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ABSTRACT 

In this paper, we describe an agency model for generative 

populations of humanoid characters, based upon temporal variation 

of affective states. We have built on an existing agent framework 

from Sequeira et al. [17], and adapted it to be susceptible to 

temperamental and emotive states in the context of cooperative and 

non-cooperative interactions based on trading activity. More 

specifically, this model operates within two existing frameworks: 

a) intrinsically motivated reinforcement learning, structured upon 

affective appraisals in the relationship of the agents with their 

environment [19,17]; b) a multi-temporal representation of 

individual psychology, common in the field of affective computing, 

structuring individual psychology as a tripartite relationship: 

emotions-moods-personality [7,15]. Results show a populations of 

agents that express their individuality and autonomy with a high 

level of heterogeneous and spontaneous behaviors, while 

simultaneously adapting and overcoming their perceptual 

limitations. 
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1. INTRODUCTION 
Generative populations of virtual humans, interacting 

autonomously and in real time, are an expanding area of research 

with immediate applications in domains such as urban simulations 

and games. The credibility of 3D scenes with autonomous 

populations of humanoid characters relies to a great extent, on their 

ability to show plausible behaviors. In that sense, the actions of 

individuals within groups of biological humans are not 

homogeneous nor periodic, and consequently, the heterogeneity 

and spontaneity of the behaviors performed by procedurally 

generated inhabitants are amongst the key factors for the quality 

and realism of the simulations.  

We are interested in investigating how personality and emotionally 

influenced behaviors impacts actions, decisions and the expression 

of individual and global behaviors. We want to look at the 

trajectories of individual behavior as well as the patterns emerging 

at a global scale of the simulation resulting from the accumulation 

of individual life experiences. The objective is to be able to 

generate populations of agents that express their individuality and 

autonomy while simultaneously they adapt and overcome their 

perceptual limitations.  

The paper is organized as follows, first we discuss the objectives 

and contextualize this work with related work in crowds and group 

simulation. Then, in Section 3, we provide details of the agency 

model. In section 4, we introduce a proof-of-concept, implementing 

this model in a population of autonomous trading agents (Fig. 1), 

and then we discuss the results of this experiment, bringing up the 

advantages and disadvantages of this model. Finally, we conclude 

suggesting future possibilities for research and development 

drawing on this approach. 

 

1.1 Contributions 
In this paper, we focus on one-to-one interactions within groups, 

and in particular, on the role played by psychology acting as part of 

an adaptive mechanism in shaping i) individual expressions and ii) 

group and crowd dynamics. We suggest a model of agency for 

generative systems that improves the level of individual 

spontaneity and expressivity while simultaneously permitting the 

progressive adaptation of agents to their environment.  

 

Figure 1 General view of the generative population in the 

experimental setting, with two interacting individuals in the 

center of the image. 
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2. STATE OF THE ART 
Attention to aspects of human psychology has been, traditionally, 

at the core of crowd research. Due to the relevant role played by 

emergency simulations in the development of the field, variables 

such as ‘level of panic', for instance, have been critical, strongly 

impacting the behavior of the virtual characters (Braun et al. [1], 

Tsai et al. [22]). The complexity of psychological traits varies from 

these simple ‘stress' emotional states (Park et al. [14]) to models 

where individuals differ from each other in their personality (Li et 

al. [11]). This is usually represented by means of multidimensional 

vectors, where each dimension corresponds to a personality feature. 

In Durupinar and colleagues [5], for instance, an agents' 

psychology is represented with the vector v  {x, y, z, k, w}, 

standing for the five parameters of the OCEAN model (described 

in dimensions of openness, consciousness, extroversion, 

aggressiveness, and negativity) [3]. Similarly, Guy and colleagues 

use Eysenk's Three Factor [6], PEN (psychoticism, extroversion, 

and neuroticism). Behaviors of the virtual characters take these 

personality properties into account. One example is Bogdanovich 

and colleagues [21], where objects have annotated emotional 

responses. In the course of its actions, the agent chooses the object 

that better fits its personality parameters. With this type of 

approach, depending on the particular configurations, certain 

aspects of one individual might differ wildly from those observed 

in others, for instance, the level of tolerated proximity, the walking 

speed, etc.  

In spite of these strategies to integrate human psychology in the 

simulations, the workings of personality and emotional states in 

humans is a complex phenomenon, dynamic, involving both 

internal and external processes. One-off short-termed emotions are 

inextricably linked with longer lasting moods and steadier 

temperaments, as well as actions performed by the individual and 

the environment. Modeling only stress levels or a rigid monolithic 

psychology, seems to be to too limiting, and other works attempt to 

bridge these gaps. One example is Silverman and colleagues' 

PMFServ [18, 2], where emotions are represented as dichotomies, 

joy-distress, hope-fear and like-dislike, resulting from actions 

performed by the agent (or its group's members). These emotions, 

then, have a direct impact on ‘stress' levels which, in turn, are used 

to trigger further motivated actions. Nonetheless, little importance 

is given to individual personality, which is represented as a 

predefined set of subjective beliefs informing the selection of 

actions performed. In turn, Navarro and colleagues [13] in SEstar 

use dynamic ‘stressometers' that articulate with higher level 

psychological traits modeled top-down during the initialization 

stage. These are narrowly defined features such as courage, 

stamina, etc.  

Taking this scenario into consideration, Durupinar and colleagues 

improved their framework to include emotions, mood, and 

personality. Internal emotional states are differentiated and 

rendered visible using five different faces and body postures. 

Personality defines low-level behavioral attributes such as speed, 

and pushing behavior. Additionally, they add empathy and 

emotional contagion to their model. The drawback, however, is the 

cognitive dependence of emotions in their system. As they 

recognize, there is a wide range of emotions, such as surprise, 

which are never triggered using the appraisal heuristics that they 

have followed (The 22-emotions, OCC model [15]) [5, 4]. 

It seems opportune to address now this topic of research, and 

namely to bring together the dynamics of one-to-one interactions 

with the different dimensions of psychology and integrate these 

with reinforcement learning, in a model of agency that can be 

implemented successfully in virtual populations. 

 

2.1 Related work 
Given the complexity of environments composed of multiple 

interacting individuals in this agency model we have brought 

together some existing frameworks:  

 

a) Reinforcement learning with affective states  

We found it useful to endow our agents with the ability to address 

sequential and conflictual decisions. Reinforcement learning is a 

known technique of machine learning, inspired by behaviorist 

psychology [20]. The process resembles the evolutionary and 

adaptive process from living organisms, characterized by a 

progressive learning about the agent's environment, where 

perceptions become mapped to actions by trial and error. Typically, 

the possible action-states and the environment are modeled using a 

Markov chain with probabilities defined for each state transition. 

When changing state, the agent receives a reward according to the 

action performed, adapting the relative weight of the associated 

transition. Sequeira and colleagues [17], proposed a model for 

reinforcement learning, which we found relevant to our goal. They 

have built on earlier work from Singh [19], rewarding actions 

performed in dimensions that are simultaneously: i) affective - 

expressed by four appraisal dimensions: novelty, motivation, 

valence and control; and ii) functional - corresponding to the 

fulfillment of the agent's basic needs, for instance, being satiated 

[17]. 

 

b) Emotional tripartite scheme  

Our goal is to combine this mechanism of affective agency with a 

more structured psychological scheme. The aim is to be able to 

model the effects of short-term emotions and longer term 

temperament in individual behavior. A standard tripartite 

psychological scheme, defined as personality-mood-emotion, is 

recurrent in the field of affective computing (Kshisagar and 

Magnenat-Thalmann [10], Gebhard [7], Santos et al. [16]). In these 

works, a basal personality is defined. This approach provides 

rooted patterns of behavior, or behavioral tendencies, 

predominantly located in specific zones of the psychological space. 

Emotions, on the contrary, are short-termed and consist of reactions 

to events. These works also model mood as an independent trait of 

the individual. The independence of this dimension is relevant since 

it allows incorporating both the memory from previous emotions, 

as well as their impact on personality. 

 

c) Representation of temperament and emotions  

From the works referenced above, Gebhard and Santos et al., use 

Mehrabian's PAD multidimensional space to represent the mood of 

the agent. PAD is a system of representation designed to capture 

the entire domain of emotional experiences. Mehrabian argues that 

we can define every emotional trait with a three-dimensional vector 



consisting of three dimensions: i) pleasure-displeasure (P), ii) 

arousal-non-arousal (A) and iii) dominance-submissiveness (D), 

expressed in the bipolar space [-1,1] [12]. Furthermore, Mehrabian 

distinguishes transitory from long lasting emotions, what he 

describes, as emotional states and emotional traits [12].  

In our model, the psychology of an agent is a dynamic process 

structured upon three layers: i) short-termed emotions, which result 

from interactions of the agent; and a temperamental factor, 

combining ii) a long-termed mood, which is the memory of these 

emotions; combined with iii) a biological imprint, which is a 

genetically determined component. For convenience, we use PAD 

dimensions for all three layers.  

Traditionally, we see personality described using models such as 

the Big-5 or Eysenk (Krishsagar and Thalmann [10]) and emotions 

with OCC (Gehbard [7]), whereas PAD is more commonly seen 

representing moods (Santos et al. [16]). However, PAD is robust 

enough to provide representations of states on all three levels. 

Mehrabian clearly advocates the use of the model's dimensions to 

represent any “emotion or affect" [12]. Additionally, he establishes 

a direct correlation between PAD and the Big-Five model (For 

instance, extroversion = 0.24.pleasure + 0.72.dominance). As a 

consequence, and to simplify processes, we use PAD as a single 

model to represent the three layers: emotion-mood-personality. 

We found it pertinent to combine these two frameworks and bring 

together: i) a tripartite and multi-temporal psychological scheme 

(personality-mood-emotion) - where long-term temperamental 

traits articulate with short-termed emotions, with ii) an action-

selection mechanism - where perceptions are progressively mapped 

to actions in an evolutionary process of reinforcement learning 

(Fig. 2). 

 

d) Metabolism and reproduction as intrinsic 

motivational factors  

To test and experiment this model we have generated a population 

of autonomous individuals, organized in hierarchies and emulating 

life processes, with metabolic and genetic components. Closely 

aligned with works from ALife [8], a relatively simple motivational 

layer was implemented with agents exchanging token units of 

energy and resources, motivated by their own survival and 

perpetuation of genetic patrimony. Each individual is identified by 

a DNA-like string, which functions as a blueprint defining its own 

features. These phenotypic properties include aspects such as initial 

psychological parametrization, or the specification of class this 

individual belongs to. Class distinction between individuals allows 

us to establish functional hierarchies organized around the trade of 

resources and reproduction. 

Additionally, agents emulate a life cycle, including birth, death (by 

lack of energy) and reproduction. When individuals multiply, their 

progeny inherits the parents’ genetic blueprints, which are 

combined using operators of mutation and cross-over. When 

individuals are born, they appear in the animation from a predefined 

location. Similarly, when they die, they move to a specific location 

before they are removed from the system. This allow us to have 

continuous fluctuations of population density as well as 

discontinuous diversity of functions and roles.  

Another noteworthy aspect is the role of resources, which is central 

in this scheme. They have a dual function: firstly, they are required 

to produce energy; secondly, they are recycled by the agent to 

produce other types of resources. To generate energy, each of the 

agents needs to use his own accumulated resources. As a 

consequence, he permanently needs to search for trading partners 

who might be interested in his resources and can trade the required 

ones. This provides a mechanism for intrinsic motivation to act in 

the world. 

 

 

Figure 2 Diagrammatic scheme of the model: The agent 

makes an observation about the world (both the external 

environment, as well as its internal context). The affective 

reward of the action-state is influenced by its: i) 

functionality (extrinsic), ii) psychology (temperamental), 

and iii) the appraisal of the current state within the network 

(intrinsic). The success of interactions is dependent on the 

mood of the two agents involved and the outcome of the 

interaction generates a new emotion; adapted from 

Sequeira et al. [17]. 

 

3. MODEL DESCRIPTION 
Emotions, mood and personality 

The personality of each agent is established upon three 

interconnected layers: emotion, mood and personality. The one-off 

short-term emotions are inextricably linked with longer lasting 

moods and steadier temperaments as well as actions performed by 

individuals and their environment. We define each layer using 

PAD’s nomenclature, which uses a three-dimensional vector 

consisting of: i) pleasure-displeasure (P), ii) arousal-non-arousal 

(A) and iii) dominance-submissiveness (D), expressed in the 

bipolar space [-1,1] [12].  

To emulate biologic preconditioning, each agent is initialized with 

a static vector defining a dominant personality. Mood, on the 

contrary, is dynamic and composed of this biological imprint as 

well as the memory of previous emotions. Emotions are momentary 

events generated by: a) interactions with other agents and b) state-

transitions in a Markov chain. When two individuals interact, the 

outcome of such an encounter is a function of: a) their respective 



moods, b) the utility of the encounter and c) the history of their 

previous encounters. An emotion is generated with an interaction, 

and the mood is updated accordingly. We express emotion as a 

function of appraisals in domains of motivation, valence, novelty, 

urgency and dominance. Emotion is represented as a PAD vector, 

where the first pair of appraisals determines the Pleasure 

dimension. The second pair defines Arousal and the last pair gives 

the value for Dominance. These appraisal factors are adapted from 

the agency model from Sequeira et al. to the context of cooperative 

and non-cooperative interactions based on emotional and 

temperamental states [13], which we will describe next (Eqs. 3.1 to 

3.10).  

 

Markov chain 

The agent's behavior is established via a Markov chain. Transitions 

of state also generate emotions. Initially, all transitions leaving a 

state have identical weight. Each agent is constantly monitoring the 

internal and external environment, updating a set of sensors: i) lack 

of energy, ii) excessive libido, iii) proximity to an agent with 

resources, iv) proximity to a mate, v) neighbor is known, vi) 

currently in interaction, vii) emergency.  

Once a change in one of these binary sensors is detected, a change 

of state is triggered. The agent then decides what action to choose 

based on his previous experiences. Once action a at state s is 

performed, the weight associated with the transitions of the action-

state is then updated with reward r and a new emotion is generated. 

This reward is function of motivation, valence, novelty, urgency 

and dominance. Note however that when there is an emergency, the 

reward is hijacked since all the states have a transition to the 

emergency state with a predefined weight of value one. 

 

3.1 Reward function 
Sequeira [17] specifies rtot resulting from an intrinsic reward rint; 

that is calculated based on the appraisal equations that take in 

consideration the action-state, and an extrinsic reward rext, which 

results from external functional factors. By contrast, we combine 

affective, functional and intrinsic dimensions in each of the 

appraisal equations. 

 

rtot(s, a)  θmm(s, a) + θvv(s, a) + θnn(s, a) + θuu(s, a) + θcc(s, a) + 

θdd(s, a), r : R  [0, 1],     (3.1) 

 

where θm, θv, θn, θu, θc and θd are scalar weight coefficients, and 

m(s,a), v(s,a), n(s,a), u(s,a), c(s,a) and d(s,a) the functions 

measuring the affect and functionality that results from performing 

action a at state s, which we will describe next.  

 

3.2 Appraisal functions 
Appraisals evaluate one-off momentary events and actions causing 

state transitions. As mentioned, all appraisals should take into 

consideration the temperament of the agent. However, we couldn't 

help but noticing parallels between these functions and the 

dimensions of pleasure, arousal and dominance, used in 

Mehrabian's model. As such, we found it useful to express each of 

the functions with its associated temperamental dimension. 

 

3.2.1 Appraisal functions in the domain of pleasure  

The level of pleasure resulting from performing action a at state s, 

is given by a combination of valence and motivation. Pleasure 

Valence is only measured in states involving an interaction and, 

consequently, in all other states only the appraisal of motivation 

contributes to pleasure.  

 

a) Function of intrinsic motivation (eqs. 3.2.1 and eq. 

3.2.2).  

Departing from Sequeira’s formulation of motivation as a function 

of the number of states required to reach the goal-state, we have 

defined motivation as the physical distance to goal s*. However, 

when in the context of an interaction (distance is zero) trust is taken 

into account. For this purpose, the history of interactions with the 

partner is taken into account. k is the total of cooperative interaction 

with this partner and m the total of interactions. Furthermore, the 

influence of the pleasure component from the current mood is given 

by M⃗⃗⃗ p. α and 𝛽 are weight coefficients for each of the factors. M⃗⃗⃗ p is 
adjusted from its original bipolar PAD scale [1,1] to a normalized 

value [0,1]. 

 

𝑚(𝑠, 𝑎) = α
1

1+𝑑(𝑠∗)
+ β

M⃗⃗⃗ 𝑝+1

2
, 𝑚: 𝑅 → [0,1],   (3.2.1) 

𝑚(𝑠, 𝑎) = α
𝑘

𝑚
+ β

M⃗⃗⃗ 𝑝+1

2
, 𝑚: 𝑅 → [0,1],   (3.2.2) 

 

where α, 𝛃 ∈ [0, 1]; 𝐌⃗⃗⃗ p ∈ [-1,1]. 

 

b) Extrinsic function of valence (eq. 3.3).  

This measures the confidence of performing the action and it is 

given by the importance of this outcome c (cooperative: c=1; non-

cooperative: c=0) in relation with the context of the previous 

experiences. This is calculated as the total number of cooperative 

interactions w, in relation with the total of interactions performed 

by the agent so far, n. As before, the influence of the component of 

pleasure in the current mood of the agent is given by 𝑀⃗⃗ p. Similarly 

to the previous equation, α and 𝛽 are weight coefficients,  

 

𝑣(𝑠, 𝑎) = αc
𝑤

𝑛
+ β

M⃗⃗⃗ 𝑝+1

2
, 𝑣: 𝑅 → [0,1],   (3.3) 

 

where α, 𝛃 ∈ [0,1]; 𝐌⃗⃗⃗ p ∈ [-1,1]; c ∈ {0,1}. 

 

3.1.2 Appraisal functions in the domain of arousal  

Arousal or intensity of stimuli, is a function of the novelty of the 

situation, as well as the urgency of performing action a. 

 



a) Function of novelty (eq. 3.4).  

This function measures the degree of familiarity from the agent 

with the action-state. Sequeira defines λn
t
(s,a), as the number of times 

t the action a has happened at state s, where λ is constant, λ < 1. We 

have added a specific factor of novelty that is context dependent 

and is given by the number of previous interactions q that the agent 

i had with agent j. Because novelty is a function of arousal, the 

influence of the arousal component from the current mood is given 

by 𝑀⃗⃗ a, α and 𝛽 are weight coefficients, 

 

𝑛(𝑠, 𝑎) = α(
λ𝑛𝑡(𝑠,𝑎)+λ𝑛𝑞(𝑖,𝑗)

2
) + β

M⃗⃗⃗ 𝑎+1

2
, 𝑛: 𝑅 → [0,1],  (3.4) 

where α, 𝛃 ∈ [0,1]; 𝐌⃗⃗⃗ a ∈ [-1,1], λ ∈ [0,1]. 

 

b) Extrinsic function of urgency (eq. 3.5).  

This function integrates the agent’s need for resources. The current 

level of resources is denoted by r, and k is an arbitrary minimum 

threshold, with λ as above. Equally, the influence of the arousal 

component from the current mood of the agent is given by 𝑀⃗⃗ a. As 

before, α and 𝛽 are weight coefficients. 

 

𝑢(𝑠, 𝑎) = αλ
𝑟

𝑘 + β
M⃗⃗⃗ 𝑎+1

2
, 𝑢: 𝑅 → [0,1],   (3.5) 

where α, 𝛃 ∈ [0,1]; 𝐌⃗⃗⃗ a ∈ [-1,1], λ ∈ [0,1]. 

 

3.2.1 Appraisal functions in the domain of dominance 

This function models the familiarity of the agent with the present 

context, as well as the level of dominance-submission between two 

interacting individuals i and j. It is calculated in function of control 

and dominance. 

 

a) Intrinsic function of control (eq. 3.6).  

Control shows the experience of the agent, and this is expressed in 

function of the novelty of the present state. The influence of the 

dominance component from the current mood is given by 𝑀⃗⃗ d. α and 

𝛽 are weight coefficients, 

 

𝑐(𝑠, 𝑎) = α(1 − n(s, a)) + β
M⃗⃗⃗ 𝑑+1

2
, 𝑐: 𝑅 → [0,1],   (3.6) 

where α, β ∈ [0,1]; M⃗⃗⃗ d ∈ [-1,1]. 

 

b) Extrinsic function of domination (eq. 3.7).  

During interactions involving agents i and j, this equation assesses 

their power relation. It equates the ratios of successful interactions 

during their lifetimes 
𝑤

𝑛
 and their need for resources (given by the 

urgency function - eq. 3.5). The existence of an interaction is 

signaled by the binary flag χ. w stands for the number of time the 

agent initiated a cooperative interaction, and n for the total of 

interactions. The component of dominance from the current mood 

of the agent is given by 𝑀⃗⃗ d. Like before, α and 𝛽 are weight 

coefficients, 

 

𝑑(𝑠, 𝑎) = αχ(
((
w

 𝑛
 )
𝑖
−(

w

 𝑛
 )
𝑗
)+(𝑢(𝑠,𝑎)𝑖−𝑢(𝑠,𝑎)𝑗)

2
 ) + β

M⃗⃗⃗ 𝑑+1

2
, 𝑑: 𝑅 →

[0,1],       (3.7) 

where α, 𝛃 ∈ [0,1]; 𝐌⃗⃗⃗ d ∈ [-1,1], 𝛘 ∈ {0,1}. 

 

3.3 Emotions 
Emotions are translated directly from the appraisals described 

above. We define a vector of appraisals 𝐴  using PAD dimensions, 

where pleasure component is A⃗⃗ 𝑝 = (𝑚(𝑠, 𝑎) + 𝑣(𝑠, 𝑎))/2, arousal 

is  A⃗⃗  ⃗𝑎 = (𝑛(𝑠, 𝑎) + 𝑢(𝑠, 𝑎))/2 and dominance A⃗⃗ 𝑑 = (𝑐(𝑠, 𝑎) +
𝑑(𝑠, 𝑎))/2. However, we are using PAD's nomenclature to 

represent emotional traits where each dimension is a value in the 

space [-1,1]. Consequently, we need to convert each of the 

appraisals from their original scale [0,1]. In eq. 3.8, 𝐸⃗  is the PAD 

vector of emotion, 𝐴  is the vector of appraisal rewards and û⃗  is a 

unit vector. 

 

𝐸⃗ = 2𝐴 − û⃗ , 𝐸: [0,1] → [−1,1].   (3.8) 

 

3.4 Mood 
The mood vector expresses the agent's basic personality as well as 

its memory of past emotions. Mood is rooted in the dominant 

personality, which is shaped by genetics (eq. 3.12) but it also 

evolves as a function of momentary emotions, resulting from state 

transitions and interactions (as described earlier). 

To calculate the current mood, each of the different components of 

personality, genetics (G), emotion (E) and temperament (M) is 

taken into account. Consider the pleasure dimension, 𝑀⃗⃗ 𝑝(t), of 

individual i at time t. Its value is calculated in function of its genetic 

predisposition (given by 𝐺 𝑝) and the strength of the transitory 

emotional states (given by 𝐸⃗ 𝑝(t) ) and the memory of past emotions 

(𝑀⃗⃗ 𝑑(𝑡−1)).  

 

𝑀⃗⃗ (𝑡) = α𝑀⃗⃗ (𝑡−1) + β𝐸⃗ (𝑡)  + γ𝐺⃗⃗ ⃗⃗  (𝑡), 𝑀 ∈ [−1,1],  (3.9) 

where α, 𝛃,γ∈[0,1], 𝐌⃗⃗⃗  ∈ [-1,1], 𝐄⃗  ∈ [-1,1], 𝐆⃗⃗  ∈ [-1,1]. 

 

3.5 Genetic Preconditioning 
In the moment of initialization, each agent receives a normalized 

PAD vector. Its parameters are constant values, which we will be 

referencing as 𝐺 𝑝,𝐺 𝑎 and 𝐺 𝑑 accepting constant values k1, k2, and 

k3. This vector functions as an anchor, rooting temperament to an 

emotional tendency.  

 

𝐺 = (𝑘1, 𝑘2, 𝑘3), 𝐺: 𝑅 → [−1,1].   (3.10) 

 



The outcome of this model is a multi-perspective description of the 

individual psychology. Dimensions of emotion, mood and genetic 

operate in multi-temporal scales generating expressive behaviors. 

Emotion traits can be easily integrated in animations to generate 

variations in individual behavior. For instance, the character may 

walk more or less exuberantly, and the speed of his movements may 

also vary accordingly. One aspect of great importance from 

individual psychology is expressed in one-to-one 

interrelationships, as we will discuss next. 

 

3.6 Interactions 
Agents act in the world in order to accomplish their motivated 

goals. Therefore, they interact with others and the course of these 

encounters is heavily influenced by their psychological states (Fig. 

3).  

 

 

Figure 3 Diagram of an interaction: To determine the success of 

the interaction, the mood and utility of the interaction for both 

agents is taken into consideration. The outcome will impact the 

emotions of both intervenients. 

 

As described earlier, in a feedback loop the outcome will also 

influence reciprocally the subsequent emotions of the agent. 

Equation 3.11 describes an interaction involving two agents i and j, 

determining the benefits for agent i of such an encounter. The 

function combines the psychology from both intervenients, 𝜓𝑖,𝑗(t); 

and an utilitarian evaluation, ϓ𝑖,𝑗(t), determining the usefulness of 

the interaction. 

 

interaction = χ𝑖,𝑗(t) = ψ𝑖,𝑗 (t) . ϓ𝑖,𝑗 (t).   (3.11) 

 

psychology = ψ𝑖,𝑗 =

{
 
 
 
 
 

 
 
 
 
 1   𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2, 𝐸𝑥𝑢𝑏𝑒𝑟𝑎𝑛𝑡 (+P + A + D)

0.25   𝑖𝑓 (𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡)) /2, 𝐵𝑜𝑟𝑒𝑑(−P − A − D)

0.25  𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2 , 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡(+P + A − D) 

−1  𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2,𝐷𝑖𝑠𝑑𝑎𝑖𝑛𝑓𝑢𝑙(+P + A − D)

1  𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2, 𝑅𝑒𝑙𝑎𝑥𝑒𝑑(+P − A + D)

0.25  𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2 , 𝐴𝑛𝑥𝑖𝑜𝑢𝑠(−P + A − D)

1  𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2,𝐷𝑜𝑐𝑖𝑙𝑒(+P − A − D)

−1  𝑖𝑓(𝑀⃗⃗ 𝑖(𝑡) + 𝑀⃗⃗ 𝑗(𝑡))/2,𝐻𝑜𝑠𝑡𝑖𝑙𝑒(−P + A + D)

 

(3.12) 

As per the psychology function (eq. 3.12), we average the vectors 

of mood 𝑀⃗⃗  (which are given by eq. 3.9) from both intervenients 

(i,j) in the interaction.  

 

The resulting vector indicates the openness of this encounter to be 

a cooperative one. For instance, when the result is a combination of 

moods considered as ‘hostile', the function will return -1 to indicate 

a non-cooperative stance. Conversely, if both intervenient are 

‘docile' to each other, the function will return +1 to signal a 

cooperative mood. 

The utility function results from a balance between the resources 

required by agent i, (r), and the resources provided by agent j, (p). 

Consider three resources a, b and c, 

 

utility = ϓ𝑖,𝑗(t) = 1-
1

1+∑(𝑟.𝑝)
,    (3.13) 

where r∈{a,b,c}, p∈{a’,b’,c’} 

 

In a feedback loop, the dimensions of the emotional state of the two 

interacting agents will be updated after the transaction, as described 

earlier. 

 

 

Figure 4 The expressivity of the gestures used in the behavioral 

animations reveals the internal state of the agents. In the center 

of the image,  two individuals interact exhuberantly, while at 

their left another agent walks by showing a depressed 

locomotion.  

 

4. EXPERIMENT 
We wanted to be able to model the influence of emotions and 

personality in the interactions of a population of autonomous 

agents. To build this community (Fig. 4), we have implemented a 

society of agents structured in hierarchical layers and organized in 

a way to promote interaction and resource exchange. This type of 

multi-agent communities are characterized by permanent changes 

of patterns and flow since, in order to satisfy their goals, individuals 

need to move in space to find interaction partners. We found useful 

to include a similar and relatively simple motivational layer, where 

agents need to exchange token units of energy and resources, 

motivated by their own survival and the perpetuation of their 



genetic. Moreover, agents are equipped with a psychological 

mechanism that includes emotions, mood and personality as 

described earlier in the previous section. Finally, action are 

performed based on a Markov chain implemented using the reward 

mechanism described above. We further described 13 states ( i) 

rest, ii) move to prey; iii) move to mate; iv)wander; v)found mate; 

vi)found prey; vii)facing a known mate; viii)facing an unknown 

mate; ix)facing a known prey; x) facing an unknown prey; xi) eat; 

xii) reproduce; xiii) emergency exit).  

To initialize the network, all transitions leaving one state have 

identical probabilities which are later updated according to the life-

experiences of the agent. In equation 3.1 parameters θm, θv, θn, θu, 

θc and θd each have a value of 0.16. Parameters 𝛼 and 𝛽 in equations 

3.2 to 3.7 have the value 0.75 and 0.25 respectively. Finally, in eq. 

3.9 the parameters α, and β have the value 0.30 and γ the value 

0.40. 

To further analyze quantitatively the simulation we set it running 

for one hour and we have captured portraits of the population at 

intervals of one minute. The next sub-section describes the results 

of this run.  

A video of the system running is available at 

(https://www.youtube.com/watch?v=_W0KEz52Ksw).  

 

4.1 Results 
Results will be analyzed in quantitative terms, in aspects such as: 

a) global heterogeneity of behaviors (Fig. 5); b) emotional 

dimensions (Figs. 6 and 7); and c) animation parameters (Fig. 8).  

4.1.1 Actions performed  

 

Figure 5 Activities performed by the agents throughout a 

run. 

We started by looking throughout the run at the action being 

performed by each of the individuals at the moment of the snapshot. 

Fig. 5 shows that, as expected, agents spent most of their time 

(67%) walking. The rest of the time, they were involved in 

interactions. 25% of the time was spent in trading activities (Attack-

Lose, Eat), and 9% mating (Mating-Lose, Reproduce). 27% of the 

time agents were successfully cooperating and only 5.9% they were 

found interacting with a non-cooperative attitude. The relatively 

high value of time spent interacting is justified by the limited 

number of goals that we have specified initially. This heterogeneity 

of actions results from the intrinsic need of the agents to capture 

energy and reproduce to satisfy their metabolic needs. 

 

4.1.2 Emotional parameters 

Fig. 6 depicts the psychological space of the population at an 

arbitrary moment of time. The genetic predisposition (personality) 

shows a uniform distribution with an occupation of the whole 

spectrum. This distribution was the expected result taking 

considering that a stochastic process initialized the initial 

population. Emotions and mood are less disperse and appear to be 

correlated.  A large area of the spectrum appear occupied, but there 

seems to be some limitation with psychological states that are 

simultaneously positively aroused and positively dominant as well 

as simultaneously negatively pleasant and negatively dominant. 

The justification for this lays on the interdependency of functions 

from different domains, such as the control (dominance) being 

dependent on novelty (arousal). 

 

Figure 6 Graph with snapshot of the emotional domain of a 

population composed of 200 individuals, at an arbitrary 

moment in time. 

We also have paid attention to individual differences between 

agents. Fig. 7 shows the sequence of psychological configurations 

of two arbitrary agents during a period of 15 minutes. As expected, 

and since their personalities differ they occupy different zones of 

the emotional spectrum. They also demonstrate a consistent 

continuity of emotional states. As discussed earlier, in our model 

personality impacts the mood and this is interdependent with 

emotions. The graph depicts this relationship with the agent’s mood 

rooted on its personality. Similarly, the mood limits the freedom of 

its emotions. In turn, as defined by the model, moods are also 

https://www.youtube.com/watch?v=_W0KEz52Ksw


affected by emotions and these two dimensions appear in the graph 

not only correlated but very close to one another.  

 

Figure 7 Evolution in time of the psychological state of two 

arbitrary individuals. Individual A (represented with reddish 

tones) occupies a zone from the psychological spectrum that is 

distinct from the one of Individual B (with greenish tones). 

 

4.1.3 Animation parameters 

 

Figure 8 Parameters used in the visualization. From left to 

right, the duration of the interactions, the personal distance, the 

max number of neighbors, and maximum speed. In red, the run 

using a behavior tree (control), and in black, the agency model 

discussed in this paper (trial). 

 

Finally, we have looked at the parameters of socialization used in 

the animations. We have contrasted this system with one without 

any emotional model and making use of a simple behavior tree 

instead of reinforcement learning (control) (Fig. 8). Results show a 

relative increase in our model (trial) in the rate of variation of the 

socialization parameters. The standard deviation of the duration of 

the interactions increased from 5.98 (control) to 8.42 (trial). This 

result is justified by the fact that in the control model, the duration 

of the interaction was subject to three binary factors: mating, 

resource exchange and cooperation, whereas in this model not only 

these three variables interfere with the duration of the interaction as 

this is also subject to the effects of the mood. 

Significant variations were also found in the maximum number of 

neighbors, which was a constant value in the control model 

(control) and now (trial) had a deviation of 5.05.  

Less dramatic variations were observed in the parameters of 

personal space and the maximum speed, since variation in these 

factors had to be restricted to a limit for the sake of the animation 

plausibility. Yet, we noticed an improvement on the degree of 

variability in both categories. 

 

4.1.4 Walking towards a common goal 

 

Figure 9 Contrast between our model of agency and one using 

RVO when individuals try to reach the common target. 

 

Analyzing the model further, took us to look at how would it react 

to a standard benchmark such as walking towards a target. We have 

simulated a call to a classroom with two classes of individuals. The 

first group, dressed in dark blue, with a standard implementation of 

RVO, and another group dressed in light blue, with agents using 

our model. Fig. 9-Top shows the characters using RVO walking 

promptly and in line towards the classroom. The ones on the left, 

however, they linger around and take their time after the call to 

class is triggered walking slowly towards their goal.  

Fig. 9-Bottom, shows the same two settings, only this time we have 

called the agents using our model with the sensor of urgency 



activated. We can see that the response is different now, they walk 

disciplined towards the classroom. However, each one of the 

characters has its individuality, walking at his own speed and using 

different locomotion expressions and body postures.  

 

4.1.5 Discussion 

Our experiment shows a population acting heterogeneously with 

patterns of behavior commonly seen in ALife simulations:  

individuals behave spontaneously, with some aggregating and 

interacting in small groups of two or three while others walk at 

different speeds wandering through the terrain, and yet others walk 

but following one another. These behaviors are due to the 

underlying mechanism of agency used as the basis to build our 

system. Agents are intrinsically motivated to survive and 

perpetuate their genetic lineage, and for this purpose, they need to 

search permanently for partners of interaction. These basic 

principles from ALife form the basis to have an autonomous 

community always dynamic and active, exhibiting spontaneous and 

dynamic behaviors. Section 4.1.3 shows the level of heterogeneity 

of actions performed in a single run, from a limited set of 12 

possible states defined in the Markov chain. This scenario seems to 

indicate a clear benefit of the integration of ALife’s framework in 

this type of simulations, since it allows the relatively easy 

production of generative populations with self-motivated and 

autonomous individuals.  

The levels of expressivity obtained are also noteworthy. In virtue 

of their dynamic psychological state, individuals in this community 

may differ in the way they perform identical behaviors. We achieve 

this diversity of expression with the inclusion of a tripartite model 

of personality in our model. We have implemented five different 

animations for each of the possible actions such as idle or walking 

or different types of behavior during the interactions. These 

variations are dependent on the current emotional state of the 

individual resulting in richer simulations showing an increased 

level of expressivity with emotional continuity.  

Earlier, in order to improve the levels of expressivity of the 

simulations, Durupinar and colleagues have proposed an identical 

implementation of a model including emotions, moods, and 

personality. They similarly use five different animations for each 

behavior. However, their work builds upon OCC, PAD, and PEN 

models to define the psychological layers. In contrast, what is new 

about our approach is that we integrate the emotional pathways 

involved in decision making. Actions and emotional states become 

interdependent and operate in feedback loops. We use a single 

model (PAD) to represent different layers of psychology which 

allowed us to integrate affective dimensions with dynamic and 

continuous emotional states. Furthermore, coupling psychology 

with reinforcement learning resulted in the progressive adaptation 

of agents to their environment with affective-feedback. This 

feedback is dependent both on the outcome of the individual actions 

as well as on their psychological states. The learning process takes 

into account the emotional states generated by a multitude of 

factors such as the agents’ experience, the distance, and complexity 

of steps to reach the goals, their need for energy and resources, their 

power relations, their confidence in others through their historical 

of betrayal and cooperation. The result of this interdependency is a 

mood that influences the agents’ actions and swings smoothly with 

time as a consequence of its history of actions and reciprocally.  

However, despite all the expressive richness of behavioral 

expression and heterogeneity, we also found some limitations in 

our model. As reported in section 4.1.2, we have noticed that agents 

cannot fully express all the potential range of emotions due to a 

design constraint where functions of different dimensions are 

interdependent.  

 

5. CONCLUSIONS 
Micro-scale behaviors are progressively more important in crowd 

research. Combining micro and macro dimensions allow us to 

easily change scales of simulation. For instance, in one moment we 

might have a bird's eye perspective from the roof of a building, and 

in the following, to be immersed in the multitude. The importance 

of expressive individuality becomes increasingly important in 

simulation contexts where realism is relevant.  

We have looked at the role played by temporal variation in affective 

states in shaping individual behavior and expression. For this 

purpose, we have drawn on an existing agent-based framework 

[17], and adapted it to a context of cooperative and non-cooperative 

interactions based on trading behaviors. Furthermore, we have 

extended this framework to be susceptible to temperamental and 

emotional states of the agents. Agents’ behaviors are defined using 

a Markov chain with dynamic probabilities updated using intrinsic 

reinforcement learning. Learning is consequent on appraisals of the 

autonomous interactions of the agent that are both functional and 

emotive.  

We define a three-layered psychological model, integrating i) 

short-term emotions, which result from goal achievement; a 

temperamental factor, combining ii) a long-term mood, which is the 

accumulated memory of these emotions; and a iii) biological 

imprint, which is a genetically determined component of the 

personality of the agent. Mehrabian's PAD is used to represent 

these personality traits.  

We further illustrate this model with its application in a generative 

virtual population composed of autonomous individuals that act 

heterogeneously, expressing rich and varied behaviors that are 

relatively consistent and coherent with their past actions. This 

population is composed of self-organizing social individuals that 

are able to adapt and prioritize their goals and behaviors. They are 

capable of autonomous and spontaneous interactions where 

personality and emotions play a relevant role. Moreover, the course 

of interactions is emotionally dependent and their quality is heavily 

dependent on psychological traits as they impact the interaction 

viability, outcome, and duration. Furthermore, the population 

density varies in time as new individuals are added while others are 

removed from the simulation, consequences of the agents’ 

underlying trading activity.  

In summary, this study is at its early stages, but it already offers 

promising results. We contribute an agency model for generative 

populations of humanoid characters based upon the variation of 

affective states. This model brings together reinforcement learning 

with individual emotions and personality. We show that when 

coupled with a framework inspired in ALife this model can bring 

quality to animations by enriching varied domains such as the 

heterogeneity of behaviors, their spontaneity and other parameters 



of interaction (duration, personal space, the maximum number of 

neighbors). The main advantage of such model is the relatively easy 

implementation of a self-organizing and autonomous community 

of virtual characters that are both a) rich in expression and b) 

intrinsically motivated to act in the world independently from the 

context.  

This study is at its early stages, but it offers already promising 

results and some lines for future research. Next steps will include:i) 

adding different tasks and social roles in the simulations; ii) 

experiment different formulations for the appraisals, in particular 

limiting the currently existing interdependency, iii) adding more 

expressivity to the gestures and faces of the characters, with 

movements synthesized in real time; iv) incorporate reactive and 

cognitive layers of behavior. These steps will improve the realism 

and the complexity of behaviors. 
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