 3210 1.97±0.98 8392 4.04±0.67

moving 10742 2.12±0.49 10742 1.55±0.70 19200 4.23±0.37
low 8095 1.83±0.07 10139 1.89±0.13 291 1.21±0.24

medium 5067 2.46±0.39 3295 2.68±0.35 2136 2.97±0.40
high 790 4.02±0.36 518 3.74±0.16 25165 4.31±0.18

Table II summarizes the various settings tested for each
respective parameter of an ML option. For the NN, we
consider a single hidden layer. The table further denotes those
parameter settings, that have been chosen for the QoE esti-
mation for the different service types. The chosen parameters
are those which yield the highest estimation accuracy, i.e., the
lowest validation error expressed as MSE, and are used during
the performance comparison in the evaluation chapter.

V. GROUND-TRUTH DATA SET ANALYSIS

This section presents the characteristics of the ground-truth
data set. We first detail on the number of collected samples and
show the distributions of the ground-truth QoE for VoIP and
VoD. Next, we study the correlations of the network-related
features with QoE and exemplarily show the relation between
the most powerful features’ values and the respective MOS
scores.

A. Ground-truth QoE Distribution

In order to evaluate the ML performance for different true
QoE scores and movement patterns, we divide our ground-
truth data set into subsets. We distinguish between stationary
and moving clients, as well as between low (MOS < 2.0),
medium (2.0 ≤ MOS ≤ 3.5), and high QoE (MOS > 3.5).
Table III denotes the number of ground-truth samples and the
average MOS values along with their standard deviations for
each service type in the different subsets.The average QoE of
the VoD clients is higher when using the ITU-T P.1203 model
(2.18), compared to using CQM (1.65). With both models,
stationary clients obtain a higher QoE than the moving clients.
In the moving clients data set, we observe a lower standard

deviation compared to that for stationary clients. This can also
be observed for VoIP, where moving clients have a standard
deviation of 0.37, while for the stationary ones, the standard
deviation increases to 0.67. Contrary to VoD, moving VoIP
clients obtain a slightly higher QoE than stationary ones. This
is counter-intuitive, since mobility is a well known degradation
factor in telecommunications. This issue nevertheless does
not pose a problem in terms of training and testing the ML
models, as the global distributions of MOS scores, and hence
the training of the models, are not biased.

The QoE distributions for the different services are denoted
in Figure 3a. The x-axis shows the ground-truth QoE scores,
the y-axis the ECDF. While for the VoD clients, about 60%
(P.1203) or 70% (CQM) suffer from low QoE, about 90% of
the VoIP clients achieve a high MOS score. We want to add
here that the data sets are not equally distributed in terms of
the true QoE. The low QoE scores for the VoD clients can be
explained with their high bandwidth requirements, which often
cannot be fulfilled due to the relatively high cell load during
simulation. Although the ground-truth QoE distribution could
easily be harmonized by removing samples of too frequent
MOS values, we use the data set as it is. An MNO who actually
deploys ML in its system will face similar issues. Additionally,
it allows us to study the estimation accuracy in a more natural
and realistic setting.

B. Relationship Between Most Expressive Feature and QoE
Next, we study the relationship between the QoE for VoD

and VoIP clients and their respective features with the highest
correlation according to Pearson’s correlation coefficient. For
VoD, independent of the applied model, the feature having
the highest correlation with QoE is the average downlink
throughput. We first detail on this feature’s impact on the
VoD QoE when computed according to the P.1203 model.
Figure 3b denotes the average UE downlink throughput on
the x-axis and the QoE scores on the y-axis. Different colors
represent the QoE ranges, i.e., low, medium, and high. The
white line shows the average values of the UE downlink
throughput obtained within discrete MOS intervals with steps
of 0.1. For example, it denotes the average UE downlink
throughput of all clients achieving a MOS between 3.5 and
3.6. Additionally, the dotted lines denote the average value +/-
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Fig. 3: Ground-truth QoE for the different services and its relation with the respective most expressive network-related feature.

the standard deviation. We observe a linear behavior between
the average throughput and QoE. As expected, the higher
the average throughput, the higher the MOS score. The plot
further shows that with increasing MOS scores, the standard
deviations increase and there are more throughput values that
lie far away from the average of the 0.1-sized QoE interval.
Figure 3c accordingly shows this relationship for the VoD QoE
as computed by CQM. As expected, the relationship between
the average downlink throughput and QoE is similar as with
VoD-P.1203.

For VoIP, the feature with the highest correlation to QoE
is the standard deviation of the downlink RLC delay. The
impact of this feature’s values on the MOS scores is denoted
in Figure 3d. The higher the RLC downlink delay, the lower
the MOS. Contrary to the VoD clients, the standard deviation
of this feature’s value increases with decreasing MOS values.
Furthermore, we can see several outliers, especially in the
region of medium and low QoE.

C. Feature Correlation Analysis

Figure 4 denotes the 40 features having the highest correla-
tion with QoE for VoIP and VoD. For the VoD QoE according
to P.1203, the highest correlation observed is the average
UE downlink throughput (0.90), followed by the average UE
uplink throughput with a value of 0.86. The subsequent 16
features are all related either to the UE uplink or downlink
throughput, showing the high relevance of this monitoring
statistic for the QoE estimation. The first feature which is
related to a different monitoring metric than UE throughput is
the 25th percentile of the UE uplink CQI, with a correlation
coefficient of 0.38, followed by the minimum and average
uplink CQI (0.37). The correlations when using CQM differ
only slightly. Same as with P.1203, the two highest correlations
are obtained for the average UE throughput on downlink (0.90)
and uplink (0.86). Again, the first feature not related to UE
throughput is the 25th percentile of UL CQI, which has a
slightly higher correlation of 0.41 when using CQM instead
of P.1203. The most expressive feature in case of VoIP is
the standard deviation of the RLC downlink delay with a
correlation of -0.86. In general, features generated from the
RLC delay are highly correlated with the VoIP QoE. The first
feature which is not related to any delay metric is ranked on

the 20th place. It is the maximum UE downlink throughput
which has a comparably low influence on the QoE with a
correlation coefficient of only -0.17.

VI. PERFORMANCE EVALUATION OF THE DIFFERENT
REGRESSION TECHNIQUES

This section evaluates and compares the different regression
techniques applied in this work. We first perform a quantitative
assessment and study the QoE estimation accuracy. Next,
we investigate the different mechanisms with respect to their
resource requirements and the duration for training and testing
the models. Finally, we compare the different mechanisms in
a qualitative manner.

A. Quantitative Assessment

For assessing the different mechanisms quantitatively, we
first take a detailed look on the estimated versus true QoE.
In a next step, we investigate how the estimation accuracy
differs for the different data sets, i.e., depending on a client’s
movement characteristic or true QoE. The quantitative assess-
ment concludes with an investigation of meta KPIs, such as
the duration or CPU load for running the mechanisms.

1) Estimated vs. True QoE: This section studies the devia-
tion of the estimated MOS score from the true score. Thereby,
we also evaluate whether a mechanism tends to over- or under-
estimate the QoE. We assume an estimation to be accurate, if
it deviates less than 0.1 from the true score. For instance, if the
true QoE is 2.7, any estimation between 2.6 and 2.8 is seen as
accurate. Values below 2.6 represent an under-estimation and
above 2.8 an over-estimation, respectively.

Figure 5 illustrates the true QoE and its estimation from
the five regression techniques for VoD when using the ITU-T
P.1203 model. The angle bisector represents the cases where
the estimation equals the true QoE, i.e., the optimal case.
Values above this line are under-estimations (shown in blue),
values below this line are over-estimations (shown in red). All
of the tested mechanisms have a similar fraction of under-
estimates. The lowest rate is obtained for SVR (14.5%) and
the highest one for LASSO, with about 17%. More significant
differences can be observed when it comes to the QoE over-
estimates. Thereby, KRR outperforms the other mechanisms
with a fraction of about 14% over-estimation. NN performs
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Fig. 4: Correlation between network-related features and QoE for the different service types. Only the 40 features with the
highest Pearson correlation are shown. Values are sorted from left to right according their absolute correlation values.

Fig. 5: VoD - ITU P.1203. Deviations of estimated QoE larger than +0.1 are counted as over-estimation, deviations larger than
-0.1 are counted as under-estimation. Estimated values within the +/- 0.1 boundary are assumed as accurate estimations.

the worst and over-estimates the QoE in nearly half of the
cases.

When using CQM instead of P.1203, the accuracy decreases
for all of the five regression techniques, as shown in Fig-
ure 6. Similar as with P.1203, SVR and KRR yield the
lowest fraction of under-estimations. However, the fractions
are increased by roughly 7% compared to P.1203, resulting
in an under-estimation rate of about 22% for SVR and 23%
for KRR. The over-estimation rate increases as well when
using CQM instead of P.1203. The only exception is NN,
which over-estimates less for CQM than for P.1203. Another
observation that can be drawn compared to P.1203 is the
increased magnitude of deviations from the true QoE score.
The data points lie farther away from the angle bisector,
indicating that inaccurate estimates are of higher magnitude
with CQM.

For VoIP, the QoE estimates tend to be more accurate, as
shown in Figure 7. With LASSO, LRR, KRR, and SVR,
the fractions of both, over- and under-estimation, are below
10%. SVR outperforms the other mechanisms and can achieve
an accurate estimation within the +/-0.1-boundary for about
86.7% of the test samples. NN has a clear tendency towards
under-estimating the QoE (29%), but over-estimates with a
similar rate as the other four regression techniques.

2) Estimation Accuracy (RMSE): Next, we compare the
five regression techniques using the root mean square error
(RMSE). Thereby, we do not only consider the used ap-
plication type, but also evaluate the estimation accuracy for
different subsets of our ground-truth data set. For instance,
when reporting the performance metrics, we take into account

whether a UE was stationary or moving, and whether the
ground-truth QoE is low, medium, or high. Please note that the
models have not been explicitly trained on the subsets. Instead,
they have been trained and optimized on the data set all and
we only evaluate their performance within these subsets. The
RMSE scores are illustrated in Figure 8. For the VoD-P.1203
(Figure 8a), there are only slight differences between the five
mechanisms in terms of RMSE in the complete data set (all).
LASSO and LRR both obtain an RMSE of 0.18 and KRR
yields 0.19. SVR is most accurate with an RMSE of 0.16, the
NN has the highest error with 0.22. If the RMSE is considered
separately for stationary and for moving clients, it shows that
for VoD - P.1203, in any case, the estimation is more accurate
for moving clients. This is most significant for SVR and NN,
which yield an RMSE of 0.26 and 0.29 for stationary clients,
but can achieve 0.16 and 0.19 for moving ones.

Next, we consider the RMSE separately depending on the
true ground-truth QoE. For low QoE scores, all techniques
achieve a high estimation accuracy. SVR scores best with
an RMSE of 0.08. The highest errors are obtained for NN
and KRR with an RMSE of 0.15 each. For medium ground-
truth QoE scores, the estimation errors increase for all five
regression techniques. As before, SVR outperforms the other
approaches and achieves an RMSE of 0.19. For high ground-
truth QoE scores, we see again a decrease of the estimation
accuracy. Compared to the low QoE subset, the RMSE scores
are about the fourth-fold.

For the VoD-CQM (Figure 8b), the estimation error in the
overall data set is higher compared to VoD-P.1203. SVR
achieves the lowest RMSE with 0.23 (0.16 for P.1203) and
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Fig. 6: VoD - CQM. Deviations of estimated QoE larger than +0.1 are counted as over-estimation, deviations larger than -0.1
are counted as under-estimation. Estimated values within the +/- 0.1 boundary are assumed as accurate estimations.

Fig. 7: VoIP. Deviations of estimated QoE larger than +0.1 are counted as over-estimation, deviations larger than -0.1 are
counted as under-estimation. Estimated values within the +/- 0.1 boundary are assumed as accurate estimations.
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Fig. 8: RMSE scores obtained with the different regression techniques for the considered service types in the different subsets.

NN has the highest RMSE with 0.27. Again, the accuracy for
moving clients is slightly better. However, the difference is less
significant as with the P.1203 samples. Furthermore, low QoE
scores can be estimated with higher accuracy than medium or
high ones. The highest RMSE in the low QoE subset is 0.23
obtained from NN. This is still lower than the lowest RMSE
in the medium QoE subset, which is 0.35 for KRR.

Finally, we investigate the estimation accuracy for VoIP,
as shown in Figure 8c. Considering the whole data set (all),
SVR achieves the lowest RMSE with 0.10 and LASSO the
highest with 0.17. In general, the estimation is more accurate
for VoIP, compared to VoD. Contrary to VoD, the QoE of
stationary clients can be estimated with higher accuracy than

the QoE of moving clients. Furthermore, Figure 8c shows that
the VoIP QoE estimation is more accurate for higher ground-
truth QoE values. While KRR achieves the best estimation
accuracy in the low QoE subset with an RMSE of 0.48, it
performs worst compared to the other mechanisms in the high
QoE subset, but is still very accurate with an RMSE of only
0.12. This can be explained by the lower amount of ground-
truth samples in the low QoE subset. Additionally, we showed
in Figure 3d that with lower QoE scores, the values of the
feature std RLC Delay DL are more spread along the x-axis,
i.e., the relationship between the feature and QoE becomes
less distinct and consequently makes the estimation of those
samples more difficult. Finally, we note the low estimation
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Fig. 9: Resource consumption of the five regression techniques
for training (squares) and testing (circles). Errorbars denote the
standard deviation obtained after five repetitions.

accuracy of LASSO and LRR in the low QoE subset. While
the other three mechanism yield an RMSE around 0.5, it is
0.97 for LASSO and 1.03 for LRR. A possible explanation for
the low performance of these two linear models is their limited
capability to accurately capture the non-linear relationship
between the delay, its variation (jitter), and the QoE. Although
the non-linear models also outperform the linear ones in the
data set all, the effect is more obvious when it comes to the
low QoE scores, where the delay and its variation actually
play a role and degrade the QoE.

In addition to the RMSE, we evaluated the estimation
performance according to Pearson’s correlation coefficient,
Spearman’s rank correlation coefficient, MSE, and median
absolute error. Similar as for the RMSE, with respect to
these metrics, the two kernel-based methods KRR and SVR
outperform the other approaches in most of the cases.

3) Meta-KPI Analysis: Our meta-analysis for the perfor-
mance of the regression techniques includes several metrics
expressing the computational overhead of the ML models.
Figure 9 denotes the CPU and RAM usage during training and
testing, i.e., estimating the QoE for the samples in the test set.
The metrics obtained for VoD are shown in Figure 9a. LRR
and NN are CPU- and RAM-efficient during training. KRR
has a higher RAM usage compared to the other mechanisms,
while SVR and LASSO have the highest CPU-load during
training. During testing, the most CPU-efficient approach is
SVR and the most RAM-efficient approach is NN.

Figure 9b shows the resource consumption for VoIP. Again,
KRR has the highest RAM usage during training, however, in
another order of magnitude. While with VoD, it used 15.5%
of the RAM, it increases to 31.8% with VoIP. The RAM usage
is similar for the remaining approaches and they mainly differ
in terms of their CPU usage. The highest CPU usage during
training is observed for SVR, the lowest one for LRR. During
testing, similar as with VoD, SVR is the most CPU-efficient
approach and LASSO the least efficient one.

Finally, we denote the duration for training and testing in
Figure 10. For VoD (Figure 10a), LRR, LASSO, and NN
are capable of estimating the QoE of the 2790 test samples
in about 0.52 seconds. KRR and SVR, the methods applying
the kernel trick, are less efficient and need about 2.3 seconds.

101 102 103

Training Duration [s]

0.5

1.0

1.5

2.0

2.5

Te
st

in
g 

Du
ra

tio
n 

[s
]

LASSO
LRR
KRR
SVR
NN

(a) VoD

101 102 103 104

Training Duration [s]

2

4

6

8

Te
st

in
g 

Du
ra

tio
n 

[s
]

LASSO
LRR
KRR
SVR
NN

(b) VoIP

Fig. 10: Time needed to train the five regression techniques
and duration for estimating the QoE with the trained model.
Errorbars denote the standard deviation after five repetitions.

Figure 10b shows the respective results for VoIP. We point out
that the VoIP testset contains 5518 test samples, roughly the
double compared to the VoD testset. Again, LRR, LASSO,
and NN are the fastest estimators and need about half a second.
It takes 3.9 seconds for SVR, and KRR has the longest
estimation duration with about 8 seconds.

These results are consistent with the theoretical complexities
denoted in Table IV. During training, the kernel methods, i.e.,
KRR and SVR, are slower than the linear methods LASSO
and LRR because dn2 > d2n, where d = 84 (number of
features), and n = 11160 (training samples) for VoD and
d = 72, and n = 27592 for VoIP. Training the NN with
backpropagation takes more time. For testing, similarly, the
kernel methods are slower than the others including NN. This
is because their complexity is proportional to the number of
training samples n, while the others do not depend on n.

B. Qualitative Assessment

Besides the typical performance metrics, stakeholders such
as MNOs also need to take qualitative aspects into account
when deciding which algorithm to deploy in their networks.
In the following, we use qualitative scales and classify the
algorithms applied in this work with respect to different design
decisions, as shown in Table IV.

1) Complexity and Required Data Set Size: Primarily, the
required size of the data set, which allows to train the
model adequately, depends on the complexity of the problem.
Nevertheless, the required amount of data also depends on
the used model itself. In general, more complex models (i.e.,
with a high dimensional weight parameter space) require more
data, unless unreasonably strong regularization is applied.
LASSO and LRR both have a computational complexity
of O(d3 + d2n) during training, where d and n are the
number of features and the number of training samples. For
testing, their complexities are O(d′) and O(d) respectively for
each test sample, where d′(≪ d) is the number of non-zero
weights after training. Both linear models have a relatively low
dimensional parameter space (usually the number of features
plus one), and hence their requirements in terms of the number
of samples in the training data set are comparably low.
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TABLE IV: Classification of the evaluated mechanisms with respect to different qualitative aspects.

Topic Description LASSO LRR KRR SVR NN

Complexity

Computational complexity for training O(d3 + d2n) O(d3 + d2n) O(n3 + dn2) O(n3 + dn2) linear to n
Computational complexity for testing O(d′) O(d) O(dn) O(dn) linear to d
Comprehensibility by humans Easy Easy Medium Medium Hard
Number of settable hyper-parameters 1 (λ) 1 (λ) 2 (λ and ker-

nel) + kernel-
specific settings

3 (C, ϵ, ker-
nel) + kernel-
specific settings

∼ 10

Number of model parameters to tune max #features+1 #features+1 #samples #samples #NN connections
Complexity to finding the (near) optimum Easy Easy Medium Medium Hard

Data set Requirements on the data set size Low Low Medium Medium High
Sensitivity towards outliers High High Medium Low Medium

Feature selection Detection of relevant features Easy (Integrated) Dedicated step needed (e.g. PCA, correlation analysis)
Reducing the number of used features Easy (tuning α) Hard/Dedicated step needed if not all features should be used

Trackability Feasibility to track the models evolution Easy Medium Medium Medium Hard
Amount of data that needs to be tracked Low Low Low Low Medium

Over-fitting
Sensitivity towards over- or under-fitting Low Low Medium Medium Medium
Automatically applied prevention mechanisms Yes Yes Yes Yes No
Efforts to prevent over-fitting Low Low Low Low Medium

Service coverage Applicability to different types of problems Low Low High High High

The two non-linear models KRR and SVR have complex-
ities of O(n3 + dn2) and O(dn) for training and testing,
respectively. Compared to the linear models, KRR and SVR
with non-linear kernels typically require more data in order
to learn the higher order dependencies. The complexity for
training the NN is linear to n and for testing linear to d, but
it highly depends on the architecture in both cases. Typically,
the training time of the NN is longer than the kernel methods
unless n is very large. Its benefits appear when a complex
architecture is trained on a large data set. In this sense, it
requires a large amount of data.

Outliers are critical in general when it comes to training ML
algorithms and should be eliminated during the pre-processing
step, if possible. The sensitivity towards outliers mainly de-
pends on the loss function to be minimized — squared losses,
e.g., MSE, are highly sensitive to outliers, while (piece-wise)
linear loss is robust. Therefore, SVR trained with the piece-
wise linear ϵ-insensitive loss tends to be more robust than the
other models.

2) Training and Hyper-parameter Tuning: For the ML
model for which the training is performed by solving a
convex problem, reliable solvers are accessible — the prob-
lem is solved analytically or by an iterative algorithm with
convergence guarantee. The training objectives for LASSO,
LRR, KRR, and SVR are all convex, and therefore, we
can expect that the model is stably trained when the model
hyper-parameters are set appropriately. On the other hand,
NN is trained by solving non-convex problems, and available
state-of-the-art solvers are only guaranteed to converge to a
local solution. There are many tips on choice of solvers, e.g.,
stochastic gradient descent or ADAM [28], initialization, and
algorithm parameter setting, e.g., learning rate, momentum,
the number of epochs, batch size, to likely get a “good”
local solution, but good setting can depend on the model
architecture and the model hyper-parameters, and therefore,
cannot be fully automatic and human intervention is necessary
when training fails. The model hyper-parameters have to be
set appropriately. The linear methods, LASSO and LRR,
have a single regularization parameter, which can be tuned

by grid search on the validation error, i.e., prediction error
on validation data. The kernel methods, KRR and SVR,
have bandwidth parameters, which should be tuned, although
the default value (γ = 1) can also work, assuming that
the training data is appropriately pre-processed. For NN,
the architecture corresponds to the model hyper-parameters,
including the number of hidden layers, the neuron type, e.g.,
fully-connected, convolutional, pooling, etc., and the number
of nodes in each layer. For extensive exploration, Bayesian
optimization can be used.

3) Feature Selection and Interpretability: Finding the fea-
tures that are relevant for estimating the QoE is important.
Practically, this information can be used to reduce the costs
for the estimation (e.g., collecting the data and processing it
to generate the features), and allows to understand what the
ML model has learned, or explain why it predicts a particular
response for particular input features. The latter is important
when ML models are deployed in real applications that require
high reliability and security. For linear models, the learned
weights can be seen as the importance of the corresponding
features, and therefore are easily interpretable – the features for
which the learned absolute weights are large are relevant for
predicting the response. However, correlations between fea-
tures can cause spuriously detected relevant features, because
the contribution from the two positively correlated features
with large positive and negative weights, respectively, can
cancel each other out. LASSO was proposed to avoid this
phenomenon. The sparsity inducing L1 regularizer suppresses
the contribution (i.e., weight) from unnecessary features, and
its solution for a fixed number of non-zero weights are guar-
anteed to correspond to the set of features that best predicts
the response. The kernel methods and NN are seen as black-
box predictors, and there is no straightforward way to interpret
their decisions. In a recently emerging research field, called
explainable artificial intelligence (XAI) [29], researchers are
tackling to address this issue, and many methods have been
and are being developed. However, no existing method is guar-
anteed to correctly explain the ML model, and furthermore,
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vulnerability against adversarial attack was pointed out [30].
Accordingly, interpreting non-linear ML models is so far a
relatively hard task, requiring at least some human effort and
expert knowledge.

4) Trackability: If an ML model is re-trained regularly
using new ground-truth data, it will evolve over time. This hap-
pens for diverse reasons. The content provider could change
the model used to compute the QoE which is communicated
via the AF or it could adjust application settings. For the
example of VoD, this could be a change in the quality switch-
ing thresholds, a reconfiguration of the maximum amount of
buffered playtime, or changing video encoding characteristics,
e.g., the segment duration or video bitrate. In case of VoIP,
such a change could be the implementation of a new voice
codec. Furthermore, changes regarding the network config-
uration, such as applying another scheduling algorithm for
resource allocation at the AN, might influence the correlation
between network-related features and QoE. It might be of
interest for an MNO, to monitor how the model evolves over
time. For instance, to track which features gained importance
and which ones became less relevant. Accordingly, the tracka-
bility of a model mainly depends on three factors, which have
previously been discussed: Its capability for feature relevance
analysis, its comprehensibility, and its number of (hyper-
)parameters. Tracking how the model evolves over time is
very simple with LASSO. It returns a p-value for each feature,
which can be seen as a measure of its respective importance to
estimate QoE. Besides, λ is the only configurable parameter
that needs to tracked. With LRR, KRR, and SVR, such a
simple tracking of feature importance cannot be performed.
Indeed, the weights of the input features could be seen as a
rough approximation of their importance, but this requires a
linear kernel and that all features have the same scale, which
is seldom the case. Hence, if the feature importance should be
tracked, dedicated methods need to be applied, also beyond
the training process. This allows to keep track of the feature
importance in general, but not the feature importance with
respect to the specific model which was applied. However,
only few model parameter settings need to be monitored and
we classify the trackability of KRR, LRR, and SVR as
medium. To obtain the feature importance with NN, more
complex methods, like permutation importance, need to be
applied. The values of the features are, one after another,
randomly shuffled. These shuffled values are used as an input
for the trained model. Analyzing how much the prediction
output is distorted by modifying the input, allows to estimate
the importance of a feature. As this process is very inefficient,
and a huge range of model parameters need to be tracked, we
classify the NN as hard in terms of trackability.

5) Service Coverage: The range of problems to which a
specific ML algorithm can be applied is varying. In the context
of estimating QoE, we refer to this range as the service
coverage, i.e., to how many service types an algorithm can
be applied without knowing the relationship between input
features and QoE upfront. Due to their linearity, LASSO and
LRR are limited to services where this relationship is linear.
Contrary, KRR, SVR, and NN can be used for most problems,
even if the relationship between input features and response is

not linear. Thereby, the NN with its deep architecture might
show advantages in solving highly complicated problems.

6) Scalability of ML Methods: As discussed in Sec-
tion VI-A3, the kernel methods, KRR and SVR, are slow
both in training and testing when the number n of training
samples is large: the training and the testing (for a single
test sample) complexities are O(n3) and O(n), respectively.
Therefore, the linear models, LASSO and KRR, as well
as NN are preferable for large n, if the performance is
comparable. Note that kernel methods can be significantly
sped up at the expense of approximation errors: For example,
the Nystöm method [31] that approximates the kernel matrix
with a rank r matrix reduces the complexities to O(r2n) and
O(r) for training and testing, respectively, and the random
Fourier feature method [32] that projects the input data into
a (d <)d′(≪ n) dimensional space so that the inner product
approximates a radial basis function (RBF) kernel reduces the
complexities to O(d′2n) and O(d′), respectively.

For dealing with big data with millions of training samples,
even the models with linear dependence, LASSO, KRR, and
NN, can be prohibitive to train. In such cases, the stochastic
gradient descent, a standard algorithm for NN training where
the gradient descent is performed with a small batch of
samples at each iteration, should be used for training.

VII. DISCUSSION

The following section briefly summarizes the key lessons
learned from our feasibility study and afterwards discusses
the limitations of our study.

A. Lessons Learned

In the scope of our feasibility study, we showed that by
means of regression techniques and by utilizing network
statistics that are available to an MNO in 5G systems, the
QoE can reliably be estimated. For both applications, VoD
and VoIP, and for both QoE models used to assess the VoD
QoE, i.e., P.1203 and CQM, and for any of the investigated
subsets (moving vs. stationary clients and low, medium, or
high true QoE), there are at least two algorithms achieving
an RMSE below 0.5. This shows that despite the imbalance
in the data set, independent of the user’s movement pattern
and the model used to assess the QoE, we can estimate the
performance with a deviation of less than 0.5 on MOS scale.
The lowest estimation accuracy in the data set all is an RMSE
of 0.27, observed for the QoE of VoD as obtained using the
cumulative quality model (CQM) and the estimation carried
out by the NN. This can still be seen as a very accurate
estimation. Besides showing the general feasibility of an ML-
based QoE monitoring approach for 5G, we identified that the
linear models, i.e., LASSO and LRR, fail to estimate the low
QoE scores for VoIP.

Apart from the achievable estimation accuracy, an MNO’s
choice in terms of the algorithm to deploy within the NWDAF
is influenced by its operational requirements. Our analysis
show - despite using the same framework and physical ma-
chine - the heterogeneity of the different models in terms of
their CPU-load and RAM-usage, as well as of their duration
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for training and testing. We learned that KRR and SVR, which
yield the highest accuracy within our study, have the highest
resource demands during model training and they need much
longer for estimating the QoE than any of the other tested
techniques. While the resource demands during the training
process, which only needs to be performed initially and then
only from time to time to keep the model updated, can still
be acceptable, the long testing duration will make KRR and
SVR inapplicable if real-time network control actions should
be triggered by the estimate.

In addition, there are several qualitative considerations
which affect the applicability of a specific regression tech-
nique. To take them into account within the scope of our
study, we discussed the set of five regression techniques
with respect to different factors, such as their complexity or
comprehensibility. For example, we found that the decisions
of the best performers, i.e., KRR and LRR, are hard to trace
due to their complexity, and hence, could impede a root cause
analysis for the MNO.

To summarize, by exploiting three of the new key features
introduced with 5G, i.e., (i) interactions with externals such
as third party APs, (ii) enhanced monitoring capabilities, and
(iii) performing complex computations, current QoE monitor-
ing limitations can be overcome. More specifically, in 5G
systems, MNOs are capable of obtaining an accurate QoE
estimation solely based on network KPIs, once an ML model
is sufficiently trained. Besides elaborating on the challenges
and design criteria as faced by an MNO, we identified the
relevance of different features. This can be useful for future
generations of mobile networks, e.g., by guiding towards a
standardized set of statistics provided at the NWDAF, so
to allow the deployment of ML-based QoE estimation also
across multi-vendor networks. Furthermore, by means of the
exemplary set of five regression techniques, we highlighted
the need of taking the scaling of the NWDAF with respect to
its computational resources into account.

B. Limitations

We now summarize the limitations of the conducted study
and shortly discuss their impact on the drawn conclusions.
Simulated 4G traces vs. real 5G traces: Our evaluations are
based on simulated 4G data. Compared to 4G, 5G networks
have higher bandwidth capacity, lower delays, and at least for
the throughput, 5G shows higher variances [33]. This, how-
ever, does not affect the relationship between QoS and QoE
for specific applications [34]. Consequently, the estimation
accuracy of the different models itself will not be affected,
but we can expect a shift towards higher QoE scores in the
collected ground-truth data set.
Limited set of considered applications: With VoD and
VoIP, we investigated two types of applications following
different fundamental QoS/QoE relationships [35]. Our study
shows that the investigated regression techniques are capa-
ble to obtain a good QoE estimation, independent of the
underlying relationship. Configurational or implementation-
specific settings like the used video codec or the applied
adaptive bitrate algorithm have only minor influence on those

fundamental QoS/QoE relationships. This indicates that the
presented approach can be generalized beyond its application
within the conducted study.
Unbalanced data sets: Due to the investigated network sce-
narios, specific QoE ranges occur less often, making it harder
for the regression techniques to train an accurate model. We
observed significant differences in the estimation accuracy for
different QoE ranges and it is hard to assess in how far these
differences are due to the unbalanced data set. However, QoE
literature shows distinct relationships between QoS metrics
and any QoE score, suggesting that an accurate estimation
based on QoS metrics is achievable for the whole range of QoE
scores [34]. In this respect, we want to emphasize the practical
orientation of our study and that an MNO would face similar
issues, e.g., of receiving good VoIP QoE samples with higher
frequency than low VoIP QoE samples. It can overcome this
issue by increasing the number of overall collected samples,
thus obtaining more of the rarely occurring QoE scores, which
would allow to generate a more balanced data set.
Limited settings of hyper-parameters during training: Fi-
nally, we note that further optimizations of the QoE estimation
are possible by tuning the different parameter settings. How-
ever, such an analysis is beyond the scope of this work, since
we aim at highlighting the general feasibility of an automated
training and testing cycle for QoE estimation in the 5G
architecture. This is sufficiently shown by the high accuracy of
the employed models, particularly by SVR and KRR, which
highlights the applicability of the proposed system. In order to
allow further improvements of the estimation accuracy, e.g., by
using different ML techniques or testing additional parameter
settings, we publicly provide our aggregated ground-truth data
sets to the research community.

VIII. CONCLUSION

With the introduction of AF and NWDAF, the 5G net-
working architecture offers the necessary capabilities for
data-driven QoE monitoring. Combined with automatically
triggered network control mechanisms, the ML-based QoE
estimation allows the deployment of self-driven QoE-aware
networks, which do not require manual interference. The ca-
pability to estimate the QoE reliably in a multi-service domain
with heterogeneous user-contexts is a crucial prerequisite to
deploy such networks. In this work, we focused on the QoE
estimation and showed that it can be efficiently and reliably
implemented in 5G systems by using Machine Learning.
Thereby, we first elaborated on the new 5G features, poten-
tially eliminating the QoE monitoring limitations of earlier
mobile network generations. Next, we investigated the estima-
tion accuracy of five representative regression techniques and
for two exemplary service types that differ with respect to their
QoS-/QoE-relationship. All ML algorithms have been trained
and tested on a large data set, generated via simulation activity.
The conducted study shows that in general, a high estimation
accuracy can be obtained with any of the investigated ML
options and with reasonable operational overhead. However,
in specific cases, the simple linear models fail to estimate
the QoE accurately due to their inability to capture non-
linear relationships. Despite the trade-off between a model’s
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complexity and its estimation performance, an MNO might
consider additional factors when choosing an ML option to
deploy. Hence, our quantitative evaluations are broadened by
a qualitative comparison of the five regression techniques and
this work can serve as a guideline and as a proof-of-concept
for ML-based QoE estimation deployment in 5G networks
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